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Abstract. We prove that the geodesic flow on a compact locally CAT.�1/ space has the

weak specification property, and give various applications. We show that every Hölder

potential on the space of geodesics has a unique equilibrium state. We establish the

equidistribution of weighted periodic orbits and the large deviations principle for all such

measures. The thermodynamic results are proved for the class of expansive flows with weak

specification.
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1. Introduction

An important characteristic of hyperbolic dynamical systems is the specification

property, introduced by Bowen in the early 1970s. The geodesic flow of a neg-

atively curved Riemannian manifold is a prime example of a flow satisfying the
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specification property. Bowen used the specification property to establish a num-

ber of fundamental results about the ergodic properties of such geodesic flows (and

more generally, for Axiom A flows), showing for example the equidistribution of

prime closed geodesics to an ergodic measure of maximal entropy [4]. These re-

sults were proved before Bowen established the existence of Markov partitions

and associated symbolic dynamics for these geodesic flows [5]. Beyond uniform

hyperbolicity, the paradigm remains that while proofs of the stronger properties

of hyperbolic dynamics require the system to be described by symbolic dynamics

[7, 39], an approach using the specification property affords greater flexibility, and

still yields many interesting results. In this paper, we investigate the geodesic flow

on locally CAT.�1/ spaces, using geometric arguments to obtain a weak version

of the specification property. Once we have the necessary dynamical properties

of the flow from these geometric arguments, we proceed using purely analytic

arguments to obtain many dynamical properties of the geodesic flow.

The class of compact locally CAT.�1/ spaces was popularized in the 1980s

by Gromov, as a far reaching generalization of negatively curved Riemannian

manifolds. To any such space X , one can associate the spaceGX of all bi-infinite

geodesics in X . The spaceGX is a compact metric space, and possesses a natural

R-flow by shifting the parametrization of geodesics – this is known as the geodesic

flow since it generalizes the geodesic flow on a Riemannian manifold. A natural

problem is to develop Bowen’s approach for this broader class of flows. Our first

result is the following.

Theorem A. Let X be a compact, locally CAT.�1/, geodesic metric space, with

fundamental group not isomorphic to Z. Then the geodesic flow on GX satisfies

the weak specification property. Furthermore, the geodesic flow is expansive and

any Hölder continuous function 'WGX ! R has the Bowen regularity property,

and the system has the weak periodic orbit closing property.

The weak specification property for a flow is a natural analogue of a well

known discrete-time definition, and is a weakening of Bowen’s original speci-

fication property. We obtain this property, which is the main point of the theorem

above, using geometric arguments. We exploit the existence of a coding of the geo-

desic flow due to Gromov [26], and expanded upon by Coornaert and Papadopou-

los [14], which uses topological arguments to give a suspension on a subshift of

finite type Susp.†; �/, and an orbit semi-equivalence hW Susp.†; �/ ! GX . This

gives a “weak” symbolic description ofGX : unlike the semi-conjugacy with a sus-

pension flow which occurs in the negatively curved Riemannian setting, a priori,

orbit semi-equivalence is too weak a relationship to preserve any of the refined dy-

namical properties studied in this paper [23, 32]. Our approach is to combine this

weak symbolic description with a geometric argument to “push down” the weak

specification property from Susp.†; �/ to GX . The weak periodic orbit closing
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property, defined in §4.3, is obtained using the same philosophy. The expansiv-

ity property of the flow is obtained by a simple geometric argument. In general,

specification and expansivity are not sufficient to ensure that Hölder continuous

potentials have Bowen’s regularity property. However, we can guarantee this in

the CAT.�1/ setting using geometric properties of geodesics in negatively curved

spaces.

Our argument for the weak specification property also applies to some CAT.0/

examples, including all those whose geodesic flow is orbit equivalent to geodesic

flow on a CAT.�1/ space. Conversely, in many CAT.0/ cases, it is easy to see

that weak specification does not hold, and we can use this to rule out the existence

of an orbit semi-equivalence with a compact shift of finite type. We collect these

partial results for the CAT.0/ case in §3.1.

In the second part of the paper, we use the characterization of the geodesic flow

as an expansive flow with weak specification to study thermodynamic formalism

and large deviations for CAT.�1/ spaces. We carry this out using purely analytic

arguments, and we obtain the following.

