Exam 2 next Friday

- Know how to do computations in $D_{n}, S_{n}$ (also $A_{n}, Q_{8}$ )
- Understand corsets (right vs. Left,

$$
\left.a H=b H \Leftrightarrow a^{-1} b \in H, \quad \text { etc. }\right)
$$

- Lagrange's theorem and its corollaries.

Homomorphisms
Def: Let $G$ and $H$ be groups. $A$ homomorphism is a function $\varphi: G \rightarrow H$ such that for all $g_{1}, g_{2} \in G$,

$$
\varphi\left(\underset{\substack{\text { podenct } \\ \text { in } G}}{\left(g_{1} g_{2}\right)} \varphi \underset{\text { product in }}{\varphi}\left(g_{1}\right) \varphi\left(g_{2}\right)\right.
$$

If a homomorphism $\varphi: G \rightarrow H$ is also a bijection, then $\varphi$ is an isomorphism and we write $G \cong H$. ("G is isomorphic to $H$ ")

Ex: $\operatorname{det}: G L_{n}(\mathbb{R}) \rightarrow \mathbb{R}^{x^{*}}$
$A \longrightarrow \operatorname{det}(A)$
is a homomorphism, since

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) .
$$

It is not an isomorphism (not injectire) if $n \geqslant 2$.

Ex: $\varphi: \mathbb{Z} \rightarrow D_{n} \quad$ is a homomorphism,
since

$$
\varphi(k+l)=r^{k+l}=r^{k} \cdot r^{l}=\varphi(k) \varphi(l) .
$$

It is not an isomorphism (not surjectie and not injective).
$E x: \varphi: \mathbb{R} \rightarrow\left(\mathbb{R}_{>0}, \cdot\right)$

$$
x \mapsto e^{x}
$$

is an isomorphism, since

$$
\varphi(x+y)=e^{x+y}=e^{x} \cdot e^{y}=\varphi(x) \varphi(y)
$$

and $\varphi$ is a bijection with inverse function $x \mapsto \ln (x)$.

So $\mathbb{R} \cong \mathbb{R}_{20}$ group"under + "group under.

Previously (Lecture 12) we proved that if $G=\langle a\rangle$ is a cyclic group, then either

$$
\begin{aligned}
\cdot|a|=\infty \quad & \text { and } \\
\varphi: & \mathbb{Z} \\
& \rightarrow G \\
k & \mapsto a^{k}
\end{aligned}
$$

is an isomorphism
or

- $|a|=n$ and

$$
\varphi: \mathbb{Z}_{n} \rightarrow G
$$

$$
k \mapsto a^{b}
$$

is an isomorphism.

Ex: $U(9)=\langle 2\rangle \cong \mathbb{Z}_{6}$

Remark: It's not too hard to prove the following: For groups $G, H, K$,
(1) id ${ }_{G}: G \rightarrow G$ is an isomorphism

Bijection

$$
i d_{6}\left(g_{1} g_{2}\right)=g_{1} g_{2}=i d_{6}\left(g_{1}\right) \cdot i d_{6}\left(g_{2}\right)
$$

(2) If $\varphi: G \rightarrow H$ is an isomorphism, then $\varphi^{-1}: H \rightarrow G$ is an isomorphism.

Bijection
Given $h_{1}, h_{2} \in H, h_{1}=\varphi\left(g_{1}\right)$ and $h_{2}=\varphi\left(g_{2}\right)$ for some $g_{1}, g_{2} \in G$.
Then $\varphi\left(g_{1} g_{2}\right)=\varphi\left(g_{1}\right) \varphi\left(g_{2}\right)=h_{1} h_{2}$,
so

$$
\varphi^{-1}\left(h_{1} h_{2}\right)=g_{1} g_{2}=\varphi^{-1}\left(h_{1}\right) \varphi^{-1}\left(h_{2}\right)
$$

(3) If $\varphi: G \rightarrow H$ and $\psi: H \rightarrow K$ are isomorphisms, then $\psi^{\circ} \varphi: G \rightarrow K$ is an isomorphism.

