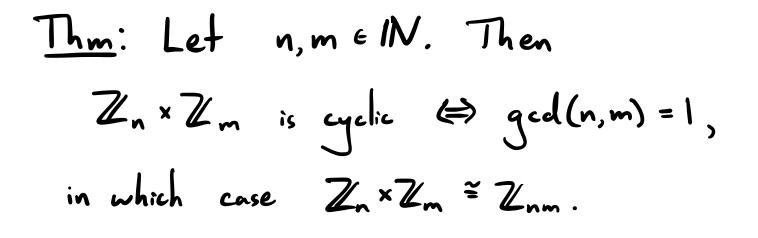
Last time: The direct product of groups
G and H is
$$G \times H$$
, where the operation
is
 $(q_1,h_1) \cdot (q_2,h_2) = (q_1q_2, h_1h_2).$
Observe: $G \times H \cong H \times G$ (why?)
Warm-Up: Describe the groups $\mathbb{Z}_2 \times \mathbb{Z}_2$
and $\mathbb{Z}_2 \times \mathbb{Z}_3.$

Lemma: Let G and H be groups,
with
$$g \in G$$
 and $h \in H$.
If $|g| = \infty$ or $|h| = \infty$, then $|(g,h)| = \infty$.
Otherwise, if $|g|$ and $|h|$ are finite,
then
 $|(g,h)| = |cm(|g|, |h|)$.

Proof: Let
$$k \in \mathbb{N}$$
. Then
 $(g,h)^{k} = (g^{k},h^{k}).$
So $|(g,h)|, if it exists, is the
smallest $k \in \mathbb{N}$ such that both
 $\cdot g^{k} = e_{G} \iff k \text{ is a multiple of [g]}$
 $\cdot h^{k} = e_{H} \iff k \text{ is a multiple of [h]}$$

E



Proof: Since
$$|Z_n \times Z_m| = nm$$
, the only
cyclic group $Z_n \times Z_m$ could be isomorphic
to is Z_{nm} .

Recall:
$$lcm(n,m) = \frac{nm}{gcd(n,m)}$$

(
$$\Leftarrow$$
) Suppose $gcd(n,m) = 1$. Then, since
 $1 \in \mathbb{Z}_n$ has order n and $1 \in \mathbb{Z}_m$
has order m , the element
 $(1,1) \in \mathbb{Z}_n \times \mathbb{Z}_m$ has order
 $1cm(n,m) = \frac{nm}{1} = nm$
by the lemma. Thus, $\mathbb{Z}_n \times \mathbb{Z}_m = \langle (1,1) \rangle$.

$$\begin{array}{l} (=) & \text{By contropositive.} \\ & \text{Suppose } gcd(n,m) > 1. \\ & \text{Then} \\ & lcm(n,m) = \frac{nm}{gcd(n,m)} < nm. \\ & \text{Now, for any } (a,b) \in \mathbb{Z}_n \times \mathbb{Z}_m, \\ & \text{old divides } n \\ & \text{old divides } n \\ & \text{old divides } m \\ & \text{oboth } n \text{ and } m \text{ divide } lcm(n,m). \\ & \text{Hence,} \\ & \underbrace{(a,b) + \cdots + (a,b)}_{lcm(n,m)} = (0,0), \\ & \underbrace{(a,b)}_{lcm(n,m)} \text{ times} \\ & \text{so } |(a,b)| \leq lcm(n,m) \leq nm. \end{array}$$

That is, Zn * Zm has no elements of order nm, so it is not cyclic.

More generally, we can make the
product of many groups:

$$\prod_{i=1}^{k} G_{i} = G_{i} \times G_{2} \times \cdots \times G_{k}.$$

Cor: Let $n_{1}, \dots, n_{k} \in \mathbb{N}.$ Then
 $\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{k}} \cong \mathbb{Z}_{n_{1}n_{2}\cdots n_{k}}$
if and only if the numbers n_{1}, \dots, n_{k}
are pairwise relatively prime, meaning
 $gcd(n_{i}, n_{j}) = 1$ when $i \neq j$.
Proof: Induct on k and use the
theorem.

 $\underbrace{\mathsf{E}_{\mathsf{X}}}_{\mathsf{X}} : \mathbb{Z}_{\mathsf{X}} \times \mathbb{Z}_{\mathsf{Y}} \times \mathbb{Z}_{\mathsf{Y}} \stackrel{\sim}{=} \mathbb{Z}_{\mathsf{I}_2} \times \mathbb{Z}_{\mathsf{Y}} \stackrel{\simeq}{=} \mathbb{Z}_{\mathsf{I}_0}$ $\underline{\mathsf{E}}_{\underline{\mathsf{x}}}: \, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \stackrel{\simeq}{=} \mathbb{Z}_{2} \times \mathbb{Z}_{6} \times \mathbb{Z}_{5}$ $\cong \mathbb{Z}_2 \times \mathbb{Z}_{30}$.

So we now have a "recipe" for finding abelian groups of a given order.

Ex: \mathbb{Z}_8 , $\mathbb{Z}_2 \times \mathbb{Z}_4$, and $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$

are pairwise non-isomorphic abelian groups of order 8. It turns out that, up to isomorphism, these are all abelian groups of order 8.

The (Fundamental Theorem of Finite
Abelian Groups):
If G is an abelian group, then
there exist
· primes
$$p_{1,...,p_{k}}$$
 (not necessarily distinct)
· integers $a_{1,...,a_{k}} \in IN$
such that
 $G \cong \mathbb{Z}p_{1}^{a_{1}} \times \cdots \times \mathbb{Z}p_{k}^{a_{k}}$.
Moreover, this expression is unique
up to reordering the factors.
Proof: In Judson Ch. 13.
Uses some ideas we haven't
seen yet.

Ex: Let's find all abelian groups of order $180 = 2^2 \cdot 3^2 \cdot 5$.

- $\cdot \ \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5$
- · Zy × Z3 × Z3 × Z5
- · Z2 × Z2 × Z9 × Z5
- · Zy × Zg × Zs = Z180