Integers
We review 3 fundamental ideas

- mathematical induction
- the division algorithm and CDs
- prime numbers

Induction
Let $P(n)$ be a logical sentence depending on $n \in \mathbb{Z}$.

The Principle of Mathematical Induction states that if, for some $n_{0} \in \mathbb{Z}$, both
and (1) $P\left(n_{0}\right)$ is the [Base case]
(2) For every $n \geqslant n_{0}, P(n) \Rightarrow P(n+1)$ is true, [Inductive step]
then $P(n)$ is the for all $n \geqslant n_{0}$.

The Principle of Strong Mathematical Induction states that if, for some $n_{0} \in \mathbb{Z}$, both
(1) $P\left(n_{0}\right)$ is true [Base case]
and
(2) for every $n \geqslant n_{0}$,

$$
\left[P\left(n_{0}\right) \wedge P\left(n_{0}+1\right) \wedge \cdots \wedge P(n)\right] \Rightarrow P(n+1)
$$

is true, [Strong inductive step]
then $P(n)$ is the for all integers $n \geqslant n_{0}$.
Despite the name, "strong" induction is equivalent to "ordinary" induction!
The Principle of Mathematical Induction is equivalent to the Well-Ordering Principle:

If $S \subseteq \mathbb{Z}$ is a nonempty set of integers which is bounded below (ie. there exists $m \in \mathbb{Z}$ such that $m \leq x$ for all $x \in S$), then S has a least element (i.e., there exists $n_{0} \in S$ such that $n_{0} \leq x$ for all $x \in S$).

Proof sketch
(Induction \Rightarrow Well-Ordering)
Suppose $S \subseteq \mathbb{Z}$ is bounded below, and let $m \in \mathbb{Z}$ be a lower bound.

Assume that S has no least element. We prove $S=\phi$.
Certainly $n \notin S$ for all $n<m$. Now
Base case: If $m \in S$, then m mould be the least element in S. Hence, $m \& S$.

Inductive step: Let $n \geqslant m$ and suppose none of $m, m+1, \ldots, n$ are in S. Were $n+1$ to be in S, then it mould be the least element in S. Hence, $n+1 \& s$.

This proves $n \notin S$ for all $n \geqslant m$, so $S=\phi$.
(Well-Ordering \Rightarrow Induction)
Let $P(n)$ be a sentence and $n_{0} \in \mathbb{Z}$ such that

Base Case: $P\left(n_{0}\right)$ is the
Inductive Step: $P(n) \Rightarrow P(n+1)$ is the for all $n \geqslant n_{0}$.

We wish to conclude $P(n)$ is the for all $n \geqslant n_{0}$. That is, the set

$$
S=\left\{n \in \mathbb{Z} \mid n \geq n_{0} \text { and } P(n) \text { is false }\right\}
$$

is empty.
If not, it is bounded below by n_{0}, so it contains a least element m_{0}.

Since $P\left(n_{0}\right)$ is true, $m_{0} \neq n_{0}$. Thus, $m_{0}>n_{0}$.
Since m_{0} is the least element in $S, m_{0}-1 \nLeftarrow S$.
Thus, $P\left(m_{0}-1\right)$ is the. But $P\left(m_{0}-1\right) \Rightarrow P\left(m_{0}\right)$ by the inductive step, making $P\left(m_{0}\right)$ true. This contradicts $m_{0} \in S$, so $S=\varnothing$.

Division algorithm and CDs
Thu: Let $n, d \in \mathbb{Z}$ with $d \geqslant 1$. Then there exist unique $q, r \in \mathbb{Z}$ such that

$$
n=d q+r \quad \text { and } \quad 0 \leq r \leq d-1 \text {. }
$$

Proof: Math 3345 or see text.

Def: Let $a, b \in \mathbb{Z}$. The greatest common divisor of a and b is a non-negative integer d such that
(1) $d \mid a$ and $d \mid b$ (d is a common divisor) and
(2) For any $d^{\prime} \in \mathbb{Z}$ such that $d^{\prime} \mid a$ and $d^{\prime} \mid b$, we have $d^{\prime} \mid d$.

Notation: $d=\operatorname{gcd}(a, b)$

Note: You may have seen a version of this def. where d'ld in (2) is replaced by $d^{\prime} \leq d$.
These definitions agree unless $a=b=0$, in which case our definition gives

$$
\operatorname{gcd}(0,0)=0,
$$

but the other definition lewes $\operatorname{gad}(0,0)$ undefined.

