Exam Z next Friday
Know how to do computations in Dn, Sn (also An, Q8)
Understand cosets (right vs. left, a H = b H (=) a - b ∈ H, etc.)
Lagrange's theorem and its corollaries.

Homomorphisms  

$$\underline{\mathsf{Def}}: \mathsf{Lef} \ \mathsf{G} \ \mathsf{and} \ \mathsf{H} \ \mathsf{be} \ \mathsf{groups.} \ \mathsf{A}$$

$$\underbrace{\mathsf{homomorphism}}_{\mathsf{Such}} \ \mathsf{is} \ \mathsf{a} \ \mathsf{function} \ \mathsf{ep}:\mathsf{G} \to \mathsf{H}$$

$$\mathsf{such} \ \mathsf{that} \ \mathsf{for} \ \mathsf{all} \ \mathsf{g}_1, \mathsf{g}_2 \in \mathsf{G},$$

$$\varphi(\mathsf{g}, \mathsf{g}_2) = \varphi(\mathsf{g}_1) \ \varphi(\mathsf{g}_2)$$

$$\underset{\mathsf{redul}}{\mathsf{produl}} \ \mathsf{produl} \ \mathsf{in} \ \mathsf{H}$$

$$\mathsf{If} \ \mathsf{a} \ \mathsf{homomorphism} \ \mathsf{ep}:\mathsf{G} \to \mathsf{H} \ \mathsf{is} \ \mathsf{also} \ \mathsf{a}$$

$$\mathsf{bijection}, \ \mathsf{then} \ \varphi \ \mathsf{is} \ \mathsf{an} \ \underbrace{\mathsf{isomorphism}}_{\mathsf{is} \ \mathsf{on}} \ \mathsf{ind}$$

$$\mathsf{te} \ \mathsf{urite} \ \mathsf{G} \cong \mathsf{H}. \ ("\mathsf{G} \ \mathsf{is} \ \mathsf{isomorphism}}_{\mathsf{isomorphism}} \ \mathsf{and}$$

$$\mathsf{te} \ \mathsf{urite} \ \mathsf{G} \cong \mathsf{H}. \ ("\mathsf{G} \ \mathsf{is} \ \mathsf{isomorphism}}_{\mathsf{A} \ \mathsf{i} \to \mathsf{det}(\mathsf{A})$$

$$\mathsf{fs} \ \mathsf{a} \ \mathsf{homomorphism}, \ \mathsf{since}$$

$$\mathsf{det}(\mathsf{AB}) = \mathsf{det}(\mathsf{A}) \ \mathsf{det}(\mathsf{B}).$$

$$\mathsf{If} \ \mathsf{is} \ \mathsf{aot} \ \mathsf{an} \ \mathsf{isomorphism} \ (\mathsf{not} \ \mathsf{injective})$$

$$\mathsf{if} \ \mathsf{n} \mathsf{s} \mathsf{2}.$$

Ex:  $\varphi: Z \rightarrow D_n$  is a homomorphism,  $k \mapsto r^k$ 

since

$$q(k+1) = r^{k+1} = r^k \cdot r^l = q(k) q(l)$$
.

$$E_{\mathbf{X}}: \varphi: \mathbb{R} \to (\mathbb{R}_{>0}, \cdot)$$

$$\times \mapsto e^{\mathbf{X}}$$

is an isomorphism, since  

$$cp(x+y) = e^{x+y} = e^x \cdot e^y = cp(x)cp(y)$$
  
and  $cp$  is a bijection with inverse  
function  $x \mapsto ln(x)$ .

 $|a| = \infty \quad and \\ q: \mathbb{Z} \rightarrow G \\ h \mapsto a^{h}$ 

or

op: 
$$Z_n \rightarrow G$$
  
 $k \mapsto a^k$   
is an isomorphism.

$$\underline{\mathsf{E}}_{\mathbf{X}}$$
: U(9) =  $\langle 2 \rangle \cong \mathbb{Z}_{6}$ 

For  $q_1, q_2 \in G$ ,  $\Psi(\varphi(q_1q_2)) = \Psi(\varphi(q_1) \cdot \varphi(q_2)) = \Psi(\varphi(q_1)) \cdot \Psi(\varphi(q_2))$ .

Thus,

That is,  $\cong$  is an equivalence relation on groups! It tells us when two groups are "the same up to relabelling." We call the equivalence classes of  $\cong$ isomorphism classes.

Ambitions project: Describe all groups "up to isomorphism" - that is, describe all isomorphism classes.



Ex: By Corollary 2 to Lagrange's theorem, and group of prime order p is cyclic. So if |G| = p, then  $G \cong \mathbb{Z}p$ (since every cyclic group of order p is isomorphic to  $\mathbb{Z}p$ ).

Thus:

Up to isomorphism, there is only one group of order p for any prime p, namely Zp.

Ex: I claim that

Up to isomorphism, there are 2 groups of order 4, namely Zy and the <u>Klein 4-group</u> Vy.

Suppose G is a group of order 4. Then either

Case I: There is some 
$$q \in G$$
 with  $|q| = 4$ .  
Then  $G = \langle q \rangle$  is cyclic, so  $G \cong \mathbb{Z}_{Y}$ .

Case 2: There is no geG with 
$$|g| = 4$$
.  
Then  $|g|=2$  for all non-identity  
elements geG by Lagrange.  
If  $x, y \in G$  are distinct non-identity  
elements, then  $xy$  must be the  
other non-identity element, since  
 $xy = e \implies y = x^{-1} = x \times x$   
 $xy = x \implies y = e \times x$ 

So G = Vy.

We must also show 
$$\mathbb{Z}_{Y} \notin V_{Y}$$
.  
Suppose  $q: \mathbb{Z}_{Y} \rightarrow V_{Y}$  is a homomorphism.  
If  $q(1) = e$ , then  
 $q(2) = q(1+1) = q(1) \cdot q(1) = e \cdot e = e$ ,  
so  $q(1) = q(2)$  and  $q$  is not injective.  
If  $q(1) = X$ , where  $x = a, b$ , or  $c$ , then  
 $q(3) = q(1+1+1) = q(1) \cdot q(1) \cdot q(1) = x^{3} = X$ ,  
so  $q(1) = q(3)$  and  $q$  is not injective.