Recall: In a ring R, an element $a \in R$ is

- a zero divisor if $a \neq 0$ and $a \cdot b=0$ or $b \cdot a=0$ for some non-zero $b \in R$
- a unit if R has 1 and a has a multiplicative inverse (i.e a.b=1=b:a for some $b \in R$).

Warm-Up: Find all zero divisors and units in

$$
\begin{aligned}
& \cdot \mathbb{Z}_{4} \\
& \cdot \mathbb{Z}_{5} \\
& \cdot \mathbb{Z}_{6} \\
& \cdot \mathbb{Z}_{n}, n \in \mathbb{N}
\end{aligned}
$$

Ex: In $\mathbb{R}[x]$, we have

$$
\operatorname{deg}(p(x) \cdot q(x))=\operatorname{deg}(p(x))+\operatorname{deg}(q(x))
$$

Thus,

- There are no zero divisors, since $\operatorname{deg}(p(x) \cdot q(x)) \geqslant 0$ for non-zeno $p(x)$ and $q(x)$.
-The units are precisely the non-zero constant polynomials, since $\operatorname{deg}(1)=0$.
The inverse of $p(x)=c \in \mathbb{R}^{x}$ is $\frac{1}{2}$.

The (Cancellation Laws):
Let R be a ring. Then R has no zero dinsors if and only if for all $a, b, c \in R$,
(1) $a b=a c \Rightarrow a=0$ or $b=c$
and
(2) $b a=c a \Rightarrow a=0$ or $b=c$.

Proof: \Leftrightarrow Suppose R has no zero divisors. Then $a b=a c$ implies

$$
\begin{aligned}
& a b-a c=0 \\
& a(b-c)=0 . \quad \text { (Dist. Law) }
\end{aligned}
$$

Since a is not a zero divisor, either $a=0$ or $b-c=0$, ie. $b=c$, proving (1). (2) is similar
(\Leftrightarrow) Suppose the cancellation laws (1) and (2) hold in R.

If $a \neq 0$, then

$$
a b=0 \Rightarrow a b=a \cdot 0 \Rightarrow b=0
$$

and

$$
b a=0 \Rightarrow b a=0 . a \Rightarrow b=0 .
$$

So a is not a zero divisor.

So if we have no zero divisors, we can "cancel a " - even if a doesn't have an inverse!

Ex: $\operatorname{In} \mathbb{Z}, \quad 8_{n}=8 m \Rightarrow n=m$.
In $\mathbb{R}[x], \quad x p(x)=x q(x) \Rightarrow p(x)=q(x)$. etc.

Ex: Find all $x \in \mathbb{Z}_{13}$ satisfying

$$
x^{2}-3 x-10=0
$$

Well,

$$
x^{2}-3 x-10=(x+2)(x-5)=0
$$

Since \mathbb{Z}_{13} has no zero divisors, this implies

$$
x+2=0 \quad \Rightarrow \quad x=-2=11
$$

or

$$
x-5=0 \quad \Rightarrow \quad x=5 .
$$

So the two solutions are $x=5,11$.

Ex: Solve the same equation in \mathbb{Z}_{12}.
We still have $x=-2=10$ and $x=5$ as solutions, since the factorization

$$
x^{2}-3 x-10=(x+2)(x-5)
$$

remains true in \mathbb{Z}_{12}.
But \mathbb{Z}_{12} has zero divisors, so we get additional solutions:

$$
\begin{aligned}
& x=1:(1+2)(1-5)=3 \cdot(-4)=3 \cdot 8=24=0 \\
& x=2:(2+2)(2-5)=4 \cdot(-3)=4 \cdot 9=36=0
\end{aligned}
$$

Def: Let R be a ring with 1 .

- If R is commutative and has no zero divisors, then we say R is an integral domain.
Ex: $\mathbb{Z}, \mathbb{R}[x], \mathbb{R}[x, y]$
- If $R^{x}=R \backslash\{0\}$, then we say R is a division ring.

Ex: H (next example)

- If R is a commutative division ring, then we say R is a field.

Ex: $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_{p}$ for prime p

Ex: Let $H=\left\{a+b_{i}+c j+d k \quad \mid a, b, c, d \in \mathbb{R}\right\}$ be the real vector space with basis $\{1, i, j, k\}$.

Define multiplication on H to be given by distributing and following the moles for multiplication in Q_{8}.

$$
\text { Ex: } \begin{aligned}
(4 i-6 j)(2+3 i) & =8 i+12\left(-12\left(i^{2}-6 j-188 i-6\right.\right. \\
& =-12+8 i-6 j+18 k
\end{aligned}
$$

Then

- Multiplication is associative, so H is a ring, call the ring of quaternions.
- HI is not commutative (eeg. is $\neq j i$)
- HI is a division algebra, since

$$
\left(a+b_{i}+c_{j}+d k\right)^{-1}=\frac{a-b_{i}-c_{j}-d k}{a^{2}+b^{2}+c^{2}+d^{2}}
$$

