$E_{x}: a = 6, b = 15$

X	5	6x + 15y
1	0	6
-1	I	٩
2	-1	**
3	-1	3
-2	۱	3
•		

Proof: For all
$$n \in \mathbb{Z}$$
, $n|0$ is the
 $(0=n:0)$. Moreover, 0 is the
only integer divisible by all
other integers. Hence, $gcd(0,0)=0$.
When a and b are not both 0,
consider the set
 $S = \{n \in \mathbb{N} \mid n=ax+by \text{ for some } x, y \in \mathbb{Z}\}$
Since $S \neq \emptyset$ (Why?), S has
a smallest element. Call it d.
Since $d \in S$, $d = ax+by$ for
some $x, y \in \mathbb{Z}$.
Divide a by d to get
 $a = dq + r$
for $q, r \in \mathbb{Z}$ with $0 \in r \leq d-1$.

If
$$r > 0$$
, then
 $r = a - dg$
 $= a - (ax + by)g$
 $= a(1-gx) + b(-gy),$
so $r \in S$. But $r \leq d$, contradicting
the minimality of d.
Hence, $r = 0$ and d1a.
Similarly, d1b.
Now, suppose $d' \in \mathbb{Z}$ is a
common divisor of a and b,
i.e., d'1a and d'1b.
Then $a = d'k$ and $b = d'1$ for
some $k, l \in \mathbb{Z}$. Thus,
 $d = ax + by = d'(kx + ly)$

æ

The proof above is constructive! It yields the Euclidean Algorithm INPUT: a, b & IN OUTPUT: gcd (a,b). Set $r_1 = a$, $r_0 = b$, and n = 0. While rn = 0: · Divide rn-, by rn to get $\Gamma_{n-1} = \Gamma_n q_{n+1} + \Gamma_{n+1}$ • If $r_{n+1} = 0$, OUTPUT r_n and STOP. · Else, increment numn+1.

Why does this nork?
Initially,
$$r_{-1} = a$$
 and $r_0 = b$ are in
 $S = \{n \in |N| \mid n = ax + by$ for some $x, y \in 2\}$.
Since $a = a(1) + b(0)$ and $b = a(0) + b(1)$.
When we divide $r_{n-1} \in S$ by $r_n \in S$, the
new remainder r_{n+1} is also in S , and
 $0 \le r_{n+1} \le r_n - 1$.
Thus, we get
 $b = r_0 \ge r_1 \ge r_2 \ge \cdots \ge 0$.
This cannot go on forever, so eventually
we arrive at the smallest element
in S , which is $gcd(a, b)$.

 $E_{x}: a = 270, b = 192$ $r_{0} = 192$ 270 = 192(1) + 78 $r_{1} = 78$ 192 = 78(2) + 36 $r_{2} = 36$ 78 = 36(2) + 6 $r_{3} = 6$ 36 = 6(6) + 0 $r_{4} = 0$

So
$$gcd(270, 192) = 6.$$

We can also north backwards to
get
 $6 = 78 - 36 \cdot 2$
 $= 78 - (192 - 78 \cdot 2) \cdot 2$
 $= 78 \cdot 5 + 192(-2)$
 $= (270 - 192) \cdot 5 + 192(-2)$
 $= 270(5) + 192(-7).$

Proof: (=>) [Enclid's Lemma]

Suppose
$$a, b \in \mathbb{Z}$$
 with plab.
If pla, then we are done.
So assume pta. Then
 $gcd(a, p) = 1$ (My?).

Thus,
$$l = a \times + py$$
 for some
x, $y \in \mathbb{Z}$. Now,
 $b = b \cdot l = b(a \times + py) = (ab) \times + p(by)$.

Proof: Math 3345 or see text.