Bijection ${ }^{\prime}$
For $g_{1}, g_{2} \in G, \psi\left(\varphi\left(g_{1}, g_{2}\right)\right)=\psi\left(\varphi\left(g_{)}\right) \cdot \varphi\left(g_{2}\right)\right)=\psi\left(\varphi\left(g_{1}\right)\right) \cdot \psi\left(\varphi\left(g_{2}\right)\right)$.

Thus,
(1) $G \cong G$
(2) $G \cong H \Rightarrow H \cong G$
(3) $G \cong H$ and $H \pm K \Rightarrow G \cong K$

That is, $\cong$ is an equivalence relation on groups!
It tells us when two groups are "the same up to relabelling.
We call the equivalence classes of $\cong$ isomorphism classes.

Ambitions project: Describe all groups "up to isomorphism" - that is, describe all isomorphism classes.

Ex: Here are some groups of order 1:

- $\{0\}$ under +
- $\{1\}$ under.
- $\left.\left\{\begin{array}{c}1 \\ 1 \\ 0\end{array}\right)\right\}$ under matrix multiplication

These groups are not equal, because the sets are different.

But they have the same group structure? They each are $\{e\}$, where

$$
e \cdot e=e
$$

We say:
Up to isomorphism, there is only one group of order 1, the trivial group.

Ex: By Corollary 2 to Lagrange's theorem, any group of prime
order $p$ is cyclic. order $p$ is cyclic.
So if $|G|=p$, then $G \cong \mathbb{Z}_{p}$ (since every cyclic group of order $p$ is isomorphic to $\mathbb{Z}_{p}$ ).

Thus:
Up to isomorphism, there is only one $\underset{\text { namely }}{\text { group }} \mathbb{Z}_{p}$ order $p$ for any prime $p$, namely $\mathbb{Z}_{p}$.

Ex: I claim that
$U_{p}$ to isomorphism, there are 2 groups of order 4 , namely $\mathbb{Z}_{4}$ and the Klein 4-group $V_{4}$.

We have $V_{4}=\{e, a, b, c\}$, where

| $\cdot$ | $e$ | $a$ | $b$ | $c$ |
| :--- | :--- | :--- | :--- | :--- |
| $e$ | $e$ | $a$ | $b$ | $c$ |
| $a$ | $a$ | $e$ | $c$ | $b$ |
| $b$ | $b$ | $c$ | $e$ | $a$ |
| $c$ | $c$ | $b$ | $a$ | $e$ |

Some groups isomorphic to $V_{g}$ :

- $U(8)$
- $u(12)$
- $\left\{e, r^{2}, s, s r^{2}\right\} \leq D_{4}$
- $\left\{e, r^{2}, s r, s r^{3}\right\} \leq D_{4}$
- $\{d,(12)(34),(13)(24),(14)(233)\} \leq S_{4}$

Suppose $G$ is a group of order 4. Then either

Case 1: There is some $g \in G$ with $|g|=4$. Then $G=\langle g\rangle$ is cyclic, so $G \cong \mathbb{Z}_{4}$.

Case 2: There is no $g \in G$ with $|g|=4$.
Then $|g|=2$ for all non-identity elements $g \in G$ by Lagrange.
If $x, y \in G$ are distinct non-identity elements, then $x y$ must be the other non-identity element, since

$$
\begin{aligned}
& x y=e \Rightarrow y=x^{-1}=x x \\
& x y=x \Rightarrow y=e x \\
& x y=y \Rightarrow x=e x
\end{aligned}
$$

So $G \cong V_{4}$.

We must also show $\mathbb{Z}_{4} \neq V_{y}$.
Suppose $\varphi: \mathbb{Z}_{y} \rightarrow V_{y}$ is a homomorphism.
If $\varphi(1)=e$, then

$$
\varphi(2)=\varphi(1+1)=\varphi(1) \cdot \varphi(1)=e \cdot e=e,
$$

so $\varphi(1)=\varphi(2)$ and $\varphi$ is not injective.
If $\varphi(1)=x$, where $x=a, b$, or $c$, then

$$
\varphi(3)=\varphi(1+1+1)=\varphi(1) \cdot \varphi(1) \cdot \varphi(1)=x^{3}=x,
$$

so $\varphi(1)=\varphi(3)$ and $\varphi$ is not injective.

Thus, in all cases, $\varphi$ is not a bijection, so there is no isomorphism between $\mathbb{Z}_{y}$ and $V_{4}$.

