Recall,

$$U(n) = \{[a] \in \mathbb{Z}n \mid [a] \text{ has an inverse under } \}$$

is an abelian group under multiplication.
Thm: Let $a \in \mathbb{Z}$. Then $[a] \in U(n)$ if
and only if $gcd(a,n) = 1$.
Proof: $[a] \in \mathbb{Z}$ if and only if the
equation
 $ax \equiv 1 \pmod{n}$
has a solution $x \in \mathbb{Z}$ (since then
 $[a]^{-1} = [x]$).

Invertible matrices

Let $GL_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) \mid A \text{ is invertible}\},\$ $\inf_{def A \neq 0}$

This follows from the fact that if A, B \in GLa (IR) are invertible matrices, Hen $(AB)^{-1} = B^{-1}A^{-1}$ and so $AB \in GLa(IR)$ also. Since matrix multiplication is not commutative, GLa(IR) is a non-abelian group (for $n \ge 2$).

$$\frac{\operatorname{Proof}}{\operatorname{gx}} : \operatorname{Let} x = \operatorname{g}^{-1} \operatorname{h}. \text{ Then}$$

$$\operatorname{gx} = \operatorname{g}(\operatorname{g}^{-1}\operatorname{h}) = (\operatorname{gg}^{-1})\operatorname{h} = \operatorname{eh} = \operatorname{h},$$
so x solves the equation.
For uniqueness, suppose $\operatorname{gx}_{1} = \operatorname{h}$ and
$$\operatorname{gx}_{2} = \operatorname{h}. \text{ Then}$$

$$x_{1} = \operatorname{g}^{-1}\operatorname{gx}_{1} = \operatorname{g}^{-1}\operatorname{h} = \operatorname{g}^{-1}\operatorname{gx}_{2} = \operatorname{x}_{2}.$$
Similarly, $y = \operatorname{hg}^{-1} \in \operatorname{G}$ is the unique solution
to $y_{0} = \operatorname{h}.$

$$\frac{Prop}{(Cancellation \ laws)}: Let G be a group. For all a,b,c \in G, ab = ac implies b=c, and ba = ca implies b=c.$$

