$a \in [b] \iff a \equiv b \pmod{n} \iff [a] = [b]$

Let's define a binary operation
$$+$$

on equivalence classes by
 $[a] + [b] = [a+b]$

This is vell-defined!

From Math 3345: If $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$, then $a + b \equiv c + d \pmod{n}$.

 $\frac{\text{Translates to}: \text{If } [a] = [c] \text{ and } [b] = [d],}{\text{then } [a] + [b] = [a + b] = [c + d] = [c] + [d].}$

Let Z_n be the set of all equivalence classes. Then $(Z_n, +)$ is a group because () + is associative, (2) [0] is the identity, and
(3) the inverse of [a] is [-a]. Since + is commutative, Zn is abelian. Note: A complete list of equivalence classes is [0], [1], ..., [n-1]. When the context is clear, we drop the brackets and write $\mathbb{Z}_{n} = \{0, 1, ..., n-1\}.$ Alternative notations: Z/n or Z/nZ.

Ex: In $\mathbb{Z}_{y} = \{0, 1, 2, 3\}$, the addition can be visualized as

+	0	I	2	3
0	0	I	2	3
١	\	2	3	O
2	2	3	D	I
3	3	0	١	2
	l			

<u>Multiplication modulo n</u> Za is <u>not</u> a group under multiplication. But is associative and 1 (really, [1]) is the identity, so the only problem is inverses.

So, define $U(n) = \{[a] \in \mathbb{Z}n \mid [a] \text{ has an inverse under } \}$ to be the group of units in $\mathbb{Z}n$. (Note: "unit" means "invertible element".)

Ex: In Zy,

•	О	I	2	3
0	0	0	0	0
١	ο	I	2	3
2	0	2	0	2
3	0	3	2	١

