
Characteristic Classes: Homework Set # 3.

(1) Let M4n+2 be a complex manifold, of real dimension 4n + 2, and let τ denote its tangent bundle, viewed as a
complex vector bundle. Show that if τ ∼= τ̄ , where τ̄ is the conjugate complex vector bundle, then M must have
zero Euler characteristic.

(2) Assume that you are given a procedure q(·) for associating to any real vector bundle η a cohomology class
q(η) ∈ Hn(B(η); Z2), and assume that you know this procedure is natural (i.e. satisfies q(f∗ξ) = f∗q(ξ) for every
continuous map f : X → B(ξ) and every vector bundle ξ). Show that there exists a unique polynomial Qk with
the property that for every real vector bundle ηk with k-dimensional fibers:

q(ηk) = Qk(w1(η), . . . , wn(η))

If in addition, the cohomology classes q are stable (i.e. satisfies q(η ⊕ ε) = q(η) for every η, where ε is the trivial
R-bundle), then show that there exists a universal polynomial Q such that q(η) = Q(w1(η), . . . , wn(η)) holds
independent of the dimension of η.

Formulate and prove analogous results for complex vector bundles and for oriented real vector bundles.

(3) In analogy to the construction of the Euler class, consider the following construction associated to a real vector
bundle η. Let u ∈ H∗(E,E0; Z2) be the Thom class, and consider the image cohomology class φ(u), where φ is the
composite map:

H∗(E,E0; Z2) → H∗(E; Z2) → H∗(B; Z2)

where the first map is induced by the inclusion (E, ∅) ⊂ (E,E0), and the second map is (π∗)−1 (and π : E → B is
the canonical projection). Show that this cohomology class is natural. Express the cohomology class φ(u) in terms
of the Stiefel-Whitney classes of the bundle η (see previous exercise).

(4) In analogy with the construction of the Chern classes, consider the following cohomology classes associated to
a real vector bundle η, with fibers of dimension n. Set vi(η) = 0 for i > n, and vn(η) := φ(u) ∈ Hn(B; Z2). For
i < n, inductively define vi(η) := (π∗0)−1vi(η0), where η0 is a suitably defined real vector bundle with base space
E0(η), and with fibers of dimension n− 1. Show directly that the collection of cohomology classes vi satisfy all the
axioms of Stiefel-Whitney classes, and hence conclude that vi(η) = wi(η) for all i, η (compare Exercise 2).

(5) Show that the change of coefficient homomorphism H∗(B; Z) → H∗(B; Z2) maps the total Chern class c(ω) of
a complex vector bundle to the total Stiefel-Whitney class w(ωR) of the underlying real vector bundle.

(6) For η a real vector bundle, define p̄i(η) ∈ H4i(B; Z2) to be the image of the Pontrjagin classes of η under the
change of coefficient morphism H ∗ (B; Z) → H∗(B; Z2). Show that the cohomology classes p̄i are natural and
stable (see exercise 2), and hence can be expressed as universal polynomials in the Stiefel-Whitney classes. Find
the polynomials expressions for p̄i.

(7) Let Λ = Z[1/2]. Show that, if X̄ → X is a double cover, with covering transformation t : X̄ → X̄, then
H∗(X; Λ) can be identified with the fixed set of the involution t∗ : H∗(X̄; Λ) → H∗(X̄; Λ). As an application,
compute the cohomology ring H∗(Gn; Λ).

The next few problems give you a walkthrough of how to compute the Stiefel-Whitney classes for a tensor
product of two real vector bundles. You might find it helpful to look through the proof from class of the Whitney
formula for Chern classes.



(8) Assume ξ and η are real vector bundles over the same base space B, with one dimensional fibers, and consider the
vector bundle ξ⊗η. Note that the fibers of ξ1⊗η1 are also one dimensional, hence the only interesting characteristic
classes for these bundles are w1(η), w1(ξ), w1(η ⊗ ξ) ∈ H1(B; Z2). Show that these cohomology classes satisfy the
relationship: w1(η ⊗ ξ) = w1(η) + w1(ξ).

(9) Now for ξn, ηm real vector bundles with fibers of dimension n, m respectively, defined over the same base space
B, one can consider the tensor product bundle ξn ⊗ ηm. Show that there exist universal polynomials Pn,m (i.e.
depending solely on the dimensions n, m) which compute the total Stiefel-Whitney class of the tensor product:

w(ξn ⊗ ηm) = Pn,m

(
w1(ξn), . . . , wn(ξn), w1(η1), . . . , wm(ηm)

)
(10) Show that the polynomials Pn,m can be characterized in the following manner. If σ1, . . . , σn are the elementary
symmetric functions of the indeterminates t1, . . . , tn, and if σ′1, . . . , σ

′
m are the elementary symmetric functions of

the indeterminates t′1, . . . , t
′
m, then:

Pn,m(σ1, . . . , σn, σ′1, . . . , σ
′
m) =

n∏
i=1

m∏
j=1

(1 + ti + t′j)

[Hint: consider bundles that decompose as Whitney sums of one-dimensional bundles.]

(11) Use the previous problem to show that if ξ, η are a pair of real vector bundles, both having even dimensional
fibers, then the tensor product bundle ξ ⊗ η is automatically orientable.