Theorem B. Let X be a compact, locally CAT.�1/, geodesic metric space, with

fundamental group not isomorphic to Z, and ' a Hölder continuous function on

GX . Then

(1) the potential function ' has a unique equilibrium measure �' ,

(2) the equilibrium measure �' satisfies the Gibbs property,

(3) the '-weighted periodic orbits for the geodesic flow equidistribute to �' ,

(4) the ergodic measures are entropy dense in the space of flow-invariant prob-

ability measures,

(5) the measure �' satisfies the large deviations principle.

In particular, for the special case ' � 0, we see that the Bowen–Margulis measure

�BM is the unique measure of maximal entropy, that �BM satisfies the Gibbs

property, and that it satisfies the large deviations principle.

The dynamical notions that appear in the above theorem (equilibrium mea-

sures, entropy density, large deviations principle, etc.) are defined in §5. In The-

orem 5.1, we state and prove our results on thermodynamic formalism and large

deviations for the class of expansive flows with weak specification and potential

functions ' with the Bowen property. In light of Theorem A, the statement of The-

orem B thus follows immediately from Theorem 5.1. Technical care must be taken

when extending results on flows with specification to the case of weak specifica-

tion. We take particular care in our proof of entropy density of ergodic measures,

which is a key step for our large deviations result. To the best of our knowledge,

this property has not been studied in the continuous-time setting before, and a

self-contained and detailed proof is required. There has been a recent increase in
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interest in the density and entropy density of ergodic measures [22, 15, 25]. In

particular, Gorodetski and Pesin [25] have studied entropy density for C 1C˛ dif-

feomorphisms using a version of the Katok horseshoe theorem for non-ergodic hy-

perbolic measures. However, this approach fundamentally belongs to the smooth

theory, so even a continuous-time version of this result would not be applicable in

the CAT.�1/ setting.

For the geodesic flow on Riemannian manifolds of negative curvature, and

more generally for Axiom A flows, uniqueness of equilibrium states for Hölder

potentials was proved by Bowen and Ruelle [7]. For expansive flows with strong

specification, this result was obtained by Franco [21] for potentials with the Bowen

property. For geodesic flow on locally CAT.�1/ spaces, the Bowen–Margulis

measure, which is defined using the Patterson-Sullivan construction of a measure

on the sphere at infinity, has been studied extensively [44, 33]. This measure is well

known to be a measure of maximal entropy (MME), as shown by Kaimanovich

in the Riemannian setting [27, 28], and equidistribution of periodic orbits to the

Bowen–Margulis measure was shown by Roblin [44, Theorem 5.1.1]. However,

uniqueness of the Bowen–Margulis measure as an MME has not been addressed

explicitly until this work, and the large deviations principle for this measure is also

new.

The argument for obtaining the large deviations principle from the specifica-

tion property goes back to the 1990s with notable references including [17, 48, 19,

45]. We adapt this approach to the current setting. Large deviations in dynam-

ical systems were first developed by Orey and Pelikan [38] in analogy to results

in Probability Theory, see [20]. Large deviations results for flows and semi-flows

with weak specification have also been announced in the preprint [2].

Uniqueness of equilibrium states beyond the negative curvature compact Rie-

mannian case has received continued interest. For non-positively curved Rie-

mannian manifolds, uniqueness of the MME was proved in the deep work of

Knieper [30, 31]. Results on the growth rate of weighted regular periodic or-

bits were obtained in [24]. Recent progress on equilibrium states and weighted

equidistribution of periodic orbits in this setting has been made by Burns, Cli-

menhaga, Fisher and the third named author [9].

