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VANISHING SIMPLICIAL VOLUME

FOR CERTAIN AFFINE MANIFOLDS
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(Communicated by Ken Bromberg)

Abstract. We show that closed aspherical manifolds supporting an affine
structure, whose holonomy map is injective and contains a pure translation,
must have vanishing simplicial volume. As a consequence, these manifolds
have zero Euler characteristic, satisfying the Chern Conjecture. Along the
way, we provide a simple cohomological criterion for aspherical manifolds with
normal amenable subgroups of π1 to have vanishing simplicial volume. This

answers a special case of a question due to Lück.

1. Introduction

The topology of affine manifolds remains quite poorly understood. In this short
note, we consider the simplicial volume of affine manifolds. We show:

Main Theorem. Let M be a closed aspherical manifold. Suppose that M admits
an affine structure for which the holonomy representation ρ : π1(M) → Aff(Rn) =
R

n
�GLn(R) is injective, and has non-trivial translational subgroup ρ(π1(M))∩Rn.

Then the simplicial volume of M vanishes.

Recall that, for a closed oriented manifold M , the simplicial volume ||M || is a
topological invariant which measures how efficiently the fundamental class of M
can be represented as a real singular chain. This non-negative real valued invariant
was introduced by Gromov [Gr82] and Thurston [Th80, Chapter 6]. More precisely,
for a topological space X, the real vector spaces C∗(X;R) appearing in the chain
complex for the singular homology H∗(X;R) come equipped with a canonical ba-
sis, consisting of the set of all continuous maps from an appropriate dimensional
simplex into the space X. There is thus an associated l1-norm on C∗(X;R), which
descends to a semi-norm || · ||1 on the homology H∗(X;R). The simplicial volume
||M || of a closed oriented manifold is then defined to be ||[M ]||1, where [M ] is the
fundamental class in Hn(M ;R). This invariant is multiplicative under covers, so
the definition can be extended to closed non-orientable manifolds. Now dual to this
l1-norm on C∗(X;R), we also have an l∞-norm || · ||∞ on the real vector spaces
C∗(X;R) = HomR(C∗(X;R);R) = [C∗(X;R)]∨ arising in the cochain complex for
singular cohomology H∗(X;R). By considering the bounded elements, one obtains
a subcomplex of the cochain complex, whose homology yields the bounded cohomol-
ogy H∗

b (X;R). The natural inclusion of cochain complexes induces a comparison
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map c : H∗
b (X;R) → H∗(X;R) from the bounded cohomology to the ordinary

cohomology. Elements in the image are cohomology classes which have bounded
representatives, and hence have a well-defined l∞-norm. The simplicial volume of
M vanishes if and only if the comparison map in top dimension is the zero map.

A smooth manifold M supports an affine structure if one can choose charts
for M so that all transition maps are locally constant affine maps. If M has an
affine structure, then there is an associated holonomy representation ρ : π1(M) →
Aff(Rn), and a ρ-equivariant developing map D : M̃ → R

n (unique up to affine
transformations). If the developing map D is a homeomorphism, then the affine
structure is called complete.

If M has a complete affine structure, then it follows that the holonomy repre-
sentation is injective, and that M is aspherical. Thus from our Main Theorem
we obtain (see also the discussion in Section 4):

Corollary 1.1. If M is a closed manifold with a complete affine structure, and the
holonomy contains a pure translation, then ||M || = 0.

Remark 1.2. There exist examples of complete affine manifolds whose (necessarily
injective) holonomy representation contains no pure translations – and hence are
not covered by our Main Theorem. A concrete example can be obtained as
follows: consider the simply transitive affine action φ : R2 → Aff(R2), given by

φ(s, t) · (x, y) = (x+ ty + (s+ t2/2), y + t).

Taking any lattice in Λ ≤ R
2, the quotient M := R

2/φ(Λ) is a complete affine
2-torus. On the other hand, the only elements which act via a translation are
those lying in the 1-dimensional subgroup K := R× {0}. Picking a lattice Λ with
Λ ∩ K = {0} gives the desired example. We learned of this example from Bill
Goldman, who attributed it to N. Kuiper.

We have established a special case of the following natural:

Conjecture. If M is a closed affine manifold, then ||M || = 0.

Remark 1.3. In the context of closed complete affine manifolds, the Auslander
Conjecture predicts that the fundamental group of such a manifold is virtually
polycyclic. Since manifolds whose fundamental group are virtually polycyclic have
vanishing simplicial volume, for this class of manifolds our conjecture would follow
immediately from the Auslander Conjecture. In particular, from the work of Abels-
Margulis-Soifer [AMS02], we see that for complete affine manifolds, our conjecture
holds in dimensions ≤ 6.

