An application of the First Isomorphism Theorem:

A group G has an index -2 subgroup if and only if there is a surjective homomorphism $G \rightarrow \mathbb{Z}_{2}$.
(\Rightarrow) If $N \leqslant G$ with $[G: N]=2$, then $N \approx G \quad\left(H W\right.$ 14) and $G / N \cong \mathbb{Z}_{2}$ since \mathbb{Z}_{2} is the unique group of order 2, up to isomorphism.
Thus, $\pi: G \rightarrow G / \mathbb{\mathbb { Z } _ { 2 }}$ is a surjective how.
\Leftrightarrow If $\varphi: G \rightarrow \mathbb{Z}_{2}$ is surjective, then $\operatorname{ker} \varphi \triangle G$ and

$$
G / \operatorname{ker} \varphi \cong \mathbb{Z}_{2}
$$

so $[G: \operatorname{ker} \varphi]=2$.

Examples: $A_{n} \triangle S_{n}$

$$
\begin{aligned}
& \langle r\rangle \pm D_{n} \\
& \mathbb{R}_{70} \pm \mathbb{R}^{\times} \\
& 2 \mathbb{Z} \pm \mathbb{Z}
\end{aligned}
$$

Similarly,
A group G has an index -3 normal subgroup if and only if there is a surjective homomorphism $G \rightarrow \mathbb{Z}_{3}$.

An index -3 subgroup is not guaranteed to be normal.

Ex: S_{y} has no normal subgroup of order 8 .

Why? Suppose $\varphi: S_{4} \rightarrow \mathbb{Z}_{3}$ is a homomorphism. Then for all $\sigma \in S_{y}, \varphi(\sigma)$ has order 1 or 3 .

But $|\varphi(\sigma)|$ divides $|\sigma|$, so φ must map all even-order elements to 0 .
Hence, jer y contains

- id
- the 6 transpositions
- the 64 -cycles
- the $3(2,2)$-cycles,
so \mid her $\varphi \mid>12$ and \mid her $\varphi \mid$ divides $\left|S_{y}\right|=24$ by Lagrange.

Thus, er $\varphi=S_{y}$, so φ is the zero map. In particular, φ is not subjective.

Simple Groups

Def: A group is simple if it is not the trivial group, and it has no proper nontrivial subgroups.
ie. $|G|>1$ and $N: G \Rightarrow N=\{e\}$ or $N=G$.

Analogy: $p \in \mathbb{N}$ is prime if $p \neq 1$ and it has no dinsors other than I and p.

Thu: If G is a simple abelian group, then $G \cong \mathbb{Z}_{p}$ for a prime p.

Proof: Let G be simple and abelian.
Since $|G|>1$, there is a non-identity element $g \in G$.
So $\langle g\rangle \neq\{e\}$ is a subgroup, and it is normal since \mathcal{Q} is abelian.

Thus, $\langle g\rangle=G$. Since we know that

- $|g|=\infty \Rightarrow G \cong \mathbb{Z}$ has infinitely many proper subgroups
and
- $|g|=n \quad \Rightarrow G \cong \mathbb{Z}_{n}$ has a subgroup for each divisor $d l_{n}$,
it must be that $|g|=p$ for a prime p.

The: A_{n} is simple for $n \geqslant 5$
Proof: Book § 10.2 .
Idea: A nontrivial normal subgroup $N \& A_{n}$ must contain all 3 -cycles. But the 3 -cycles generate A_{n}, so $N=A_{n}$.

Note: $A_{3} \cong \mathbb{Z}_{3}$ is also simple, but A_{y} is not simple (HW 19): $H=\{i d,(12)(34),(13)(24),(14)(23)\} \in A_{4}$.

Fact: A_{5} is the smallest non-abelian simple group $\left(\left|A_{5}\right|=\frac{5!}{2}=60\right)$. The next smallest has order 168.

The (Feit-Thompson 1963): If G is a finite non-abelian simple group, then 161 is even.

The proof is 255 pages!

Holder Program (1870s-1980s)
(1) Classify all finite simple groups.
(2) Find all ways to "build" a group out of finite simple groups.

Analogy: (1) Find the "primes"
(2) Understand "prime factorization"

More precisely, (2) is the extension problem: Given simple groups A and B, describe all groups G with $N \unlhd G$ such that

$$
\begin{aligned}
& \cdot G / N \cong A \\
& \cdot N \cong B .
\end{aligned}
$$

Such a G is called an "extension of A by B.'
Then: $\{e\} \leq N \leq G$.

Ex: $A \times B$ is an extension of A by B (HW 20)

Ex: $A=B=\mathbb{Z}_{2}$
Two extensions of \mathbb{Z}_{2} by \mathbb{Z}_{2} :

- $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \cong V_{4}$
- \mathbb{Z}_{4} (with $N=\langle 2\rangle \cong \mathbb{Z}_{2}$)

More generally, a composition series for G is a sequence of subgroups $N_{0}=\{e\}, N_{1}, \ldots, N_{L}=G$ such that

- each $N_{i} \leq N_{i+1}$

Lo write $\{e\}=N_{0} \triangleq N_{0} \subseteq \cdots N_{L}=G$

- the quotient groups N_{i-1} / N_{i} (called the factors of the series) are each simple.

The (Jordan-Hülder 1860s-80s): Let G be a finite group. Then
(1) G has a composition series; and
(2) Any two composition series for G have the same length, and the lists of factors are the same (up to reordering and isomorphism).

Analogy: Unique prime factorization.

Def: A group is solvable if it has a composition series such that all factors are abelian.

Ex: S_{3} is solvable:

$$
\frac{A_{3} \approx \mathbb{Z}_{3}}{\{i d\} \leq \underbrace{A_{3}}_{S_{3} / A_{3} \cong \mathbb{Z}_{2}} \leq S_{3}}
$$

Ex: S_{y} is solvable:

$$
\frac{\mathbb{Z}_{2}}{\{i d\} \leq \underbrace{\langle(2)(3 n)\rangle}_{\mathbb{Z}_{2}} \triangleq \underbrace{\mathbb{Z}_{3}}_{\mathbb{Z}_{2}}}
$$

Ex: S_{n} is not solvable for $n \geqslant 5$:

$$
\frac{A_{n}}{\{i d\} \triangleleft \underbrace{A_{n}}_{\mathbb{Z}_{2}} \triangleq S_{n}},
$$

because A_{n} is simple and non-abelian.

