Warm-Up: Define

$$
\begin{aligned}
\varphi: \mathbb{R}[x] & \rightarrow \mathbb{R} \\
p(x) & \longmapsto p(5)
\end{aligned}
$$

- Show φ is a ring ham.
- Find the image and kernel of φ.

Thu: Let $\varphi: R \rightarrow S$ be a ring homomorphism. Then
(1) $\varphi(R)$ is a sebring of S.
(2) $\operatorname{ker} \varphi$ is a subring of R.
(3) For all $a \in \operatorname{her} \varphi$ and $r \in R$, we have $r a \in \operatorname{her} \varphi$ and $\operatorname{ar} \in \operatorname{ler} \varphi$.

Proof: We already know $\varphi(R)$ is a subgroup of S and $\operatorname{ker} \varphi$ is a subgroup of R

To show they are subbrings, we just need closure under multiplication.
(1) Let $s_{1}, s_{2} \in \varphi(R)$. Then

$$
s_{1}=\varphi\left(r_{1}\right) \quad \text { and } \quad s_{2}=\varphi\left(r_{2}\right)
$$

for some $r_{1}, r_{2} \in R$.
Now,

$$
s_{1} s_{2}=\varphi\left(r_{1}\right) \varphi\left(r_{2}\right)=\varphi\left(r_{1} r_{2}\right) \in \varphi(R) .
$$

(2) Let $a_{1}, a_{2} \in \operatorname{ker} \varphi$. Then

$$
\varphi\left(a_{1} a_{2}\right)=\varphi\left(a_{1}\right) \cdot \varphi\left(a_{2}\right)=0.0=0,
$$

so $a_{1} a_{2} \in \operatorname{ker} \varphi$.
(3) Now, let $a \in \operatorname{ker} \varphi$ and $r \in R$. Similar to (2), we have

$$
\left.\begin{array}{rl}
\varphi(r a) & =\varphi(r) \varphi(a)
\end{array}\right) \varphi(r) \cdot 0=0 .
$$

So ra, ar $\in \operatorname{ker} \varphi$.

Cor: The kernel of a ring homomorphism $\varphi: R \rightarrow S$ is an ideal in R.

Note: No special notation for ideals.

Ex: In any ring R, the sets $\{0\}$ and R are ideals.

Ex: In a field $F,\{0\}$ and F are the only ideals.'

Proof: Suppose I is an ideal, $I \neq\{0\}$.
Then there is some nonzero $x \in I$.
Since F is e field, x is a unit.
Hence $\underset{\substack{x^{-1} \\ i n k}}{\substack{i \\ i n}}=1 \in I$.
But now $a=a \cdot 1 \in I$ for.$\| l l a \in$.
Thus, $I=F$.

Ex: Let R be a commutative ring with 1 . For any $a \in R$, define

$$
(a)=\{r a \mid r \in R\} .
$$

Then (a) is an ideal, called the principal ideal generated by a.

Proof: We show (a) is an additive subgroup:

Identity: $0=0 . a \in(a)$.
Closure: $r_{1} a+r_{2} a=\left(r_{1}+r_{2}\right) a \in(a) \quad$
Inverses: $-\left(r_{1} a\right)=\left(-r_{1}\right) a \in(a)-$

Now, for any $r a \in(a)$ and $s \in R$, we have

$$
s(r a)=(s r) a \in(a)
$$

So (a) is an ideal

The: Every ideal in \mathbb{Z} is principal.
Proof: Certainly $\{0\}=(0)$ is principal.
Let $I \neq\{0\}$ be an ideal. Then I contains some positive integer (why?) so by well-Ordering it contains a least positive integer $n \in I$.

For any $a \in I$, the division algorithm yields

$$
a=n q+r_{1}
$$

where $0 \leq r<n$. But $r=a-n q \in I$, so $r=0$ by minimality of n. "I

Thus, $a=n q$, so $I=(n)=n \mathbb{Z}$.

Ex: Similarly, every ideal in $\mathbb{R}[x]$ is principal.
Why? Polynomial long division!
Ex: The set

$$
I=\{p(x, y) \mid p(0,0)=0\} \subseteq \mathbb{R}[x, y]
$$

is an ideal which is not principal.
Why? Both $x \in I$ and $y \in I$, but there is no polynomial $q(x, y)$ such that both x and y are multiples of q.

Def: Let R be a ring with 1 .
The characteristic of R is the smallest positive integer such that

$$
n \cdot 1=\underbrace{1+1+\cdots+1}_{n \text { times }}=0
$$

If there is no such positive integer, then we say R has characteristic 0 .

Ex: \mathbb{Z}_{n} has characteristic n
$E_{X}: \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{R}[x], \ldots$ have characteristic 0 .

Alternative perspective:
There is a ring homomorphism

$$
\varphi: \mathbb{Z} \rightarrow R
$$

defined by

$$
\varphi(k)=k \cdot 1= \begin{cases}\frac{1+1+\cdots+1}{\sigma^{\text {knams}}} & k>0 \\ \frac{(-1)+(-1)+\cdots+(-1)}{k \text { mass }} & k<0\end{cases}
$$

Then $\operatorname{ker} y=n \mathbb{Z}$ is an ideal of \mathbb{Z}, and n is the characteristic of R.

