Thu (First Isomorphism Theorem for Rings)
Let $\varphi: R \rightarrow S$ be a ring homomorphism. Then

- $\operatorname{ker} \varphi \leqslant R$ is an ideal.
- $\varphi(R) \leqslant S$ is a subring.

$$
\text { - } R / \operatorname{ker} \varphi \cong \varphi(R) \text {. }
$$

More precisely, there is a unique homomorphism

$$
\eta: R / \text { her } q \rightarrow S
$$

such that $\eta \cdot \pi=\varphi$, where $\pi: R \rightarrow R /$ her φ is the natural projection.

Then η is an isomorphism out $\varphi(R)$.

Proof: Let $K=$ her φ.
We have already proved that K is an ideal in R and $\varphi(R)$ is a subring of S.
By the First Isomorphism Theorem for groups, we know that

$$
\begin{aligned}
\eta: R / K & \rightarrow S \\
a+K & \mapsto \varphi(a)
\end{aligned}
$$

is a vell-defined injective group homomorphism with image $\varphi\left(k^{k}\right)$.
If remains to show η is a ring homomorphism, ie., if respects multiplication.

We have

$$
\begin{aligned}
\eta((a+K)(b+K)) & =\eta(a b+K) \\
& =\varphi(a b) \\
& =\varphi(a) \varphi(b) \\
& =\eta(a+K) \eta(b+K) .
\end{aligned}
$$

Ex: Consider

$$
\begin{aligned}
e v_{0}: \mathbb{Z}[x] & \rightarrow \mathbb{Z} \\
p(x) & \mapsto p(0) .
\end{aligned}
$$

Then her eve. $=\{p(x) \quad \mid p(0)=0\}$

$$
\begin{aligned}
& =\{x \cdot q(x) \mid q(x) \epsilon \mathbb{Z}[x] \\
& =(x),
\end{aligned}
$$

and $e v_{0}$ is surjective.
Thus,

$$
\mathbb{Z}[x] /(x) \cong \mathbb{Z} .
$$

Think: Set $x=0$. Then two polynomials $p(x)$ and $q(x)$ are identified if $p(0)=q(0)$.

More precisely, let $K_{1}=(x)$.
Then

$$
\begin{gathered}
p(x)+K=q(x)+K \\
\Leftrightarrow p(0)=q(0) . \\
\text { e.g. }\left(3+5 x+8 x^{3}\right)+K=\left(3+2 x^{2}\right)+K,
\end{gathered}
$$

since

$$
\begin{aligned}
\left(3+5 x+8 x^{2}\right)-\left(3+2 x^{2}\right) & =5 x-2 x^{2}+8 x^{3} \in K . \\
& =x\left(5-2 x+8 x^{2}\right)
\end{aligned}
$$

Ex: How is $\mathbb{Z}[x] /\left(x^{2}\right)$ different?
(Note: (x^{2}) not the kernel of a familiar homomorphism.)

Think: Set $x^{2}=0$, but $x \neq 0$. So $p(x)$ and $q(x)$ get identified if $p(0)=q(0)$ and $p^{\prime}(0)=q^{\prime}(0)$.

Let $K_{2}=\left(x^{2}\right)$. Then, e.g.,

$$
\left(1+5 x-4 x^{2}\right)+K_{2}=\left(1+5 x+x^{9}\right)+K_{2}
$$

since

$$
\begin{aligned}
\left(1+5 x-4 x^{2}\right)-\left(1+5 x+x^{9}\right) & =-4 x^{2}-x^{9} \in K_{2} . \\
& =x^{2}\left(-4-x^{2}\right)
\end{aligned}
$$

Observe that $\mathbb{Z}[x] /\left(x^{2}\right)$ has zero divisors:

$$
\begin{aligned}
\left(4 x+K_{2}\right)\left(3 x+K_{2}\right) & =12 x^{2}+K_{2} \\
& =K_{2}
\end{aligned}
$$

but $4 x+K_{2}, 3 x+K_{2} \neq K_{2}$
Remember, $K_{2}=0+K_{2}$ is " O " in R / K_{2}.

Def: An ideal $P \leqslant R$ is prime if for all $a, b \in R$,

$$
a b \in R \quad \Rightarrow a \in R \text { or } b \in R \text {. }
$$

Ex: In $\mathbb{Z}[x],(x)$ is prime but (x^{2}) is not.