Remark 1.4. Another famous problem is the Chern Conjecture, which asserts that
affine manifolds have zero Euler characteristic. The Chern Conjecture has so far
only been established for particular families of affine structures or of manifolds.
For example, it is known to hold for complete affine manifolds [KoSu75], for affine
manifolds with linear holonomy in SL(n,R) [Kl15] (a conjecture of Markus predicts
this is equivalent to being complete), for surfaces [Be60], for higher rank irreducible
locally symmetric manifolds [GoHi84], for manifolds which are locally a product of
hyperbolic planes [BuGe11], and for complex hyperbolic surfaces [Pi16].

Note that the tangent bundle of an affine manifold is flat, so the Euler class can
be represented by a bounded cocycle (see [Gr82]), i.e. ||e(TM)||∞ < ∞. Since one
has the inequality |χ(M)| ≤ ||e(TM)||∞ · ||M ||, our conjecture immediately implies
the Chern Conjecture.
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In view of the previous remark, our Main Theorem also yields some additional
cases of the Chern Conjecture:

Corollary 1.5. If M is a closed aspherical affine manifold, with injective holonomy
representation, whose holonomy contains a non-trivial translation, then χ(M) = 0.

Note that in this corollary, we are not assuming that the affine structure on M
is complete.

2. Normal amenable subgroups and a question of Lück

In Lück’s book on L2-invariants, the following question is raised – see [L02,
Question 14.39]:

Question. Let M be a closed aspherical manifold whose fundamental group con-
tains a non-trivial amenable normal subgroup A�π1(M). Does the simplicial volume
of M vanish?

Affirmative answers to this question are only known in some special cases.
It is easy to check for fibrations for which the fiber has amenable fundamental
group [L02, Exercise 14.15]. Furthermore, Neofytidis proves it for aspherical man-
ifolds whose fundamental group is infinite index presentable by products while the
quotient by the center of the fundamental group is not presentable by products
[Ne15, Corollary 1.2]. While we will not require it for the proof of our Main The-
orem, we first establish a special case of the question. Both of these results will
rely on the following elementary lemma.

Lemma 2.1. Let M be a closed connected n-manifold, and Γ = π1(M). Assume
A � Γ is an amenable normal subgroup, and q : Γ → Λ := Γ/A is the quotient map.
If the induced map q∗ : Hn(Λ;R) → Hn(Γ;R) is the zero map, then ‖M‖ = 0.

Proof. We have the following commutative diagram:

Hn
b (Λ;R) Hn

b (Γ;R) Hn
b (M ;R)

Hn(Λ;R) Hn(Γ;R) Hn(M ;R),

q∗b

cΛ

φ∗
b

cΓ cM

q∗ φ∗

where the vertical arrows are the comparison maps from bounded cohomology to
ordinary cohomology, the horizontal arrows in the first block are the morphisms
induced by the surjection q : Γ � Λ, and the horizontal arrows in the second block
are induced by the classifying map φ : M → BΓ.

Let us focus on the first commutative square. From the hypothesis, the bottom
map q∗ is the zero map. On the other hand, since A is amenable, we have that
the top map q∗b is an isomorphism (see [Gr82, Section 3.1], or take E = R in
[M01, Remark 8.5.4]). Commutativity of the diagram forces cΓ to also be the
zero map. Now consider the second commutative square. The classifying map
φ : M → BΓ always induces an isomorphism on bounded cohomology. Since cΓ is
the zero map, so is cM , which immediately implies ||M || = 0 by the “duality” of �1

and �∞-norms [Gr82]. �
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Theorem 2.2. Let M be a closed connected aspherical n-manifold whose funda-
mental group Γ = π1(M) contains a non-trivial amenable normal subgroup A �
π1(M), and let Λ = π1(M)/A. Assume that the quotient group Λ has finite co-
homological dimension cdimR(Λ) = � < ∞, and that H�(Λ;Hk(A;R)) �= 0, where
k = cdimR(A). Then ||M || = 0.

Proof. We consider the cohomological Lyndon-Hochschild-Serre spectral sequence
with real coefficients R (and trivial module structure) associated to the short exact
sequence 1 → A → Γ → Λ → 1. The E2-page is given by

Ep,q
2 := Hp(Λ;Hq(A;R)) ⇒ Hp+q(Γ;R),

and the spectral sequence convergences to the cohomology H∗(Γ;R) ∼= H∗(M ;R).