A beautiful theory of equilibrium states has been developed in the non-compact

negative curvature Riemannian setting by Paulin, Pollicott and Schapira [41],

including results on uniqueness and equidistribution. In [41], they explicitly state

that the reason they assume a smooth structure is due to the difficulties associated

with controlling a Hölder potential function on GX for a CAT.�1/ space. We

sidestep these difficulties, providing techniques to handle Hölder potentials in the

CAT.�1/ setting. This is an advantage of our approach. The results on uniqueness

of equilibrium states and weighted equidistribution of periodic orbits are new in

the CAT.�1/ setting beyond the Riemannian case.
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We note that progress towards building a theory of Gibbs measures in the

CAT.�1/ setting has also been made recently by Broise-Alamichel, Parkkonen

and Paulin in a book project [8] that appeared on the arXiv after the first version

of our paper was completed. Their approach has the advantage that it also handles

the non-compact case, yielding that Gibbs measures for a restricted class of Hölder

potentials are unique when they exist. Their approach requires that the potential

is well-defined and well-behaved on an analogue of the unit tangent bundle (see

§2.4 and §3.2 of [8]). This assumption means that if two geodesics agree for a

short time before diverging, the potential (considered onGX) must have the same

value on each of them. In the non-Riemannian case, this heavily restricts the

class of potentials under consideration. When the space is a metric graph of finite

groups, their results apply to all Hölder continuous potentials which are well-

defined on the unit tangent bundle, and they add to the thermodynamic picture by

using countable state symbolic dynamics to show that the unique Gibbs measure is

the unique equilibrium state. Our method is completely different, and allows us to

include the geodesic flow for a compact CAT.�1/ space in the general framework

of expansive flows with weak specification. This gives a systematic viewpoint to

study the thermodynamic formalism of these flows, and has the major advantage

that we can consider Hölder potentials on the space of geodesics without further

restrictions. Thus, in the compact setting, we obtain our results for a larger class of

potentials, and we prove some results such as entropy density of ergodic measures

and the large deviations principle, which are not explored in [8].

The paper is organized as follows. In §2, we summarize background material.

In §3, we give our geometric argument for the weak specification property. In §4,

we prove the other properties of geodesic flows stated in Theorem A. In §5, we

prove Theorem B by establishing thermodynamic formalism for expansive flows

with weak specification.

Acknowledgments. We would like to thank the anonymous referees for their

helpful comments which have greatly benefited this article.

2. Background material

2.1. Specification for flows. LetF D ¹fsºs2R be a continuous flow on a compact

metric space .X; d/. Given any t > 0, we can define a new metric by

dt .x; y/ D max¹d.fsx; fsy/W s 2 Œ0; t �º:

We view X � Œ0;1/ as the space of finite orbit segments for .X;F/ by associ-

ating to each pair .x; t / the orbit segment ¹fs.x/ j 0 � s < tº.

We say that F has weak specification at scale ı if there exists � > 0 such

that for every collection of finite orbit segments ¹.xi ; ti/º
k
iD1, there exists a point
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y and a sequence of transition times �1; : : : ; �k�1 2 Œ0; � � such that for sj D
Pj
iD1 ti C

Pj�1
iD1 �i and s0 D �0 D 0, we have

dtj .fsj �1C�j �1
y; xj / < ı for every 1 � j � k: (2.1)

We say F has weak specification if it has weak specification at every scale ı > 0.

We say F has weak specification at scale ı with maximum transition time � if we

want to declare a value of � that plays the role described above. This definition of

weak specification for flows appeared recently in the literature in [11], and under

the name ‘gluing orbit property’ in [2].

Intuitively, (2.1) means that there is some point y whose orbit shadows the

orbit of x1 for time t1, then after a transition period which takes time at most � ,

shadows the orbit of x2 for time t2, and so on. Note that sj is the time spent for the

orbit y to approximate the orbit segments .x1; t1/ up to .xj ; tj /. It is sometimes

convenient to use the word ‘shadowing’ formally: for y 2 X and s 2 R, we say

that fsy ı-shadows the orbit segment .x; t / if dt .fsy; x/ < ı.

The weak specification property clearly implies topological transitivity. Tran-

sitivity alone allows us to find an orbit which shadows a finite collection of orbit

segments, but it does not give us any control on the length of the transition time.

This is the crucial additional ingredient provided by weak specification: the tran-

sition times are uniformly bounded above, depending only on the scale ı, and not

on the orbit segments, or their lengths.

The specification property for flows which was originally introduced by Bowen

is substantially stronger than weak specification. The approximating orbit y is

required to be periodic, and the transition times �i are required to be close to � .

