Thm: If R is an integral domain, then the characteristic of R is Prime or O.

Proof: Suppose the characteristic of R is n > 0.

If n=kl, k,l+N, Hen

 $0 = n \cdot 1 = (k \cdot 1)(l \cdot 1).$

Since R is an integral domain, either $k \cdot l = 0$ or $l \cdot l = 0$. Say $k \cdot l = 0$.

But k = n, so by minimality of n, we have k=n and l=1.

H

Thus, n is prime.

If I = R is a subring, then in particular it is an additive (normal) subgroup. So

is an abelian group.

When is it a ring?

Thm: Let I = R be a subring. Then multiplication of cosets

$$(a+I)(b+I) = ab+I$$

is nell-defined if and only if I is an ideal.

Proof: (=)) Suppose coset multiplication is nell-defined. Then for any reR, a & I we have

Thus, ra+I=I, so ra & I.

Similarly, ar & I.

So I is an ideal.

Well,
$$x = a + i$$
 and $y = b + j$
for some $i, j \in I$. Then

$$xy = (a+i)(b+j) = ab+aj+ib+ij$$

Cor: Let R be a ring and I = R an ideal. Then R/I is a ring under coset addition and multiplication.

$$(a+I) + (b+I) = (a+b) + I$$

 $(a+I) \cdot (b+I) = ab + I$.

Proof: Since the operations in R/I are the operations of R applied to coset representatives, R/I is a ring because R is a ring.

We have already seen that kernels of ring homomorphisms are ideals.

We now see that every ideal is a kernel.

Cor: Let R be a ring and $I \in R$ an ideal. The canonical projection $\pi \colon R \to R/I$ a $\mapsto a+I$ is a ring homomorphism with $\ker \pi = I$