Remark: The above properties show
that
$$\cong$$
 is an equivalence relation on
groups.
They also show that the antomorphisms
of a group G, "self isomorphisms"
 $Aut(G) = \{q: G \rightarrow G \mid q \text{ is an isomorphism}\}$
is a group under \circ .

 $\underline{\mathsf{Ex}}$: $A_{n}f(\mathbb{Z}_{n}) \cong U(n)$.

In particular, the range
$$c_{\theta}(G) \leq H$$
.

Proof: (1) Since
$$e_G = e_G \cdot e_G$$
, we have
 $q(e_G) = q(e_G \cdot e_G) = q(e_G) \cdot q(e_G)$.
By concellation, $q(e_G) = e_H$.
(2) Since $gg^{-1} = e_G = g^{-1}g$, we have
 $q(gg^{-1}) = q(e_G) = q(g^{-1}g)$,
so
 $q(g) q(g^{-1}) = e_H = q(g^{-1}) q(g)$.
By uniqueness of inverses, $q(g^{-1}) = q(g)^{-1}$
(3) For n=0, this is (1).
For n>1, use induction.
For n>1, use induction ((2) is the case).

(4) Since
$$e_6 \in K$$
, $\varphi(e_6) = e_H \in \varphi(K)$.
For $k_1, k_2 \in K$, we have $k_1 k_2^{-1} \in K$,
So
 $c \varphi(k_1, k_2^{-1}) = \varphi(k_1) \varphi(k_2^{-1})$
 $= \varphi(k_1) \varphi(k_2)^{-1} \in \varphi(K)$.
So $c \varphi(K) \in H$ by the subgroup
criterion.