Last time: The direct product of groups G and H is $G \times H$, where the operation is

$$
\left(g_{1}, h_{1}\right) \cdot\left(g_{2}, h_{2}\right)=\left(g_{1}, g_{2}, h_{1} h_{2}\right)
$$

Observe: $G \times H \cong H \times G$ (why?)

Warm- U_{p} : Describe the groups $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$.

Takeaway: - a product of cyclic groups can be cyclic $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{3}\right)$

- but it doesn't have to be $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$

Lemma: Let G and H be groups, with $g \in G$ and $h \in H$.

If $|g|=\infty$ or $|h|=\infty$, then $|(g, h)|=\infty$.
Otherwise, if $|g|$ and $|h|$ are finite, then

$$
|(g, h)|=\operatorname{lcm}(|g|,|h|) .
$$

Proof: Let $k \in \mathbb{N}$. Then

$$
(g, h)^{k}=\left(g^{k}, h^{k}\right) .
$$

So $|(g, h)|$, if it exists, is the smallest $k \in \mathbb{N}$ such that both

$$
\begin{aligned}
& \text { - } g^{k}=e_{6} \Leftrightarrow k \text { is a multiple of }|g| \\
& \cdot h^{k}=e_{H} \Leftrightarrow k \text { is a multiple of }|h|
\end{aligned}
$$

The: Let $n, m \in \mathbb{N}$. Then $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ is cyclic $\Leftrightarrow \operatorname{gcd}(n, m)=1$, in which case $\mathbb{Z}_{n} \times \mathbb{Z}_{m} \cong \mathbb{Z}_{n m}$.

Proof: Since $\left|\mathbb{Z}_{n} \times \mathbb{Z}_{m}\right|=n m$, the only cyclic group $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ could be isomorphic

Recall: $\operatorname{Icm}(n, m)=\frac{n m}{\operatorname{gcd}(n, m)}$
\Leftrightarrow Suppose $\operatorname{gcd}(n, m)=1$. Then, since $1 \in \mathbb{Z}_{n}$ has order n and $1 \in \mathbb{Z}_{m}$ has order m, the element $(1,1) \in \mathbb{Z}_{n} \times \mathbb{Z}_{m}$ has order

$$
\operatorname{Icm}(n, m)=\frac{n m}{1}=n m
$$

by the lemma. Thus, $\mathbb{Z}_{n} \times \mathbb{Z}_{m}=\langle(1,1)\rangle$.
\Longleftrightarrow By contrapositive.
Suppose $\operatorname{gcd}(n, m)>1$.

$$
\operatorname{lcm}(n, m)=\frac{n m}{\operatorname{gcd}(n, m)}<n m .
$$

Now, for any $(a, b) \in \mathbb{Z}_{n} \times \mathbb{Z}_{m}$,

- $|a|$ divides n
- $|6|$ divides m
- both n and m divide $\operatorname{lcm}(n, m)$.

Hence,

$$
\underbrace{(a, b)+\cdots+(a, b)}_{\operatorname{km}(n, m) \text { times }}=(0,0),
$$

So $|(a, b)| \leqslant \operatorname{lcm}(n, m)<n m$.
That is, $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ has no elements of order nm, so it is not cyclic.

More generally, we can make the product of many groups:

$$
\prod_{i=1}^{k} G_{i}=G_{1} \times G_{2} \times \cdots \times G_{k}
$$

Cor: Let $n_{1}, \ldots, n_{k} \in \mathbb{N}$. Then

$$
\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{4}} \cong \mathbb{Z}_{n_{1} n_{2}-n_{4}}
$$

if and only if the numbers n_{1}, \ldots, n_{k} are pairwise relatively prime, meaning $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ when $i \not{ }_{j}$.
Proof: Induct on k and use the theorem.

Ex: $: \mathbb{Z}_{3} \times \mathbb{Z}_{4} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{12} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{60}$

$$
\begin{aligned}
E_{x}: \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} & \cong \mathbb{Z}_{2} \times \mathbb{Z}_{6} \times \mathbb{Z}_{5} \\
& \cong \mathbb{Z}_{2} \times \mathbb{Z}_{30}
\end{aligned}
$$

So we now have a "recipe" for finding
abelian groups of a given order. abelian groups of a given order.

Ex: $\mathbb{Z}_{8}, \mathbb{Z}_{2} \times \mathbb{Z}_{4}$, and $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ are pairwise non-isomorphic abelian groups of order 8 .
It turns out that, up to isomorphism, these are all abelian groups of order 8.

The (Fundamental Theorem of Finite Abelian Groups):

If G is an abelian group, then there exist

- primes p_{1}, \ldots, p_{k} (not necessarily distinct)
- integers $a_{1}, \ldots, a_{k} \in \mathbb{N}$
such that

$$
G \cong \mathbb{Z}_{p_{1}}^{a_{1}} \times \cdots \times \mathbb{Z}_{p_{2}}^{a_{n}} .
$$

Moreover, this expression is unique up to reordering the factors.

Proof: In Judson Ch. 13.
Uses some ideas we haven't seen yet.

Ex: Let's find all abelian groups of order $180=2^{2} \cdot 3^{2} \cdot 5$.

- $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}$
- $\mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}$
- $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5}$
- $\mathbb{Z}_{4} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{180}$