See [29, §18.3] or [4] for the precise definition of this property.

Finally, we note that while the weak specification property only involves ap-

proximating finitely many orbit segments, it is not difficult to show that this implies

the ability to approximate infinitely many orbit segments. Since we will require

this in the proof of Theorem B, details are given in §5.3.

2.2. Specification for discrete-time systems. Now let f be a continuous map

on a compact metric space X . We view X � N as the space of finite orbit

segments for .X; f / by associating to each pair .x; n/ the orbit segment ¹f ix j

i 2 ¹0; : : : n � 1ºº. We say that f has weak specification at scale ı if there exists

� 2 N such that for every collection of finite orbit segments ¹.xi ; ni/º
k
iD1, there

exists a point y and a sequence of transition times �1; : : : ; �k�1 2 N with �i � �

such that for sj D
Pj
iD1 ni C

Pj�1
iD1 �i and s0 D �0 D 0, we have

dtj .f
sj �1C�j �1y; xj / < ı for every 1 � j � k: (2.2)

We say f has weak specification if it has weak specification at every scale ı > 0.

We say f has specification if in addition all transition times �i can be taken to

be exactly � (which depends on ı). Classic reference texts for the specification

property in discrete-time include [18, 29, 37].
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2.3. Shift spaces. We recall some basic properties of shift spaces, referring the

reader to [35, 39] for more details. The full two-sided shift †A on a finite alpha-

bet A is the space of bi-infinite sequences A
Z equipped with the shift operator

� W†A ! †A defined by �.x/n D xnC1 for .xn/
1
nD�1 2 †A. The space †A is

endowed with the usual product topology, is compact, and is equipped with the

metric

d.x; y/ D

8

<

:

1

2i
where i D min¹jnjW xn ¤ ynº when x ¤ y;

0 when x D y:

A shift space .†; �/ is a closed, shift-invariant subset † of †A equipped

with the shift operator. A shift of finite type (SFT) is a shift space which can

be described by a finite set of forbidden words, i.e. words which do not appear

in the shift space. Given a shift space .†; �/, the language of †, denoted by

L D L.†/, is the set of all finite words that appear in elements of †. Given

w 2 L, let jwj denote the length of w. The weak specification property has a

simpler characterization for shift spaces. It is a straightforward exercise to show

that .†; �/ has weak specification in the sense of §2.2 if and only if there exists

� 2 N so for every v; w 2 L.†/ there is u 2 L.†/ such that vuw 2 L.†/ and

juj � � .

2.4. Suspension flow. We recall the definition of the suspension flow.

Definition 2.1. Let .X; f / be a discrete-time dynamical system. Then Susp.X; f /

is the space .X � Œ0; 1�/= � where .x; 1/ � .f x; 0/, equipped with the flow ¹�tº

defined locally by �t .x; s/ D .x; s C t /.

We equip the space with the Bowen–Walters metric [3]. For two point

.x; s/; .y; s/, we define the horizontal distance to be

dH ..x; s/; .y; s// D .1� s/d.x; y/C sd.f x; fy/:

For two points .x; s/; .x; t /, we define the vertical distance to be

dV ..x; s/; .x; t // D js � t j:

We define d..x; s/; .y; t // to be the smallest path length of a chain of horizontal

and vertical paths connecting .x; s/ and .y; t /, where path length is calculated

using dH and dV . The reason that we use this metric over a more naive choice

is that the suspension flow is continuous in the Bowen–Walters metric. We now

show that transitivity and weak specification are equivalent for a suspension of an

SFT.
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Proposition 2.2. Let† be a subshift of finite type. The following facts are equiv-

alent:

(1) † is transitive;

(2) † satisfies the weak specification property;

(3) Susp.†; �/ is transitive;

(4) Susp.†; �/ satisfies the weak specification property.

Proof. We prove (1) H) (2) H) (4) H) (3) H) (1).

Proving (1) H) (2) is a straightforward exercise: transitivity for a shift of

finite type allows us to transition from any symbol i to another symbol j in

bounded time. Thus, to glue two words v; w 2 L, it suffices to look at the final

symbol of v and the first symbol of w and take a word which transitions between

them.

