Kernels  
Def: Let 
$$\varphi: G \rightarrow H$$
 be a homomorphism  
of groups. The kernel of  $\varphi$  is  
ker  $\varphi = \{g \in G \mid \varphi(g) = e_{H}\}$   
That is,  $\ker \varphi = q^{-1}(e_{H})$  is  
the "fiber over the identity."

Then 
$$\text{ker } \varphi \in G$$
.

 $\frac{P_{100}f}{Since} = e_{(e_{0})} = e_{H}, \text{ we have } e_{6} \in \ker q,$ so  $\ker q \neq \emptyset$ . If  $k_{1}, k_{2} \in \ker q,$ Hhen  $q(k_{1}, k_{2}^{-1}) = q(k_{1})q(k_{2})^{-1} = e_{H} \cdot e_{H}^{-1} = e_{H},$ 

Suppose kéker q and géG.  
Then  

$$q(g h g^{-1}) = q(g) q(h) q(g)^{-1}$$
  
 $= q(g) q(g)^{-1}$   
 $= e_{H_{3}}$   
proving that  $g h g^{-1} \in h er q$ .  
That is, her  $q \in G$ .

$$E_{\mathbf{X}}: \operatorname{sgn}: S_{\mathbf{n}} \longrightarrow \{1, -1\}$$

$$\sigma \longmapsto \begin{cases} 1 & \sigma \text{ even} \\ -1 & \sigma \text{ odd} \end{cases}$$
has ker sgn = An.

 $E_{x}$ : det:  $GL_{n}(\mathbb{R}) \longrightarrow \mathbb{R}^{x}$ 

has ker det =  $SL_n(R)$ .

Ex: Let G be any group, and geG. There is a homomorphism

$$q: \mathbb{Z} \to G$$
$$n \longmapsto q^{n}$$

$$q: \mathbb{Z}$$
  

$$n \mapsto q^{n}.$$
  
Then ker  $q = \{0\}$  if  $|q| = \infty$  and  
ker  $q = n\mathbb{Z}$  if  $|q| = n$ .



Thm: Let G be a group and N&G. Then

$$\pi: G \to G/N$$
  

$$g \mapsto gN$$
  
is a group homomorphism, and  
ker  $\pi = N$ .



$$\frac{P_{roof}: \text{Let } g_{1}, g_{2} \in G. \text{ Then}}{\pi(g_{1}g_{2}) = g_{1}g_{2}N = (g_{1}N)(g_{2}N)}$$
$$= \pi(g_{1})\pi(g_{2}),$$

Now, 
$$g \in \ker \pi$$
  $(\Rightarrow) \pi(q) = N$   
 $(\Rightarrow) g N = N$   
 $(\Rightarrow) g \in N.$ 

Then (First Isomorphism Theorem)  
Think: "Fundamental Theorem of Homomorphisms"  
Let 
$$\varphi: G \to H$$
 be a group homomorphism.  
Then  
• ker  $\varphi \in G \checkmark$   
•  $\varphi(G) \leq H$   
•  $G'_{ker} \varphi \cong \varphi(G)$   
More precisely, there is a unique  
homomorphism

$$\eta: G/_{ker q} \to H$$

such that  $\gamma \circ \pi = q$ , where  $\pi: G \rightarrow G/ker q$ is the natural projection.

Then 
$$\eta$$
 is an isomorphism onto  $cp(G)$ .

