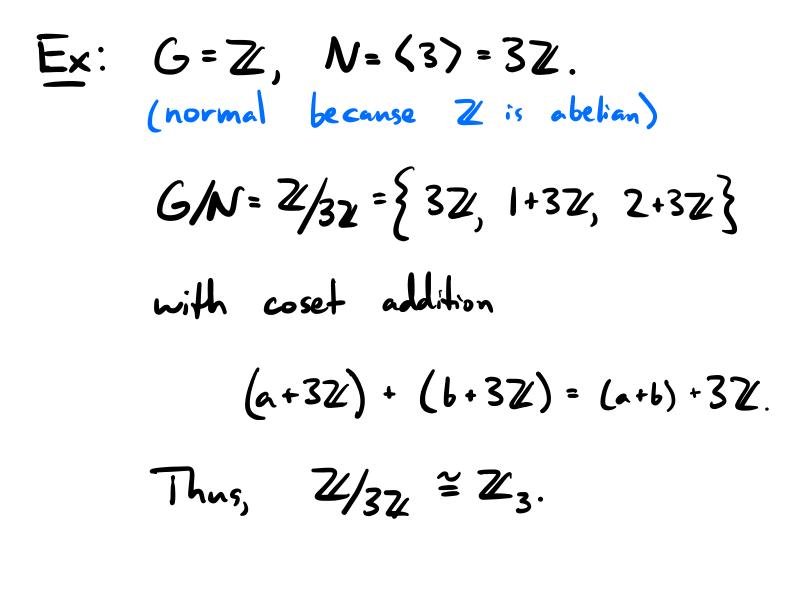
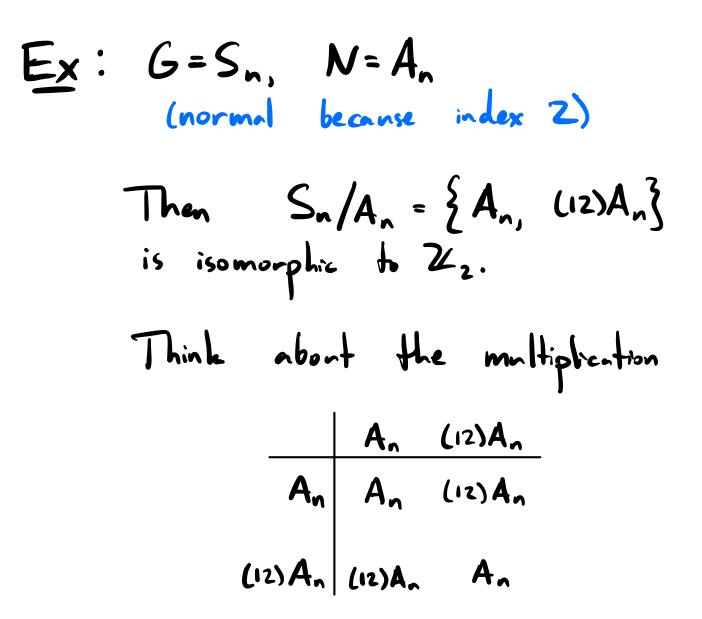
Proof: (=>) Last time. (=) Assume HeG. Let aH, bH & G/H be cosets.

To show (aH)(bH) = abH is
well-defined, suppose

$$aH = xH$$
 (=) x = aH
 and
 $bH = yH$. (=) y = bH
Then x = ah, and y = bhz
for some h, hz = H.
Now,
 $xy = ah, bhz$.
Since h, b = bH, we have
h, b = bhz for some hz = H. Then
 $xy = ah, bhz = ab(h_{z}h_{z}) = abH$.
Thus, (xH)(yH) = xyH = abH.
So coset multiplication is cell-defined.

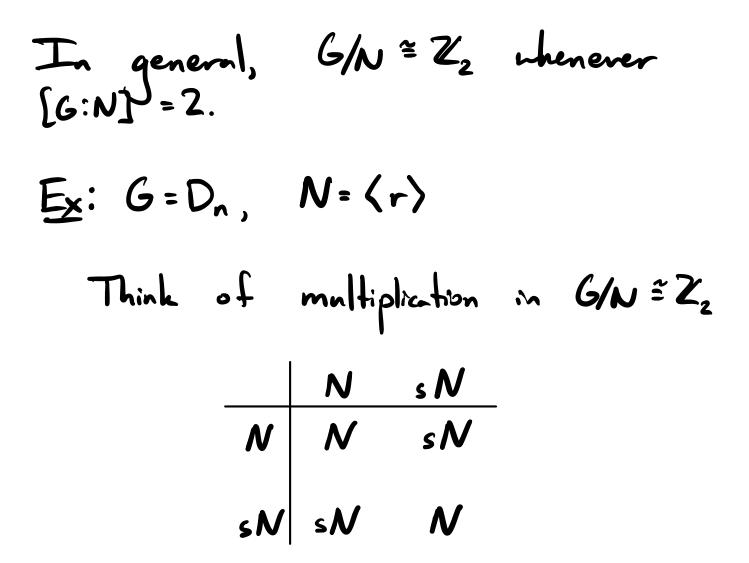


 $\underline{E_X}$: More generally, $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$.



A5

	even	odd
even	even	odd
odd	odd	even



as saying

	rotation	reflection
rotation	rotation	reflection
reflection	reflection	rotation