Recall: A relation on a set S is
a subset
$$R \subseteq S \times S$$
.
The subset R is equivalent to
the logical sentence
 $x R y := (x, y) \in R$.
We usually think of a relation
in this way.

· Cardinality The same curdinality if there exists a bijection $f:A \to B$. In this case, write |A|=|B|. This is an equivalence relation on any set of sets. · Triangles Two triangles are <u>congruent</u> if they have the same <u>3</u> side lengths. They are <u>similar</u> if they have the same <u>3</u> angles. These are both equivalence relations on the set of all triangles in IR².

• <u>Antiderivatives</u> For differentiable functions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$, write $f \sim g$ if f'=g.

Then N is an equivalence relation on the set of all differentiable functions on \mathbb{R} .

• <u>Change of basis</u> Let A and B be square $(n \times n)$ matrices with entries in IR. Write A ~B if there exists an invertible $n \times n$ matrix P such that $PAP^{-1} = B$ Then ~ is an equivalence relation on $M_n(IR)$.

Partitions

Def: A <u>partition</u> of a set S is a set of nonempty subsets such that each x eS is in exactly one of the subsets.

Notation: Let I be an indexing set, and for each $i \in I$ let $X_i \leq S$ be a subset. Then $P = \{X_i\}_{i \in I}$ is a partition of S if $\cdot X_i \neq \emptyset$ for all $i \in I$ $\cdot X_i \cap X_j = \emptyset$ if $i \neq j$ $\cdot \bigcup_{i \in I} X_i = S$.

Def: Let \sim be an equivalence relation on a set S. For each $x \in S$, define the <u>equivalence class</u> of xto be [x] = {y e S | y ~ x}. Important fact: An equivalence relation on a set S is "the same" as a partition of S. Precisely, Thm: Let S be a set. If \sim is an equivalence relation on S, then the equivalence classes partition S. Conversely, if $P = \{X_i\}_{i \in I}$ is a partition of S, then there is an equivalence relation on X such that $\{X_i\}$ are the equivalence classes.

Now, let
$$z \in [y]$$
. Then $z \sim y$.
By transitivity, $z \sim x$, so $z \in [x]$.
Hence, $[y] \subseteq [x]$.
Similar reasoning shows $[x] \subseteq [y]$,
so $[x] = [y]$.
Thus, the equivalence classes
form a partition of S.
Conversely, let $P = \{X_i\}_{i \in I}$ be
a partition of S.
Define a relation \sim on S by
 $x \sim y \iff x$ and y are in
the same subset X_i

Then ~ is ① <u>Reflexive</u>: Each x & S is in some Xi, so x ~ x. 2 <u>Symmetric</u>: By definition. 3 Transitive: Suppose x~y and y~z. Then $x, y \in X_i$ and $y, z \in X_j$ for some i,j. Since y \in X; and y \in X;, it must be that X;=X;. Thus, X~y. So v is an equivalence relation, with equivalence classes $\{X_i\}_{i\in I}$.