Note that M̃/A is an n-dimensional model for a K(A, 1), and hence cdimR(A) =
k ≤ n is finite. From our hypotheses, we obtain the following observations:

(1) Since cdimR(A) = k, it follows that Hq(A;R) = 0 for all q > k. This forces
Ep,q

2 = 0 for all q > k.
(2) Since cdimR(Λ) = �, we see that Hp(Λ;−) = 0 for all p > �, regardless of

the coefficient R[Λ]-module. In particular, this forces Ep,q
2 = 0 for all p > �.

Whence we see that the E2-page looks like

q

... 0 0 0 0

k H0(Λ;Hk(A;R)) · · · H�(Λ;Hk(A;R)) 0

...
...

. . .
... 0

0 H0(Λ;R) · · · H�(Λ;R) 0

p

0 · · · � · · ·

By hypothesis, we also have that the E�,k
2 entry is non-zero. Thus the E�,k

2 entry
survives to the E∞-page, establishing that cdimR(Γ) ≥ �+ k.

Now the closed orientable aspherical manifold Mn is a model for K(Γ, 1), so we
obtain the lower bound n ≥ �+ k. Since A is non-trivial, we have that k > 0, and
hence that n > � = cdimR(Λ). This forces H

n(Λ;R) = 0, and Lemma 2.1 allows us
to conclude ‖M‖ = 0. �

Remark 2.3. As was pointed out to us by C. Löh, the proof of Theorem 2.2 still
works if instead of M aspherical, we only have cdimR(π1(M)) = n.

Remark 2.4. It is tempting to use Lemma 2.1 to attack the general case of Lück’s
question. Notice that the induced homomorphism q∗ : Hn(Λ;R) → Hn(Γ;R)
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appears naturally inside the Lyndon-Hochschild-Serre spectral sequence. Indeed,
Hn(Λ;R) appears as the E0,n

2 -term in the spectral sequence. Thus, whether or

not the induced homomorphism q∗ is zero translates to whether or not the E0,n
2

survives to the E∞-page, i.e. whether or not E0,n
∞ = 0. In the proof of Theorem

2.2, our hypotheses already forced E0,n
2 = 0.

3. Proof of Main Theorem

This section is devoted to the proof of theMain Theorem. So let us assume that
M is a connected closed aspherical affine manifold, Γ = π1(M), and the holonomy
representation ρ : Γ → Aff(Rn) = R

n
�GLn(R) is injective with ρ(Γ)∩Rn non-zero.

Since the simplicial volume is multiplicative under finite covers, it is sufficient to
show that a finite cover of M has vanishing simplicial volume. Since the hypotheses
in our theorem are inherited by finite covers, we will from now on assume that the
manifold M is orientable.

We have the following commutative diagram relating the various groups we are
interested in:

(3.1)

R
n Aff(Rn) GLn(R)

A Γ Λ.

i L

i

ρ

q

ρ̄

Here A is the purely translational part of π1(M) – and by hypothesis, A is non-
trivial, so of rank ≥ 1. This forces cdimR(A) ≥ 1. Since A � π1(M) and M is

aspherical, π1(M) and A are torsion-free. Note that M̃/A is an n-dimensional
model for a K(A, 1), which immediately gives us:

Fact 1. cdimR(A) = k, with 1 ≤ k ≤ n, and hence A ∼= Z
k.

Next we consider cdimR(Λ), where Λ is the linear part of the holonomy action.
A special case of the main theorem of [AlSh81] states:

Theorem (Alperin-Shalen). If S is a finitely generated integral domain of charac-
teristic zero, then G < GL(S) has finite virtual cohomological dimension vcdimZ(G)
< ∞ if and only if there is an upper bound on the ranks of abelian subgroups of G.

For a finite generating set {g1, . . . , gr} ⊂ Λ, take S ⊂ R to be the subring of R
generated (over Z) by the finite collection of matrix entries of {ρ̄(g1), . . . , ρ̄(gr)}.
Then S is a (finitely generated) characteristic zero integral domain, since it is a
subring of R, and ρ̄(Λ) ⊂ GL(S) ⊂ GLn(R). We now use the embedding ρ̄ to
identify Λ with its isomorphic copy in GL(S). Since Λ is a finitely generated linear
group, it has a finite index torsion-free subgroup Λ′; we replace Λ,Γ by the finite
index subgroups Λ′,Γ′ := q−1(Λ′). This replaces M by a finite cover M ′, so we can
now also assume that the quotient group Λ is torsion-free.

Taking a finitely generated abelian subgroup H < Λ (necessarily torsion-free),
we have a corresponding exact sequence:

(3.2)

A Γ Λ

A q−1(H) H.

i q

i q
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Since A, H are finitely generated torsion-free abelian, we see that Ĥ := q−1(H)

is a finitely generated nilpotent group. Also, ˜M/Ĥ is an n-dimensional K(Ĥ, 1).

