
Characteristic Classes: Homework Set # 1.

Last quarter, we spent a fair amount of time discussing intersection numbers. In problems (1)-(4), you are
asked to interpret various (co)-homological notions in terms of intersection theory. You may assume that M,N are
oriented.

(1) Let Nk ⊂ Mn be a closed submanifold, and
∑

aiσi ∈ Cn−k(M) a singular chain (with coefficients in Λ = Z or
Λ = Z2). Define a suitable notion of transversality for a chain with respect to a submanifold. Explain how, for a
transverse chain of complementary dimension, one can extend the notion of intersection number to make sense of
I(Nk,

∑
aiσi) ∈ Λ.

(2) Explain why the notion of intersection number defined above respects the boundary operator, i.e. if
∑

aiσi ∈
Cn−k(M) and

∑
biτi ∈ Cn−k(M) are homologous to each other, then I(Nk,

∑
aiσi) = I(Nk,

∑
biτi).

(3) Explain how this allows us to think of such a k-dimensional closed, oriented submanifold Nk ⊂ Mn as repre-
senting:

• a well-defined element in Hn−k(M ; Z2) in the case where Λ = Z2, or

• a well-defined element in Hn−k(M ; Z)/Tn−k in the case where Λ = Z, and Tn−k denotes the torsion subgroup
of the cohomology group.

(4) Alternatively, since Nk is closed orientable, we know that Hk(Nk,Λ) ∼= Λ, and we let µN ∈ Hk(Nk,Λ) denote
the fundamental class. Then the image of µN under the inclusion Nk ↪→ Mn gives a well defined homology class
inside Hk(Mn,Λ). In particular, we can think of such a submanifold Nk ⊂ Mn as representing either (1) an
element in Hk(M) by the discussion above, or (2) an element in Hn−k(M) by the previous exercise. Explain
how the various products on (co)-homology (cup, cap, Kronecker) can be interpreted geometrically in terms of
submanifold representatives for the (co)-homology classes.

Here are a few problems concerning the construction of vector bundles. Recall that a Riemannian metric on a
vector bundle ξ is a smoothly varying family of positive definite inner products on the fibers of ξ.

(5) Given a submersion f : M → N , show that one can construct a vector bundle κf out of the kernels of the linear
maps Dpf : TpM → Tf(p)N . If M has a Riemannian metric show that τM = κf ⊕ f∗τN .

(6) Given a subbundle ξ ⊂ η of a vector bundle η, define the quotient bundle η/ξ. If η is equipped with a
Riemannian metric, show that there is an isomorphism η/ξ ∼= ξ⊥.

(7) Given a bundle ξ, equipped with a Riemannian metric. Show that ξ is isomorphic to its dual bundle ξ∗ =
Hom(ξ, ε1).

The next few problems are for you to get some practice working with Stiefel-Whitney classes.

(8) A manifold Mn is said to admit a field of tangent k-planes if the tangent bundle τM admits an Rk-subbundle.
Show that RPn admits a field of tangent 1-planes if and only if n is odd. Show that RP 4 and RP 6 do not admit a
field of tangent 2-planes.

(9) If a manifold Mn can be immersed in Rn+1, show that the Stiefel-Whitney classes must be of the form



wk(τM ) = w1(τM )k (for all k). Show that if RPn can be immersed into Rn+1, then n must be of the form 2r − 1
or 2r − 2.

(10) For a pair of vector bundles ξ, η, over possibly different base spaces, define the product bundle ξ × η to be
the bundle with total space E(ξ × η) = E(ξ) × E(η) and base space B(ξ × η) = B(ξ) × B(η), with the obvious
projection map. Recall that, with coefficients in Z2 and mild hypotheses on the factors (for example, if they are
finite dimensional CW-complexes), the Künneth formula allows you to compute the cohomology of a product in
terms of the cohomology of the factors, and gives the expected relationship:

H∗(X × Y ; Z2) ∼= H∗(X; Z2)⊗H∗(Y ; Z2)

Note that this equation does not always hold with other coefficients: the failure of these two rings to coincide is
measured by the Tor-functors.

Show that the total Stiefel-Whitney classes of the three bundles are related by the formula:

w(ξ × η) = w(ξ)⊗ w(η)

(11) Show that the set Nn consisting of all unoriented cobordism classes of smooth closed n-dimensional manifolds
can be made into an abelian group. From the discussion in class, this unoriented cobordism groups Nn is always
finite. Show that the group Nn is always of the form (Z2)k for some suitable k (which depends on n). Use the
manifolds RP 2 × RP 2 and RP 4 to show that, in dimension n = 4 we have the lower bound k ≥ 2 (for RP 2 × RP 2

you will need to use the previous exercise). Show why, in dimension n = 4, we have that k ≤ 5.
Thom computed the abelian groups Nn, and in the particular case of dimension n = 4, one does indeed have

N4 = (Z2)2. In fact, the collection N∗ has the structure of a graded ring, with product given by Cartesian product
of manifolds, and Thom actually determined the structure of the graded ring N∗: it is a free polynomial algebra
over Z2, with very explicit generators (two of which are RP 2 and RP 4).