To prove (2) H) (4), we show that if .X; f / is a dynamical system with

the weak specification property, then Susp.X; f / satisfies weak specification.

Suppose .X; f / has weak specification at scale ı with maximum transition time � .

Suppose that we wish to find an orbit for the suspension flow which approximates

the orbit segments ..x1; s1/; t1/, . . . , ..xk ; sk/; tk/ at scale ı. We can apply the

weak specification property to approximate the orbit segments .x1; bt1c C 2/, . . . ,

.xk ; btkc C 2/ in the base with an orbit segment .y; n/. It is straightforward to

check that if y 2 Bn.x; ı/ in the base, then .y; s/ 2 Bn�1..x; s/; ı/ in the Bowen–

Walters metric. Using this fact, we can verify that the orbit segment for the flow

starting at .y; s1/ approximates the orbit segments ..x1; s1/; t1/, . . . , ..xk ; sk/; tk/

in the sense of (2.2) as required, with maximum transition time � C 2.

(4) H) (3) is trivial. All that remains is to show that (3) H) (1), and we

prove the contrapositive. If † is not transitive, then there exists cylinder sets

Œw1�; Œw2� so that �k Œw1� \ Œw2� D ; for all k. Clearly, the open sets A D
Œw1� �

�

0; 1
2

�

, B D Œw2� �
�

0; 1
2

�

satisfy �tA \ B D ; for all t , so Susp.†; �/

is not transitive. �

2.5. Orbit equivalence of flows. Let .X; ¹fsº/ and .Y; ¹gsº/ be continuous flows

on compact metric spaces. We recall:

Definition 2.3. A flow .Y; ¹gsº/ is orbit semi-equivalent to a flow .X; ¹fsº/ if

there is a continuous surjection hWX ! Y , whose restriction to any ¹fsº-orbit in

X is an orientation-preserving local homeomorphism onto a ¹gsº-orbit in Y . The

flows are orbit equivalent if hWX ! Y is a homeomorphism.

Orbit semi-equivalence is too weak a relationship to preserve any refined

dynamical information. In particular, weak specification is not preserved by orbit

equivalence in general. To see this, a convenient source of examples of orbit

equivalences comes from considering suspension flows with a non-constant roof
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function r WX ! .0;1/ over a discrete dynamical system .X; f /. It is clear that

any two suspension flows over the same base space are orbit equivalent. It is

possible to construct a suspension flow over the full shift with more than one

measure of maximal entropy, which rules out the possibility that this flow has

weak specification. This construction is given in [32].

Let hWX ! Y be a continuous orbit semi-equivalence between .X; ¹fsº/ and

.Y; ¹gsº/. We prove a result on how orbit semi-equivalence acts on orbit segments

which we will use in our proof of the specification property. By continuity of the

orbit semi-equivalence, an orbit segment .x; t / for .X; ¹fsº/ is mapped to an orbit

segment .h.x/; �.x; t // for .Y; ¹gsº/. That is,

h.¹fs.x/W s 2 Œ0; t �º/ D ¹gs.h.x//W s 2 Œ0; �.x; t /�º;

and in particular, h.ft .x// D g�.x;t/.h.x//.

Proposition 2.4. Let .X; ¹fsº/ and .Y; ¹gsº/ be continuous flows on compact

metric spaces, and suppose that .Y; ¹gsº/ has no fixed points. Let hWX ! Y be

a continuous orbit semi-equivalence. Then the function � WX � Œ0;1/ ! Œ0;1/

defined as above is continuous.

Proof. It is clear from continuity of the orbit semi-equivalence that as s ! t ,

�.x; s/ ! �.x; t /, so it suffices to study the first coordinate and show that for a

fixed t , if xk ! x, then �.xk; t / ! �.x; t /.