Hence h(Ĥ) = cdimZ(Ĥ) ≤ n, where h(Ĥ) is the Hirsch length of Ĥ (see Gruenberg
[G70, Section 8.8]). But from the two step nilpotence sequence above, the Hirsch

length of Ĥ is just k + r where r is the rank of H. Hence k + r ≤ n, and n − k
is the desired upper bound on the rank of the abelian subgroups of Λ. Applying
Alperin and Shalen’s result, we conclude that Λ has finite cohomological dimension
cdimZ(Λ) < ∞. Since any finite length free Z[Λ] resolution of Z can be tensored
with R to obtain a same length free R[Λ] resolution of R, this yields cdimR(Λ) ≤
cdimZ(Λ), which establishes

Fact 2. cdimR(Λ) = � for some finite �.

Finally, we will use the following result of Fel’dman [F71, Theorem 2.4]:

Theorem (Fel’dman). For G a group, and H �G a normal subgroup, F a field. If
H is of type FP (over the field F ), and cdimF (G/H) < ∞, then

cdimF (G) = cdimF (H) + cdimF (G/H).

From Fact 1 and Fact 2 we see that the hypotheses of Fel’dman’s theorem hold
for A � Γ (with F = R). Since cdimR(A) > 0, Fel’dman’s theorem gives us the
inequality cdimR(Λ) < cdimR(Γ) = n. Applying Lemma 2.1 concludes the proof of
the Main Theorem.

Remark 3.1. As the reader can easily see, this same proof applies to the following
more general setting. Let M be a closed connected n-manifold, and assume that
Γ = π1(M) has cdimR(Γ) = n. If A � Γ is a normal elementary amenable subgroup
of type FP , and Λ = Γ/A is a linear group, then ||M || = 0. For the portions of the
proof relying on Hirsch length, one can use Hillman’s extension of the Hirsch length
to elementary amenable groups; see [H91, Theorem 1]. Note also that elementary
amenable groups of type FP are automatically virtually solvable; see [KMPN09].

4. Concluding remarks.

As mentioned in the introduction, the case of closed complete affine manifolds
provides a large class of manifolds satisfying the hypotheses of ourMain Theorem.
For these manifolds, it is tempting to try and give a more direct, geometrical proof
that ||M || = 0. Indeed, one can consider the foliation of Rn given by affine subspaces
in the directions spanned by the (non-trivial) translational subgroup. Since the

developing map is a homeomorphism D : ˜M → R
n, the translational subgroup

acts discretely (hence cocompactly) on the leaves of this foliation. Normality of the

translational subgroup implies that this foliation of ˜M ∼= R
n descends to a foliation

of M by closed submanifolds, where each leaf is finitely covered by a torus. If this
foliation were a fibration, then it would follow that ||M || = 0 [L02, Exercise 14.15].
More generally, ||M || = 0 if M admits a polarized F-structure (see [CG86]). This
geometric approach then motivates the following interesting

Question. If M is a closed aspherical manifold, with a foliation all of whose leaves
are finitely covered by tori, does it follow that ||M || = 0?

In the non-complete case, one can still foliate the image of the development map
D by affine subspaces in the directions spanned by the translational subgroup, and
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then pull back this foliation via D to a foliation on ˜M . The foliation on ˜M will still
descend to a foliation on M , but it is unclear whether the leaves of the resulting
foliation on M are even closed. Indeed, if one takes a leaf of the foliation in R

n, its

pre-image in ˜M could consist of countably infinitely many leaves for the induced

foliation of ˜M . The pre-image of the translational subgroup could then act by

permuting these individual leaves in ˜M , none of which would close up in M .
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Section de Mathematiques, Université de Genève, 2-4 rue du Livre, Case postale 64,

1211 Geneva, 4, Switzerland

E-mail address: Michelle.Bucher-Karlsson@unige.ch

Department of Mathematics, Indiana University, 115 Rawles Hall, Bloomington, In-

diana 47405

E-mail address: connell@indiana.edu

Department of Mathematics, Ohio State University, 231 W. 18th Avenue, Columbus,

Ohio 43210

E-mail address: jlafont@math.ohio-state.edu

Licensed to Ohio St Univ, Columbus. Prepared on Mon Jan 29 11:31:26 EST 2018 for download from IP 140.254.95.149.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1926649
http://www.ams.org/mathscinet-getitem?mr=1840942

	1. Introduction
	2. Normal amenable subgroups and a question of Lück
	3. Proof of Main Theorem
	4. Concluding remarks.
	Acknowledgments
	References

