Groups
Def: Let A be a set. A binary operation on A is a function

$$
\begin{array}{r}
*: A \times A \rightarrow A \\
\text { Notation: }(a, b) \longmapsto a * b
\end{array}
$$

Examples: $\cdot+$, , and \cdot are binary operations on \mathbb{Z}

- - is not a binary operation on \mathbb{Z}
$\cdots-$ is a binary operation on $\mathbb{Q} \backslash\{0\}$
- $a * b=a^{b}$ is a binary operation
on $\mathbb{R}_{>0}$.
- $a * b=\sqrt{a b}$ is a binary operation on $\mathbb{R}_{>0}$.
- matrix addition and matrix multiplication are binary operations on $M_{n}(\mathbb{R})$.

Def: Let * be a binary operation on a set A.
(1) We say $*$ is associative if

$$
(a * b) * c=a *(b * c)
$$

for all $a, b, c \in A$.
(2) We say $*$ is commutative if

$$
a * b=b * a
$$

for all $a, b \in A$.
(3) Let $e \in A$. We say e is an identity
element for * if
$e * a=a$ and $a * e=a$
for all $a \in A$
(4) Let $a, b \in A$. If e is an identity element for $*$ and

$$
a * b=e \text { and } b * a=e \text {, }
$$

then we say b is an inverse of a under $*$.

Ex: + on \mathbb{Z} : associative

- commentative
- identity element 0
. $n \in \mathbb{Z}$ has inverse - n
- on \mathbb{Z}. associative
- commutative
- identity element 1
- 1 is inverse for 1 ,
-1 is inverse for -1 ,
but no other $n \in \mathbb{Z}$ has an inverse x
- on (1): associative
- commutative
- identity element 1
- $r \in \mathbb{Q}$ has inverse $\frac{1}{r}$ if $r \neq 0$, O has no inverse x
- $a * b=a^{b}$ on $\mathbb{R}_{>0}$:
- not associative $\left(\left(2^{2}\right)^{3}=2^{6} \neq 2^{\left(2^{3}\right)}=2^{8}\right) x$
- not commutative $\left(2^{3} \neq 3^{2}\right) \times$
- no identity element x
- therefore cannot cen define inverses x
- Matrix malt. on $M_{n}(\mathbb{R})$: - associative
- not commutative x
- identity element ($\left.\begin{array}{ll}1 & 0 \\ 0 & \ddots\end{array}\right)$
- some matrices have inverses, some do not (determinant) x

Some basic uniqueness properties:
Thu: Let * be a binary operation on a set A.
(1) If there is an identity element for $*$ in A, then it is unique.
(2) Suppose $*$ is associative. If $a \in A$ has an inverse under $*$, then this inverse is unique. We denote it a^{-1}.
(3) Suppose $*$ is associative and $a, b \in A$.

- If a has an inverse under $*$, then so does a^{-1}, and $\left(a^{-1}\right)^{-1}=a$.
- If a and b each have an inverse under x, then so does $a * b$, and

$$
(a * b)^{-1}=b^{-1} * a^{-1}
$$

Proof: (1) Suppose $e_{1}, e_{2} \in A$ are each identity elements for $*$.

Then $e_{1}=e_{1} * e_{2}=e_{2}$

\uparrow	\uparrow
e_{2} is	e_{1} is
identity	identity

(2) Let $a \in A$, and suppose $b_{1}, b_{2} \in A$ are each inverses for a under $*$.

Then $b_{1}=b_{1} * e$

$$
\begin{aligned}
& =b_{1} *\left(a * b_{2}\right) \\
& =\left(b_{1} \times a\right) * b_{2} \\
& =e \times b_{2} \\
& =b_{2} .
\end{aligned}
$$

So we unite a^{-1} for the element $b_{1}=b_{2}$.
(3) If a and b are invertible, then

$$
a^{-1} * a=e \quad \text { and } a * a^{-1}=e,
$$

So a is an inverse for a^{-1}. By uniqueness, $\left(a^{-1}\right)^{-1}=a$.

Also,

$$
\begin{aligned}
(a * b) *\left(b^{-1} * a^{-1}\right) & =a *\left(b * b^{-1}\right) * a^{-1} \\
& =a * e * a^{-1} \\
& =a * a^{-1} \\
& =e .
\end{aligned}
$$

Similarly, $\left(b^{-1} * a^{-1}\right) *(a * b)=e$.
By uniqueness of inverses, then,

$$
(a * b)^{-1}=b^{-1} * a^{-1}
$$

Def: A group $(G, *)$ is a set G with a binary operation * on G such that
(1) * is associative;
(2) there exists an identity element $e \in G$ for *; and
(3) each $a \in G$ has an inverse $a^{-1} \in G$ under $*$.
Note: By the theorem, the identity and inverses in a group are unique.
Ex: $\cdot(\mathbb{Z},+)$ is a group
$\cdot(\mathbb{Z}, \cdot)$ and (\mathbb{Q}, \cdot) are not

- $(\mathbb{Q} \backslash\{0\}, \cdot)$ is a group

Def: A group $(G, *)$ is called abelian
if ${ }_{*}$ is commutative. if ${ }_{*}$ is commutative.