We fix � > 0. Since the flow .Y; ¹gtº/ has no fixed points, there exists ı > 0 so

that if d.gs1y; gs2y/ < ı, then js1 � s2j < �. Let � WD �.x; t /. Then, by continuity

of the flow and h, we have g� .h.xk// ! g� .h.x//. Thus, for k large, we have

d.g� .h.xk//; g� .h.x/// < ı=2;

where d is the metric onY . Now we consider the sequenceh.ftxk/. By continuity,

h.ftxk/ ! h.ftx/ D g� .h.x//. Thus, for k large, we have

d.h.ftxk/; g� .h.x/// < ı=2;

and so we have d.g�.xk ;t/.h.xk//; g� .h.xk/// D d.h.ftxk/; g� .h.xk/// < ı, and

these points are on the same orbit. Thus it follows that j�.xk ; t /�� j < �. It follows

that �.xk; t / ! .x; t /, and thus the function � is continuous. �

Corollary 2.5. Let .X; ¹ftº/, .Y; ¹gtº/, and hWX ! Y be as in Proposition 2.4.

Then for all t , there exists � D �.t/ > 0, so that for all x 2 X , the image of .x; t /

under h is contained in the orbit segment .h.x/; �/. That is,

h.¹fs.x/W s 2 Œ0; t �º/ � ¹gs.h.x//W s 2 Œ0; ��º:

Proof. By continuity of � , and compactness of X�¹tº, sup¹�.x; t /W x2Xº<1.

�
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2.6. CAT.�1/ spaces and their geodesic flows. We now recall some basic

results on the geometry and dynamics of locally CAT.�1/ space. A detailed

discussion of the geodesic flow on locally CAT.�1/ spaces can be found in

Ballmann’s book [1] or in Roblin’s monograph [44]. Given any geodesic triangle

�.x; y; z/ inside a geodesic space X , one can construct a comparison triangle

�. Nx; Ny; Nz/ inside the hyperbolic plane H
2 having exactly the same side lengths.

Corresponding to any pair of points p; q on the triangle �.x; y; z/, there is a

corresponding pair of comparison points Np; Nq on �. Nx; Ny; Nz/. The triangle is said

to satisfy the CAT.�1/ inequality if, for every such pair of points, one has the

inequality dX .p; q/ � dH2. Np; Nq/. A geodesic space is CAT.�1/ if every geodesic

triangle in the space is CAT.�1/. It is locally CAT.�1/ if every point has a

neighborhood which is CAT.�1/. Any compact locally CAT.�1/ space X has

a universal cover zX which is CAT.�1/, with � WD �1.X/ acting isometrically

on zX .

The definition for a CAT.0/ space is obtained by replacing H
2 with R

2, the

model space of curvature 0, in the above.

To a CAT.�1/ space zX , one can associate a boundary at infinity @1 zX , con-

sisting of equivalence classes of geodesic rays �W Œ0;1/ ! zX , where rays are

considered equivalent if they remain at bounded distance apart. Note that any

geodesic  WR ! zX naturally gives rise to a pair of points ˙ 2 @1 zX . If we

form G zX the space of all geodesics in zX , there is thus a natural identification

G zX Š
�

.@1 zX � @1 zX/ n�
�

�R, where � � @1 zX � @1 zX is the diagonal. There

is a natural flow onG zX , given by translating in the R-factor,which we call the geo-

desic flow on zX . This geodesic flow onG zX can be written as gt ..s// D .sC t /.

Now if X is locally CAT.�1/, then one can similarly form the space GX of

geodesics in X , where a geodesic is a locally isometric map  WR ! X . This

comes equipped with a natural flow, given by pre-composing by translations

on R, which we call the geodesic flow on X . The fundamental group � acts

isometrically on the universal cover zX , hence on the boundary at infinity zX , and on

the space of geodesics G zX . The flow on G zX commutes with the �-action, hence

descends to a flow on .G zX/=�, and there is a flow equivariant homeomorphism

GX Š .G zX/=�.

Finally, if the locally CAT.�1/ space X is compact, then the fundamental

group � is a Gromov hyperbolic group, see [26]. Such a group has a well-

defined boundary at infinity @1�, and there is a �-equivariant homeomorphism

@1� Š @1 zX . This allows us to apply results on @1� obtained from the theory

of Gromov hyperbolic groups to the boundary @1 zX .

The spaceGX of all geodesics inX can be endowed with the following metric:

dGX .1; 2/ D inf
Q1; Q2

1
Z

�1

d zX . Q1.t /; Q2.t //e
�2jt jdt
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where the infimum is taken over all lifts Qi of i to G zX . Since the lifts of a given

geodesic form a discrete set onG zX , the infimum is in fact a minimum. The factor

2 in the exponent normalizes the metric so that, for small s, dGX .; gs/ D s.

