Warm-Up: Let G be a group, and
let H & G be a subgroup.
Define a relation
$$\mathcal{N}_{L}$$
 on G by
"Left"
 $X \mathcal{N}_{L} g$ if and only if $X^{T} g \in H$.
Two extreme examples:
If $H = \{e\}$, then $X \mathcal{N}_{L} g \cong X^{T} g = e$
 $\iff X = g$.
If $H = G$, then $X \mathcal{N}_{L} g \bigoplus X^{T} g = G$.
Prove that \mathcal{N}_{L} is an equivalence relation.

Cosets

Since n_L is an equivalence relation, it partitions G into equivalence classes. What are they?

For $g \in G$ and $x \in G$, we have $x \in [g] \iff g \sim_L x$ $\iff g^{-1}x \in H$ $\iff g^{-1}x = h$ for some $h \in H$ $\iff x = gh$ for some $h \in H$.

Def: Let G be a group,
$$H \leq G$$
 a
subgroup, and $g \in G$.
The left coset of H in G
containing g is
 $gH \coloneqq \{gh \mid h \in H\}$
That is, $gH = [g]$ is the
equivalence class containing g
for N_{L} .
Thus, the left cosets of H
in G partition G
Each geG is in exactly one
left coset, namely glt.
Note: $eH = H$ is one of the cosets,
and the only one which is a group.

$$E_{x}: G = S_{3}, \quad H = \langle (12) \rangle = \{e, (12)\}.$$

$$Left \quad cosets \quad of \quad H \quad in \quad G$$

$$\cdot H = \{e, (12)\} = eH = (12)H$$

$$\cdot (13)H = \{(13), (123)\} = (123)H$$

$$\cdot (23)H = \{(23), (132)\} = (132)H$$

$$E_{x}: G = S_{3}, \quad K = \langle (123) \rangle = A_{3}$$

$$Left \quad cosets \quad of \quad K \quad in \quad G$$

$$\cdot K = \{e, (123), (132)\} = (123)K = (132)K$$

$$\cdot (12)K = \{(12), (23), (13)\} = (23)K = (13)K$$

Remark: We can repeat this
entire process starting with the
relation
X NR y if and only if
$$xy^{-1} \in H$$
.
Then
• NR is an equivalence relation.
• The equivalence classes are
right cosets
Hg := Eng | h \in H}.
• G is therefore also partitioned
into right cosets.

 $\frac{Proof}{Proof}: Define a function$ $cp: H \rightarrow gH$ $h \rightarrow gh.$

Then
$$c\rho$$
 is surjective, since by definition
each element of gH is
 $gh = c\rho(h)$
for some $h \in H$.

To see
$$cp$$
 is also injective, suppose
 $cp(h_1) = cp(h_2)$ for some $h_1, h_2 \in H$.

Then
$$gh_1 = gh_2$$
, so $h_1 = h_2$ by
cancellation.
Thus, cp is a bijection and so
 $|H| = |gH|$.
The proof of $|H| = |Hg|$ is similar.