More number theory review
Thu: Let $a, b \in \mathbb{Z}$. Then $\operatorname{gcd}(a, b)$ exists and is unique.

Specifically,

$$
\cdot \operatorname{gcd}(0,0)=0 ;
$$

- if $a$ and $b$ are not both 0 , then $\operatorname{gcd}(a, b)$ is the smallest positive integer of the form $a x+b y$ for $x, y \in \mathbb{Z}$.

Ex: $a=6, \quad b=15$

| $x$ | $y$ | $6 x+15 y$ |
| :---: | :---: | :---: |
| 1 | 0 | 6 |
| -1 | 1 | 9 |
| 2 | -1 | -3 |
| 3 | -1 | 3 |
| -2 | 1 | 3 |
| $:$ | $:$ | $:$ |

Proof: For all $n \in \mathbb{Z}, n \mid 0$ is the $(0=n \cdot 0)$. Moreover, $O$ is the only integer divisible by all - thea integers. Hence, $\operatorname{gcd}(0,0)=0$.

When $a$ and $b$ are not both 0 , consider the set

$$
S=\{n \in \mathbb{N} \mid n=a x+b y \text { for some } x, y \in \mathbb{Z}\}
$$

Since $S \neq \varnothing$ (why?), $S$ has a smallest element. Call it $d$.

Since $d \in S, d=a x+b y$ for some $x, y \in \mathbb{Z}$.
Divide a by $d$ to get

$$
a=d q+r
$$

for $q, r \in \mathbb{Z}$ with $0 \leq r \leq d-1$.

If $r>0$, then

$$
\begin{aligned}
r & =a-d q \\
& =a-(a x+b y) q \\
& =a(1-q x)+b(-q y),
\end{aligned}
$$

so $r \in S$. But $r<d$, contradicting the minimality of $d$.
Hence, $r=0$ and da. Similarly, d lb.

Now, suppose $d^{\prime} \in \mathbb{Z}$ is a common divisor of $a$ and $b$, i.e., $d^{\prime} l a$ and $d^{\prime} l b$.

Then $a=d^{\prime} k$ and $b=d^{\prime} l$ for some $k, l \in \mathbb{Z}$. Thus,

$$
d=a x+b y=d^{\prime}(k x+l y)
$$

so that $d^{\prime} \mid d$.
Therefore, $d=\operatorname{gcd}(a, b)$.

Cor: Let $a, b \in \mathbb{Z}$. Then $\operatorname{gcd}(a, b)=1$ if and only if there exist $x, y \in \mathbb{Z}$ such that $a x+b y=1$.

The proof above is constructive! It yields the

Euclidean Algorithm
INPUT: $a, b \in \mathbb{N}$
OUTPUT: $\operatorname{gcd}(a, b)$.

Set $r_{-1}=a, r_{0}=b$, and $n=0$.
While $r_{n} \neq 0$ :

- Divide $r_{n-1}$ by $r_{n}$ to get

$$
r_{n-1}=r_{n} q_{n+1}+r_{n+1}
$$

- If $r_{n+1}=0$, OUTPUT $r_{n}$ and STOP.
- Else, increment $n \curvearrowleft n+1$.

Why does this work?
Initially, $r_{-1}=a$ and $r_{0}=b$ are in $S=\{n \in \mathbb{N} \mid n=a x+b y$ for some $x, y \in \mathbb{Z}\}$.

Since $a=a(1)+b(0)$ and $b=a(0)+b(1)$.
When we divide $r_{n-1} \in S$ by $r_{n} \in S$, the new remainder $r_{n+1}$ is also in $S$, and $0 \leq r_{n+1} \leq r_{n}-1$.

Thus, we get

$$
b=r_{0}>r_{1}>r_{2}>\cdots \geqslant 0 .
$$

This cannot go on forever, so eventually we arrive at the smallest element in $S$, which is $\operatorname{gcd}(a, b)$.

Ex: $a=270, b=192 \quad r_{-1}=270$

$$
\begin{aligned}
270 & =192(1)+78 & r_{1} & =78 \\
192 & =78(2)+36 & r_{2} & =36 \\
78 & =36(2)+6 & r_{3} & =6 \\
36 & =6(6)+0 & r_{4} & =0
\end{aligned}
$$

So $\quad \operatorname{gcd}(270,192)=6$.
We can also work backwards to get

$$
\begin{aligned}
G & =78-36 \cdot 2 \\
& =78-(192-78 \cdot 2) \cdot 2 \\
& =78 \cdot 5+192(-2) \\
& =(270-192) \cdot 5+192(-2) \\
& =270(5)+192(-7) .
\end{aligned}
$$

Note: $\operatorname{gcd}(a, b)=\operatorname{gcd}(|a|,|b|)$ and $\operatorname{gcd}(a, 0)=|a|$, so we lose nothing by assuming $a, b \in \mathbb{N}$.

Primes
Def: An integer $p$ is prime if
(1) $p \geqslant 2$
(2) if $d \in \mathbb{N}$ and $d \mid p$, then $d=1$ or $d=p$.

Thu: There are infinitely many primes.
Proof: Math 3345 or see text.

The: Let $p \in \mathbb{Z}$ with $p \geqslant 2$. Then $P$ is prime if and only if for all $a, b \in \mathbb{Z}$, plab implies play or pleb.
Proof: $(\Rightarrow)$ [Euclid's Lemma]
Suppose $a, b \in \mathbb{Z}$ with flab.
If pla, then ne are done. So assume pła. Then $\operatorname{gcd}(a, p)=1 \quad\left(w_{y} y^{2}\right)$.
Thus, $1=a x+p y$ for some $x, y \in \mathbb{Z}$. Now,

$$
b=b \cdot 1=b(a x+p y)=(a b) x+p(b y) .
$$

Since plat and $p l p, p$ divides the left -hand side, ie., plb.
$(\Leftarrow)$ Conversely, suppose the implication

$$
\text { plab } \Rightarrow \text { pla or plb }
$$

is true for all $a, b \in \mathbb{Z}$.

Let $d \in \mathbb{N}$ be a divisor of $p$. We wish to show $d=1$ or $d=p$.

Since $d \mid p$, we have $p=d k$ for some $k \in \mathbb{N}$. Since $p l p$, ne have pld or plk.

Case 1: pld. Since $d \mid p$ also, ne have $d=p$.

Case 2: ply. Since $k$ lp also, we have $k=p$ and $d=1$.

Thus, $p$ is prime.

Thu (Fundamental Theorem of Arithmetic):
Every integer $n \geqslant 2$ can be expressed uniquely as a product of primes. Lo up to reordering the factors

Proof: Math 3345 or see text.