We assume from now on that the fundamental group � D �1.X/ is non-

elementary, i.e. not isomorphic to Z. This is the generic case. When � Š Z

(e.g. X D S1), the geodesic flow on X behaves differently from other examples,

and is simple to investigate. GX consists of two disjoint circles, with the flow

acting by rotations on the circles. Note that specification clearly fails in this case,

as two orbit segments on the distinct circles can never be approximated by a single

orbit segment.

We collect some results on CAT.�1/ spaces that we use in this paper.

Lemma 2.6. LetX be a compact, locally CAT.�1/, geodesic metric space. Then

the geodesic flow on GX D G. zX=�/ D .G zX/=� is topologically transitive.

Proof. Since � is non-elementary, the �-action on @1� has dense orbits (see

[26, Section 8.2]), and hence so does the �-action on @1 zX . The lemma is now an

immediate consequence of [1, Theorem III.2.3]. �

The following result is a key ingredient for our approach, and gives the exis-

tence of symbolic dynamics for geodesic flow on CAT.�1/ spaces using a topo-

logical construction reminiscent of the Bowen-Series approach. The main point

of the proof was sketched by Gromov, and developed in detail by Coornaert and

Papadopoulos [14] for the geodesic flow on a word hyperbolic group.

Proposition 2.7. Let X be a compact, locally CAT.�1/, geodesic metric space.

Then there exists a topologically transitive subshift of finite type .†; �/, and an

orbit semi-equivalence hW Susp.†; �/ ! GX . Moreover, h is finite-to-one.

Proof. To a Gromov hyperbolic group �, one can associate a metric space yG.�/,

equipped with both a �-action, and a �-equivariant R-flow. The space yG.�/ is

constructed to satisfy certain universal properties. The construction was outlined

by Gromov in [26, Theorem 8.3.C], with detailed arguments worked out by Cham-

petier [10, Section 4] (see also Mathéus [36]).

The quotient metric space xG.�/ WD yG.�/=�, equipped with the induced R-

flow, has an orbit semi-equivalence h1W Susp.†; �/ ! xG.�/ which is uniformly

finite-to-one, where † is a shift of finite type. This was explained by Gromov in

[26, Section 8.5.Q], and a careful proof can be found in the paper by Coornaert

and Papadopoulos [14]. Finally, as noted on [14, pg. 484, Facts 4 and 5], in the case

where X is compact locally CAT.�1/ and � D �1.X/, one has a �-equivariant

orbit equivalence G zX ! yG.�/ (this is deduced from the universal properties of

the flow space yG.�/). This descends to an orbit equivalence h2WGX ! xG.�/.

Defining h WD h�1
2 ı h1W Susp.†; �/ ! GX provides the claimed orbit semi-

equivalence. To see that † can be taken to be transitive, we can simply observe
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that since h is an orbit semi-equivalence onto a transitive flow, we still get an orbit

semi-equivalence if we restrict to a suitable transitive component of †. �

The following lemma shows that geodesics which are close in GX are close

when evaluated at time 0 on X .

Lemma 2.8. For all 1; 2 2 GX ,

dX .1.0/; 2.0// � 2dGX .1; 2/:

Furthermore, for s; t 2 R, dX .1.s/; 2.t // � 2dGX .gs1; gt2/:

Proof. Consider lifted geodesics Q1; Q2 2 G zX such that

dGX .1; 2/ D d
G zX . Q1; Q2/ D

1
Z

�1

d zX . Q1.t /; Q2.t //e
�2jt jdt:

The function d zX .1.t /; 2.t // is a convex function of t , and thus for t � 0 or t � 0,

d zX . Q1.t /; Q2.t // � d zX . Q1.0/; Q2.0//. In either case, we have

dG zX . Q1; Q2/ � d zX . Q1.0/; Q2.0//

1
Z

0

e�2tdt D
1

2
d zX . Q1.0/; Q2.0//:

Noting that dX .1.0/; 2.0// � d zX . Q1.0/; Q2.0// gives the first statement. Ob-

serving that gs1.0/ D 1.s/ and gt2.0/ D 2.t / and applying the first result

completes the proof. �

For  2 GX , we use the notation .Œ0; T �/ WD ¹.s/W s 2 Œ0; T �º for a segment

of  , considered as a path in X . We want to lift and compare geodesic segments

after a possible time change, so it is convenient to make the following definition.

