
 

The First Isomorphism Theorem

Think Fundamental Theorem of Homomorphisms
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So uniqueness is automatic we just
need to check a is well defined
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By A we know that y is well defined
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Thus y is a bijection onto its image
which by construction is q G

It only remains to prove 9 is a
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Corollaries

61 If q G it is a surjective
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That is the fibers of q are

precisely the cosets of the kernel
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