Rings
Def: A ring $(R,+, \cdot)$ is a set R with two binary operations, called addition (t) and multiplication (.), such that
(1) Additive Structure
$(R,+)$ is a group under t.
So . + is associative

- + is commutative
- there is an additive identity $0 \in R$
- each $a \in R$ has an additive inverse $-a \in R$
(2) Multiplicative Structure
- is associative.
(3) Distributive Laws
for every $a, b, c \in R$,

$$
\begin{aligned}
& a \cdot(b+c)=a \cdot b+a \cdot c \\
& (b+c) \cdot a=b \cdot a+c \cdot a .
\end{aligned}
$$

Def: Let R be a ring.

- If R has a multiplicative identity, we call it $1 \subset R$, and we say R is a ring with 1 or ring with unity.
- If multiplication in R is commutative, then we say R is a commutative ring.
$E_{x}: \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings with 1.

Ex: \mathbb{Z}_{n} (under addition and multiplication modulo n) is a commutative ring with 1 .

Ex: For $n \in \mathbb{N}, \quad n \mathbb{Z}=\{n k \mid k \in \mathbb{Z}\}$ is a commentative ring without 1 , if $n>1$.

Ex: $M_{n}(\mathbb{R})=\{n \times n$ matrices with entries from $\mathbb{R}\}$ is a non-commatative ring with 1 .

Ex: $\mathbb{R}[x]=\left\{\begin{array}{l}\text { polynomials in variable } x \text { with } \\ \text { coefficients from } \mathbb{R}\end{array}\right.$ is a commutative ring with 1 (under usual addition and multiplication of polynomials).

Ex: Polynomial rings in more variables, e.g.,

$$
\mathbb{R}[x, y], \mathbb{R}[x, y, z], \mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]
$$ are also commutative with 1 .

Basic Properties
The: Let R be a ring. Then
(1) $0 \cdot a=0=a \cdot 0$ for all $a \in R$.
(2) $(-a) \cdot b=-(a \cdot b)=a \cdot(-b)$ for all $a, b \in R$.
(3) $(-a) \cdot(-b)=a \cdot b$ for all $a, b \in R$.

Proof: (1) By the distributive law,

$$
0 \cdot a=(0+0) \cdot a=0 \cdot a+0 \cdot a .
$$

So $0 \cdot a=0$ by cancellation in the group $(R,+)$.
The proof of $a \cdot 0=0$ is similar.
(2) Since

$$
\begin{aligned}
(-a) \cdot b+a \cdot b & =((-a)+a) \cdot b \quad \text { (Dist. Law) } \\
& =0 \cdot b \\
& =0, \quad(\text { Part (1) })
\end{aligned}
$$

we have that $(-a) \cdot b=-(a \cdot b)$ by uniqueness of inverses in the group $(R,+)$.

The proof of $a \cdot(-b)=-(a \cdot b)$ is similar.
(3) By (2), we have

$$
\begin{aligned}
(-a) \cdot(-b)=-(a \cdot(-b)) & =-(-(a \cdot b)) \\
& =a \cdot b .
\end{aligned}
$$

Note: This is not mut. by -1 .
Rather, the inverse of $-(a \cdot b)$ is $a \cdot b$.

Cor: Let R be a ring with 1 . Then
(1) $(-1) \cdot a=-a=a \cdot(-1)$ for all $a \in R$.
(2) $(-1)^{2}=1$.

Proof: By part (2) of the previous theorem,

$$
(-1) \cdot a=-(1 \cdot a)=-a
$$

and

$$
a \cdot(-1)=-(a \cdot 1)=-a \text {. }
$$

Taking $a=-1$, we get

$$
(-1)^{2}=-(-1)=1 .
$$

Ex: Let R be a ring with 1 .
If $1=0$, then for all $a \in R$,

$$
a=1 \cdot a=0 \cdot a=0
$$

Hence, $R=\{0\}$ is the zero ring.
We will often assume $1 \neq 0$ to avoid this.

Zero divisors and units
Def: Let R be a ring. A non-zero element $a \in R$ is a zero divisor if there exists a non-zero element $b \in R$ such that

$$
a \cdot b=0 \quad \text { or } \quad b \cdot a=0 .
$$

Ex: $I_{n} \mathbb{Z}_{6}$, the zero divisors are 2,3 , and 4 , since $2.3=4.3=0$.
$E_{x}: M_{n}(\mathbb{R})$ has a lot of zero divisors.
For instance,

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

Def: Let R be a ring with I. An element $a \in R$ which has a multiplicative inverse is called a unit.

The: Let R be a ring with identity.
Then

$$
R^{x}:=\{a \in R \mid a \text { is a unit }\}
$$

is a group (under multiplication), called the group of units of R.

Proof: Basically done back in Lecture 6.

$$
\text { Ex: } \begin{aligned}
\mathbb{Z}^{x} & =\{1,-1\} \\
\mathbb{Q}^{x} & =\mathbb{Q} \backslash\{0\} \\
\mathbb{R}^{x} & =\mathbb{R} \backslash\{0\} \\
\left(\mathbb{Z}_{n}\right)^{x} & =u(n)
\end{aligned}
$$

