



 $HWH: If H \leq G$ with [G:H] = 2, then H \leq G.

S.

•
$$\langle r \rangle$$
 is normal in D_n
• A_n is normal in S_n
• $\langle i \rangle$, $\langle j \rangle$, and $\langle k \rangle$
are normal in Q_8 .

Thm: Let G be a group and

$$N \leq G$$
 a subgroup.
TFAE: (The following are equivalent)
() $N \leq G$ (i.e. $gN = N_g$ for all $g \in G$).
(2) $gNg^{-1} \leq N$ for all $g \in G$.
(3) $gNg^{-1} = N$ for all $g \in G$.
(3) $gNg^{-1} = N$ for all $g \in G$.
(3) $gNg^{-1} = N$ for all $g \in G$.
(4) $gNg^{-1} = N$ for all $g \in G$.
(5) $gNg^{-1} = N$ for all $g \in G$.
(7) $gn \in gN = Ng$,
 $N \leq G$.
There exists some $n' \in N$ such that $gn = n'g$. Hence
 $gng^{-1} = n' \in N$.

That is,

$$gNg^{-1} = \{gng^{-1} \mid n \in N\} \in N.$$

(2) \Rightarrow (2): Let $g \in G$. We must prove
the reverse containment,
 $N \in gNg^{-1}.$
So let $n \in N$. Then
 $g^{-1}ng = g^{-1}n(g^{-1})^{-1} \in g^{-1}N(g^{-1})^{-1}$
But $g^{-1}N(g^{-1})^{-1} = N$, so
 $g^{-1}ng = n' \in N.$
Thus,
 $n = gn'g^{-1} \in gNg^{-1},$
So $N \in gNg^{-1}.$

$$(3) \Rightarrow (1): Let g \in G. Since gNg^{-1} = N,$$

for any n \in N there exists n' \in N
such that
$$gng^{-1} = n'.$$

So
$$gn = n'g \in Ng,$$

Proving
$$gN \subseteq Ng.$$

To get $Ng \subseteq gN,$ start
with $g^{-1}Ng = N$ and repeat
the same argument.

Let G be a group and
$$H \leq G$$
 a
subgroup. Write
 $G/H = \{g, H \mid g \in G\}$
for the set of all left cosets of H
in G.

Bold Claim: G/H "should" be a group, under the operation $(g,H)(g_2H) = (g_1g_2)H.$

Problem: This is not always well-defined

Ex: Let
$$G = D_{4}$$
, $H = \langle s \rangle$.
Then we want
 $(r H)(r^{3} H) = r^{4} H = H$ $(r^{4} = e \in H)$
But $r H = sr^{3} H$ $(since (sr^{3})^{-1}r = (sr^{3})r = s \in H)$,
so we also have
 $(r H)(r^{3} H) = (sr^{3} H)(r^{3} H)$
 $= sr^{2} H$.
However, $sr^{2} H \neq H$!
So the "product" $(q, H)(q_{2} H)$ seems
to depend on the choice of coset
representatives $(q_{1} and q_{2})$.
It turns out that normality fixes
this.

Thm: Let G be a group and
$$H \leq G$$
.
Coset multiplication in G/H is
well-defined as
(a H)(b H) = ab H
if and only if $H \leq G$.
Proof: (=>) Assume coset multiplication
is well-defined.
Let $g \in G$. We must show
 $gH = Hg$.
We have
 $(gH)(g^{-1}H) = (gg^{-1})H = H$.
Now, let $x \in gH$. Then $gH = xH$,
so we also have

$$(gH)(g^{-i}H) = (xH)(g^{-i}H) = xg^{-i}H.$$

Because coset multiplication
is well-defined, $xg^{-i}H = H.$
Thus,
 $xg^{-i} = h \in H,$
so $x = hg \in Hg.$
This shows $gH \in Hg.$
The proof of $Hg \in gH$ is
similar.

(=) Next time.