Groups
Def: Let A be a set. A binany
operation on A is a function

$$*: A \times A \rightarrow A$$

Notation: $(a, b) \rightarrow a \times b$
Examples: $+, -, and \cdot are binany
operations on Z
 $\cdot \div is not a binary operation on Z$
 $\cdot \div is a binary operation on QN{0}
 $\cdot a \times b = a^{b}$ is a binary operation
on R>0.
 $\cdot a \times b = Jab$ is a binary operation on R>0.
 $\cdot a \times b = Jab$ is a binary operation on R>0.
 $\cdot matrix addition and matrix multiplication
are binary operations on Ma(IR).$$$

(4) Let a, b \in A. If e is an identity element for * and a * b = e and b * a = e, then we say b is an inverse of a under *.

•
$$a * b = a^{b}$$
 on $\mathbb{R}_{>0}$:
• not associative $((2^{2})^{3} = 2^{6} \neq 2^{(2^{3})} = 2^{8}) \times$
• not commutative $(2^{3} \neq 3^{2}) \times$
• no identity element \times
• therefore cannot even define inverses \times

Some basic unigreness properties: Thm: Let * be a binary operation on a set A. ① If there is an identity element for * in A, then it is unique. ② Suppose * is associative. If a eA has an inverse under *, then this inverse is unique. We denote if a⁻¹. 3 Suppose * is associative and a, b & A. • If a has an inverse under *, then so does a^{-1} , and $(a^{-1})^{-1} = a$. • If a and b each have an inverse under *, Hen so does a * b, and $(a * b)^{-1} = b^{-1} * a^{-1}$

Proof: D Suppose
$$e_1, e_2 \in A$$
 are each
identity elements for $*$.
Then $e_1 = e_1 * e_2 = e_2$
Then $e_1 = e_1 * e_2 = e_2$
Then $e_2 ::$
is identity identity

Then
$$b_1 = b_1 * e$$

 $= b_1 * (a * b_2)$
 $= (b_1 * a) * b_2$
 $= e * b_2$
 $= b_2$.

So we write
$$a^{-1}$$
 for the element $b_1 = b_2$.

(3) If a and b are invertible,
then

$$a^{-1} * a = e$$
 and $a * a^{-1} = e$,
so a is an inverse for a^{-1} .
By uniqueness, $(a^{-1})^{-1} = a$.
Also,
 $(a * b) * (b^{-1} * a^{-1}) = a * (b * b^{-1}) * a^{-1}$
 $= a * e * a^{-1}$
 $= e$.
Similarly, $(b^{-1} * a^{-1}) * (a * b) = e$.
By uniqueness of inverses, then,
 $(a * b)^{-1} = b^{-1} * a^{-1}$.

Def: A group (G, *) is a set G with a binary operation * on G such that () * is associative; There exists an identify element e ∈ G for *; and 3 each a & G has an inverse a⁻¹ & G under *. Note: By the theorem, the identity and inverses in a group are unique. $E_{\mathbf{X}}: \cdot (\mathbf{Z}, +)$ is a group $\cdot(\mathbb{Z},\cdot)$ and (\mathbb{Q},\cdot) are not • (Q\203, •) is a group <u>Def</u>: A group (G,*) is called <u>abelian</u> if * is commutative.