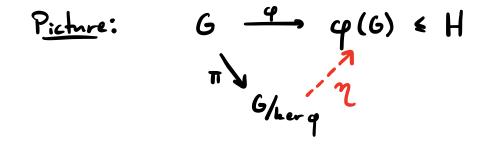
Then
$$\eta$$
 is an isomorphism onto $cp(G)$.



Note: The condition
$$\eta \circ \pi = \varphi$$
 forces
 $\eta(gK) = (\eta \circ \pi)(g) = \varphi(g)$ (4)
for every coset $gK \in G/K$ ($K = her \varphi$).
So uniqueness is automatic - ne just
need to check (4) is nell-defined.

Proof: Let K = ker q.

We begin by proving that for any $g_1, g_2 \in G_1$ $g_1 K = g_2 K \iff cp(g_1) = cp(g_2).$ (A)

$$(\Rightarrow) Suppose q, K = q_2 K. Then q_1 = q_2 k$$

for some $k \in K. Thus,$
$$cp(q_1) = cp(q_2 k) = cp(q_2) cp(k)$$
$$= cp(q_2).$$

(
$$\leftarrow$$
) Suppose $\varphi(q_1) = \varphi(q_2)$. Then
 $e = \varphi(q_1)^{-1} \varphi(q_2) = \varphi(q_1^{-1}q_2)$,
so $q_1^{-1}q_2 \in K$. Thus, $q_1K = q_2K$.

Now, ne can define

$$\begin{array}{l} \gamma \colon G/_{\mathsf{K}} \longrightarrow \mathsf{H} \\ g^{\mathsf{K}} \longmapsto q^{\mathsf{G}}. \end{array}$$

By (\bigstar) , we know that η is well-defined (\Rightarrow direction) and η is injective (\Leftarrow direction).

Thus,
$$\eta$$
 is a bijection onto its image,
which by construction is $\varphi(G)$.
It only remains to prove φ is a
homomorphism. We have
 $\eta((g,K)(g_2K)) = \eta(g,g_2K)$
 $= \varphi(g,g_2)$
 $= \varphi(g,) \varphi(g_2)$
 $= \eta(g,) \eta(g_2)$

Corollaries

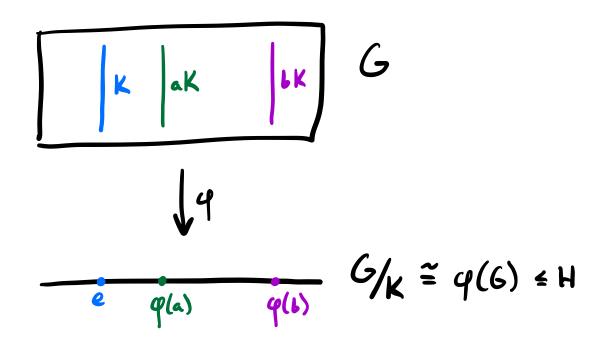
<u>Corl</u>: If $c\rho: G \rightarrow H$ is a <u>surjective</u> group homomorphism, Hen $G/ker \varphi \cong H$.

Proof: Surjective means
$$q(G) = H$$
.

$$\frac{\text{Cor 2: Let } \varphi: G \rightarrow H \text{ be a group}}{\text{homomorphism. Then, for } g_1, g_2 \in G_1, \\ \varphi(g_1) = \varphi(g_2) \text{ if and only } if g_1 K = g_2 K_1, \\ \text{where } K = \ker \varphi.$$

Proof: This is just a restatement of (*).

Picture of Cor 2



$$\frac{Cor 3}{If q: G \rightarrow H} \text{ is a group homomorphism,}}$$

$$\frac{Cor 3}{Hen q} \text{ is injective if and only if}$$

$$\frac{Ker q}{ker q} = \frac{8}{2}e^{3}.$$

$$\frac{Proof:}{q(q_1) = q(q_2)} \iff q_1 K = q_2 K$$

$$\iff q_2^{-1} q_1 \in K = \ker q$$

Ħ

$$E_X: Consider q: \mathbb{R}^2 \to \mathbb{R}$$

$$(x,y) \mapsto x+y$$

Then cp is a snrjective homomorphism (Check this!), 50

What does this look like? $K = \ker q = \{(x,y) \in \mathbb{R}^2 \mid q(x,y) = 0\}$ is just the line y = -x in \mathbb{R}^2 . Given any $c \in \mathbb{R}$, the fiber over c is

$$\varphi^{-1}(c) = \{(x,y) \in \mathbb{R}^2 \mid \varphi(x,y) = c\}.$$

