Then (First Isomorphism Theorem for Rings)
Let
$$q: R \rightarrow S$$
 be a ring homomorphism.
Then
 $\cdot \ker q \in R$ is on ident.
 $\cdot q(R) \in S$ is a subring.
 $\cdot R/\ker q \cong q(R)$.
More precisely, there is a
unique homomorphism
 $\eta: R/\ker q \rightarrow S$
such that $\eta \circ \pi = cq$, where
 $\pi: R \rightarrow R/\ker q$ is the natural
projection.
Then η is an isomorphism onto $q(R)$.

Proof: Let K = ker cg. We have already proved that K is an ideal in R and q(R) is a subring of S. By the First Isomorphism Theorem for groups, ne know that z: R/K → S a+K ~ q(a) is a nell-defined injective group homomorphism with image q(R). It remains to show y is a ring homomorphism, i.e., it respects multiplication.

We have

$$\mathcal{Y}((a + K)(b + K)) = \mathcal{Y}(ab + K)$$

$$= cp(ab)$$

$$= cp(a) q(b)$$

$$= \mathcal{Y}(a + K) \mathcal{Y}(b + K).$$

Ex: Consider	
er.: $\mathbb{Z}[\times] \to \mathbb{Z}$ $P^{(\times)} \mapsto P^{(0)}$.	
Then her ev.	$= \{p(x) \mid p(0) = 0\}$
	$= \left\{ \times \cdot q(x) \mid q(x) \in \mathbb{Z}[x] \right\}$
	= (x),

and ev, is surjective. Thus, $\mathbb{Z}[x]/(x) \cong \mathbb{Z}.$ Think: Set x = 0. Then two polynomials p(x) and q(x)are identified if p(0) = q(0). More precisely, let K,=(x). Then p(x) + K = q(x) + K \Leftrightarrow p(0) = q(0). e.q. $(3 + 5x + 8x^3) + K = (3 + 2x^2) + K$, Since $(3+5x+8x^{2})-(3+2x^{2})=5x-2x^{2}+8x^{3}\in K.$

 $= \times (5 - 7 \times + 8 \times 2)$

Ex: How is
$$\mathbb{Z}[x]/(x^2)$$
 different?
(Note: (x^2) not the kernel of
a familiar homomorphism.)

Think: Set
$$x^2 = 0$$
, but $x \neq 0$.
So $p(x)$ and $q(x)$ get
identified if $p(0) = q(0)$
and $p'(0) = q'(0)$.

Let
$$K_2 = (x^2)$$
. Then, e.g.,
 $(1+5x-4x^2)+K_2 = (1+5x+x^9)+K_2$
since

$$(1+5_{x}-4)^{2} - (1+5_{x}+x^{9}) = -4x^{2}-x^{9} \in K_{2},$$

= $x^{2}(-4-x^{7})$

Observe that $\mathbb{Z}[x]/(x^2)$ has zero divisors: $(4x + K_2)(3x + K_2) = 12x^2 + K_2$ = K2 but $4x+K_2$, $3x+K_2 \neq K_2$ Remember, $K_2 = O + K_2$ is "O" in R/K_2 . Def: An ideal PER is prime if for all a, b & R, aber = at R or beR. In Z[x], (x) is prime ±x: but (x^2) is not.