Examples of groups
Some familiar groups

- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} are abelian groups under + .
- $\mathbb{Q}^{\mathbf{x}}=\mathbb{Q} \backslash\{0\}, \mathbb{R}^{x}=\mathbb{R} \backslash\{0\}$, and $\mathbb{C}^{x}=\mathbb{C} \backslash\{0\}$ are abelian groups under.
- Any vector space is an abelian group under + .

Note: When the group operation is + , we write the inverse of $g \in G$ as $-g$, not g^{-1}.

Note: We'll usually refer to a group $(G, *)$ by only referencing the set G, leaving the group operation * implicit.

Integers modulo n
Let $n \in \mathbb{N}$. Congruence modulo n partitions \mathbb{Z} into equivalence classes $[a]$ for $a \in \mathbb{Z}$, where

$$
a \in[b] \Leftrightarrow a \equiv b(\bmod n) \Leftrightarrow[a]=[b]
$$

Let's define a binary operation t on equivalence classes by

$$
[a]+[b]=[a+b]
$$

This is well-defined!
From Math 3345: If $a \equiv c(\bmod n)$ and $b \equiv d(\bmod n)$, then $a+b \equiv c+d(\bmod n)$.

Translates to: If $[a]=[c]$ and $[b]=[d]$, then $[a]+[b]=[a+b]=[c+d]=[c]+[d]$.

Let \mathbb{Z}_{n} be the set of all equivalence classes. Then $\left(\mathbb{Z}_{n},+\right)$ is a group because
(1) + is associative,
(2) $[0]$ is the identity, and
(3) the inverse of $[a]$ is $[-a]$.

Since + is commutative, \mathbb{Z}_{n} is abelian.
Note: A complete list of equivalence classes is $[0],[1], \ldots,[n-1]$.

When the context is clear, we drop the brackets and write

$$
\mathbb{Z}_{n}=\{0,1, \ldots, n-1\} .
$$

Alternative notations: \mathbb{Z} / n or $\mathbb{Z} / n \mathbb{Z}$.

Ex: In $\mathbb{Z}_{y}=\{0,1,2,3\}$, the addition can be visualized as

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

This is called the Cayley table of the group \mathbb{Z}_{4}.
From looking at the Cayley table, we can easily see that \mathbb{Z}_{4} is abelian.

Why? It is symmetric across the main diagonal.

What else do we notice...?

Multiplication modulo n
\mathbb{Z}_{n} is not a group under multiplication.
But - is associative and 1 (really, [1]) is the identity, so the only problem is inverses.

So, define
$U(n)=\left\{[a] \in \mathbb{Z}_{n} \mid[a]\right.$ has an inverse under $\}$
to be the group of units in \mathbb{Z}_{n}.
(Note: "unit" means "invertible element".)
Ex: $\operatorname{In} \mathbb{Z}_{4}$,

\cdot	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

So $U(4)=\{1,3\}$ with Cayley table | . | 1 | 3 |
| :--- | :--- | :--- |
| | 1 | 3 |
| 3 | 3 | 1 |

