Recall,

$$
U(n)=\left\{[a] \in \mathbb{Z}_{n} \mid[a] \text { has an inverse under . }\right\}
$$ is an abelian group under multiplication.

Thu: Let $a \in \mathbb{Z}$. Then $[a] \in U(n)$ if and only if $\operatorname{gcd}(a, n)=1$.

Proof: $[a] \in \mathbb{Z}$ if and only if the equation

$$
a x \equiv 1(\bmod n)
$$

has a solution $x \in \mathbb{Z}$ (since then $[a]^{-1}=[x]$).
(\Longrightarrow) Suppose such $x \in \mathbb{Z}$ exists. Then $a x-1=n y$ for some $y \in \mathbb{Z}$.
So

$$
a x+n(-y)=1,
$$

proving $\operatorname{gcd}(a, n)=1$.
(\Leftarrow) Conversely, suppose $\operatorname{gcd}(a, n)=1$.
Then there exist $x, y \in \mathbb{Z}$ such that

$$
a x+n y=1 \text {. }
$$

Thus,

$$
a x-1=n(-y) \text {, }
$$

proving that

$$
a x \equiv 1 \quad(\bmod n) .
$$

Ex: By the theorem, $U(8)=\{1,3,5,7\}$. The Cayley table is

\cdot	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1
				NW 2

Invertible matrices
Let

$$
\begin{aligned}
G L_{n}(\mathbb{R})=\left\{A \in M_{n}(\mathbb{R}) \mid\right. & A \text { is invertible }\} . \\
& \operatorname{det} A \neq 0
\end{aligned}
$$

Then $G L_{n}(\mathbb{R})$ is a group under matrix multiplication called the general linear group of degree n over \mathbb{R}.
Why? It's clear that
(1) Matrix multiplication is associative;
(2) $I_{n}=(1, \circ)$ is the identity element; and
(3) Each $A \in G L_{n}(\mathbb{R})$ has an inverse $A^{-1} \in G L_{n}(R)$.
The one thing to check is that matrix $\underset{G L}{m u l t i p l i c a t i o n ~}(\mathbb{R})$ is a binary operation on $G L_{n}^{\prime}(\mathbb{R})$.

This follows from the fact that if $A, B \in G L_{n}(\mathbb{R})$ are invertible matrices, then

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

and so $A B \in G L_{n}(\mathbb{R})$ also.
Since matrix multiplication is not commutative, $G L_{n}\left(\mathbb{R}^{\prime}\right)$ is a non-abelian group (for $n \geq 2$).

More basic properties of groups
Note: Going forward, we will write the group operation in a generic group as multiplication.

For $g, h \in G$, $g h$ means $g * h$.
Of course, if a familiar group uses other notation (e.g., \mathbb{Z}_{n} uses t), then we will use that notation when working with that group.

Prop: Let G be a group and $g, h \in G$. Then there exists a unique $x \in G$ such that

$$
g x=h .
$$

Similarly, there is a unique $y \in G$ such that

$$
y g=h
$$

Proof: Let $x=g^{-1} h$. Then

$$
g x=g\left(g^{-1} h\right)=\left(g g^{-1}\right) h=e h=h,
$$

so x solves the equation.
For uniqueness, suppose $g x_{1}=h$ and $g x_{2}=h$. Then

$$
x_{1}=g^{-1} g x_{1}=g^{-1} h=g^{-1} g x_{2}=x_{2} .
$$

Similarly, $y=h^{-1} \in G$ is the unique solution to $y y=h$.

Prop (Cancellation laws): Let G be a group. For all $a, b, c \in G$,
$a b=a c$ implies $b=c$, and $b a=c a$ implies $b=c$.

Proof: Suppose $a b=a c$. If we call this element h, then

$$
a x=h
$$

is solved by both $x=b$ and $x=c$. By the previous proposition, $b=c$.

Order + Exponentiation
Let G be a group and $g \in G$.
For $n \in \mathbb{N}$ we will write For $n \in \mathbb{N}$, we will write

$$
g^{n}:=\underbrace{g \cdot g \cdots g}_{n \text { times }}
$$

and

$$
g^{-n}:=\underbrace{g^{-1} \cdot g^{-1} \cdots g^{-1}}_{n \text { times }} \text {. }
$$

Note: This is ok by associativity.
We will also unite $g^{0}:=e$.

