Ex: We saw last time that

$$Z_n^{\times} = U(n) = \{a \in \mathbb{Z}_n \mid gcd(a, n) = 1\},\$$

and that every non-zero element
of Z_n which isn't a unit is a
zero divisor. Thus

Thum: Let R be a finite integral
domain. Then R is a field.

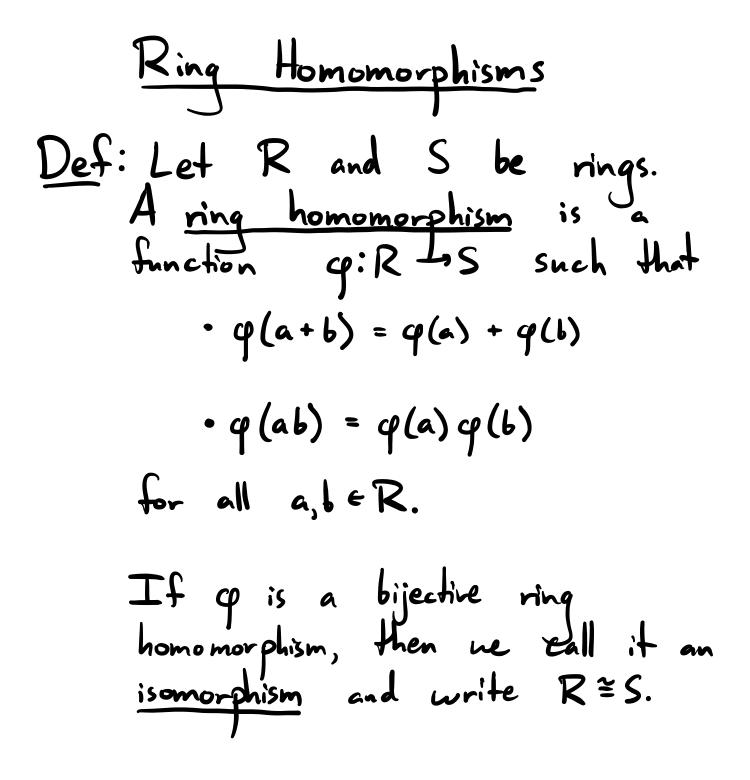
Proof: We must show
$$R^{x} = R \setminus \{0\}$$
.
Certainly, $R^{x} \in R \setminus \{0\}$. So take
 $a \in R \setminus \{0\}$.
Define the "multiply by a" map
 $f: R \rightarrow R$
 $x \mapsto ax$.

Since R is an integral domain
and $a \neq 0$, we have
 $ax_{1} = ax_{2} \implies x_{1} = x_{2}$
for any $x_{1}, x_{2} \in R$. So f is
injective.

Since R is finite, f is also
surjective.
Thus,
$$I \in R$$
 is in the range of
f. That is,
 $I = f(b) = ab$
for some $b \in R$. Thus, $b = a^{-1}$
and so $a \in R^{\times}$ is a unit.

Def: Let
$$R = (R, +, \cdot)$$
 be a ring.
A subset $S \subseteq R$ is a subring if
 $\cdot S$ is closed under +,
 $\cdot S$ is closed under \cdot ,
 $\cdot (S, +, \cdot)$ is also a ring.

Then S is a subjroup of
$$(R, +)$$
.
Then S is a subjroup of $(R, +)$.
 $\cdot (S, +)$ is a subgroup of $(R, +)$.
 $\cdot S$ is closed under \cdot
Proof: This is just a restatement of
the definition.
Ex: $Z \in Q \subseteq R \subseteq C$
Ex: For $n \in \mathbb{N}$, $nZ \subseteq Z$.
Ex: For $n \in \mathbb{N}$, $nZ \subseteq Z$.
Ex: $\{n \times n \text{ upper triangular matrices}\} \subseteq M_{*}(R)$
Note: No special notation for subrings.
We just use \subseteq .



Def: Let
$$q: R \rightarrow S$$
 be a ring
homomorphism. The image of q
is
 $q(R) = {q(r) | r \in R} \leq S$
and the kernel of q is
ker $q = {r \in R | q(r) = 0} \in R$.



Def: Let R be a ring. An ideal
in R is a subring
$$I \subseteq R$$
 such
that for all $a \in I$, $r \in R$, we have
 $ra \in I$ and $ar \in I$.

So kernels are ideals!