Order
Recall: Let G be a group and $g \in G$.

For $n \in \mathbb{N}$, we will unite
and

$$
g^{n}:=\underbrace{g \cdot g \cdots g}_{n \text { times }}
$$

$$
g^{-n}=\underbrace{g^{-1} \cdot g^{-1} \cdots g^{-1}}_{n \text { times }} .
$$

We will also write $g^{0}:=e$.

Thu: Let G be a group and $g \in G$. Then
(1) $g^{m} g^{n}=g^{m+n}$ for all $n, m \in \mathbb{Z}$.
(2) $\left(g^{m}\right)^{n}=g^{m n}$ for all $n, m \in \mathbb{Z}$.
(3) $\left(g^{n}\right)^{-1}=g^{-n}$ for all $n \in \mathbb{Z}$.

This should be fairly intuitive, but the proof is tricky!

Outline: - First prove for $n, m \in \mathbb{N}$ by induction.

- Then consider cases where n and/or m are O or negative.

WARNING: Since G may not be abelian, $(g h)^{n} \neq g^{n} h^{n}$ in general.

Potentially confusing convention
While we use multiplicative notation in general, there are some groups (egg. $\mathbb{Z}, \mathbb{Z}_{n}$) where we use + for the group operation.
Note: We only use + for abelian groups.

In these groups, we will unite
and

$$
n g:=\underbrace{g+\cdots+g}_{n \text { times }}
$$

$$
-n g:=\underbrace{(-g)+\cdots+(-g)}_{n \text { times }}
$$

for $n \in \mathbb{N}$.
Also, $O g=e$.

Def: Let G be a group and $g \in G$.
The order of g is the smallest positive integer ${ }_{n}$ such that $g^{n}=e$. We unite $|g|=n$.

If no such positive integer exists, we say g has infinite order and write $|g|=\infty$.

Def: Let G be a group.
If $|G|=n$ for some $n \in \mathbb{N}$, then we say G is a finite group and that G has order n.

If $|G|$ is infinite, we say G is an infinite group. We also say that it is a group of infinite order.

Ex: $\left|\mathbb{Z}_{4}\right|=4$, and

$$
|0|=1, \quad|1|=4, \quad|2|=2, \quad|3|=3 .
$$

Ex: $|u(8)|=4$, and

$$
|1|=1, \quad|3|=2, \quad|5|=2, \quad|7|=2 .
$$

Ex: \mathbb{Z} is infinite.
$|0|=1$, and $|n|=\infty$ if $n \neq 0$.

Ex: $G L_{2}(\mathbb{R})$ is infinite.

$$
\left|\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right|=4, \quad\left|\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)\right|=\infty .
$$

Check these!

Subgroups
Def: Let G be a group. A subgroup of G is a subset $H \leqslant G$ which is also a group under the same operation.
Notation: $H \leqslant G$.
If $H \leqslant G$ and $H \neq G$, write $H \leqslant G$.

Ex: $\cdot \mathbb{Z} \leqslant \mathbb{Q} \leqslant \mathbb{R} \leqslant \mathbb{C} \quad$ (as groups under +)

- For any group G, the subset $\{e\}$ containing only the identity "s a subgroup, called the tinioll subgroup
of G.

Observation: Let $(G, *)$ be a group and $H \leqslant G$ a subset.

In order for H to be a subgroup, we must check both
(1) * is a binary operation on H.

That is, for all $h_{1}, h_{2} \in H$, we have $h_{1} * h_{2} \in H$.

Also say H is closed under *.
(2) $(H, *)$ is a group.

* is already known to be associative, so need to check 2 things:
- $e \in H$.
and
- for all $h \in H$, we have $h^{-1} \in H$ i.e., H is closed under inverses

Ex: Let $3 \mathbb{Z}=\{3 k \mid k \in \mathbb{Z}\}$ be the set of multiples of 3 . Then

- $3 \mathbb{Z}$ is closed under +

$$
\begin{aligned}
& 3 L_{1}+3 h_{2}=3\left(b_{1}+k_{2}\right) \\
& 0 \in 3 \mathbb{Z} \\
& 0=3(0)
\end{aligned}
$$

- $3 \mathbb{Z}$ is closed under additive inverses

$$
-(3 k)=3(-k)
$$

Therefore, $3 \mathbb{Z} \leq \mathbb{Z}$.

Ex: By the exact same reasoning, the set

$$
n \mathbb{Z}=\{n k \quad \mid k \in \mathbb{Z}\}
$$

of all multiples of some fixed $n \in \mathbb{Z}$ is also a subgroup of \mathbb{Z}.

Ex: Two groups of order $4, \mathbb{Z}_{y}$ and $u(8)$

Subgroups of \mathbb{Z}_{4}

- \mathbb{Z}_{4}
- $\{0\}$
- $\{0,2\}$

Subgroups of $u(8)$

- 4 (8)
- \{1\}
- $\{1,3\}$
$\cdot\{1,5\}$

$$
\cdot\{1,7\}
$$

We can organize this information by drawing the subgroup lattice for each group.

Here, upward paths indicate inclusions.

