Last time:

Thm: If $cp: G \rightarrow H$ is an injective group homomorphism, then $G \cong cp(G)$. (So G is isomorphic to a subgroup, cp(G), of H.)

Ex: We've already seen that labeling the vertices of regular n-gon with &1, 2, ..., n}, gives a permutation representation of Dn. (Lecture 18) This is just an injectile $Do you homomorphism op: D_n \rightarrow S_n$, see why? so Dn is isomorphic to a subgroup of Sn.

More generally... Thm (Cayley): Eveny group is isomorphic to a subgroup of a symmetric group.

Proof: Let S_G = {bijections G→G} be the symmetric group of permutations of G. (If 161=n, then $S_G \cong S_n$) For $g \in G$, define the "left multiplication by g'' map, $\mathcal{N}_g: G \rightarrow G$. $\times \vdash g \times$. HW 15: Ng is a bijection, i.e., Ng & SG.

So
$$\lambda_{g} \in S_{G}$$
. (Note: $\lambda_{g} := n + a$ homomorphism)
Moreover, for $g, h \in G$,
 $(\lambda_{g} \circ \lambda_{h})(x) = \lambda_{g}(hx) = ghx = \lambda_{gh}(x)$,
so $\lambda_{g} \circ \lambda_{h} = \lambda_{gh}$.
That is,
 $q: G \rightarrow S_{G}$
 $g: \rightarrow \lambda_{g}$
is a homomorphism!
It is injective because
 $\lambda_{g} = \lambda_{h} \implies \lambda_{g}(x) = \lambda_{h}(x)$ for all $x \in G$
 $\Rightarrow \lambda_{g}(e) = \lambda_{h}(e)$
 $\Rightarrow g = h$.

Direct Products
Then: Let G and H be groups.
Then

$$G \times H = \{(g,h) \mid g \in G \text{ and } h \in H\}$$

is a group under the operation
 $(g_1,h_1) \cdot (g_2,h_2) = (g_1g_2,h_1h_2)$
product in G² product in H
Proof: Associativity follows from associativity
in G and H.
The identity is (e_G,e_H) , where
 $e_G \in G$ and $e_H \in H$ are the respective
identities.
The inverse of (g_1h) is (g^{-1},h^{-1}) .

Ex: $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ is a group under coordinate-uise addition: (a,b) + (c,d) = (a+c, b+d). The identity is (0,0) and the inverse of (a,b) is (-a,-b).

 $E_{x}: \mathbb{Z}_{2} \times \mathbb{Z}_{2} = \{(0,0), (1,0), (0,1), (1,1)\}$ is isomorphic to V_{y} .

Ex: $\mathbb{Z}_2 \times \mathbb{Z}_3 \cong \mathbb{Z}_6$, since (1,1) is a generator.