Definition 2.9. We say that �W Œ0; T1� ! Œ0; T2� is a time-change function if it is a

continuous, increasing and surjective function.

Let �0 WD 1
2

inf ¹l./W  is a closed geodesicº, and note that the CAT.�1/
condition and compactness ensure �0 > 0. The following lemma, whose proof

is omitted and is a straightforward exercise, shows that geodesic segments that are

close (after time change) on X are close after lifting to the universal cover.

Lemma 2.10. Let � < �0 and let 1.Œ0; T1�/, 2.Œ0; T2�/ be geodesic segments

and �W Œ0; T2� ! Œ0; T1� a time change such that dX .1.�.t//; 2.t // < � for all

t 2 Œ0; T2�. Then for any lift Q1 of 1, there exists a lift Q2 of 2 with Qi .0/ lying

above i .0/ such that d zX . Q1.�.t//; Q2.t // < � for all t 2 Œ0; T2�.
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Complementing Lemma 2.8, the following Lemma shows that geodesic seg-

ments which stay close in X are close in GX .

Lemma 2.11. Let � < �0 be given and a < b arbitrary. Then there exists

T D T .�/ > 0 such that if dX .1.t /; 2.t // < �=2 for all t 2 Œa � T; b C T �, then

dGX .gt1; gt2/ < � for all t 2 Œa; b�. For small �, we can take T .�/ D � log.�/.

Proof. Choose T D T .�/ so that
R 1

T
.�=2 C 2.� � T //e�2�d� < �=4: Analysis

of this integral shows that for small �, we could take T .�/ D log.��1/. Lift i
to Qi with d zX . Q1.t /; Q2.t // < �=2 by Lemma 2.10. First, we consider the integral
R bCT

a�T d zX . Q1.�/; Q2.�//e
�2j��t jd� and note that we can bound d zX . Q1.�/; Q2.�//,

and thus the whole integral independent of T , by �=2.

We now consider the integrals

a�T
Z

�1

d zX . Q1.�/; Q2.�//e
�2j��t jd� and

1
Z

bCT

d zX . Q1.�/; Q2.�//e
�2j��t jd�:

Since a � t � b, over the domain of the first integral j� � t j D �.� � t /, and over

the domain of the second interval j� � t j D .� � t /.
In the first, we may bound d zX . Q1.�/; Q2.�// < �=2C 2.a � T � �/ and in the

second, d zX . Q1.�/; Q2.�// < �=2 C 2.� � b � T / using the triangle inequality. It

follows that dGX .gt1; gt2/ D
R 1

�1 d zX . Q1.s C t /; Q2.s C t //e�2jsjds is bounded

above by

a�T
Z

�1

.�=2C 2.a � T � �//e2.��t/d� C

1
Z

bCT

.�=2C 2.� � b � T //e�2.��t/d� C �=2;

making the change of variables � D sC t . The first integral is largest when t D a,

the second when t D b. Making these substitutions and changing variables by

� D � � a, � D � � b, respectively,

dGX .gt1; gt2/

<

�T
Z

�1

.�=2C 2.T � �//e2�d� C

1
Z

T

.�=2C 2.� � T //e�2�d� C �=2:

Our choice of T finishes the proof. �

3. Weak specification for the geodesic flow

We consider a compact, locally CAT.�1/, geodesic spaceX , and we wish to estab-

lish the weak specification property for GX . By Lemma 2.7, there exists a topo-

logically transitive subshift of finite type .†; �/, and an orbit semi-equivalence
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hW Susp.†; �/ ! GX . On Susp.†; �/, Proposition 2.2 shows that transitivity

immediately bootstraps to weak specification. We now show that this property

can be transported to GX using the orbit semi-equivalence h. While the weak

specification property is not preserved under a general orbit semi-equivalence,

the geometry of our setting provides more structure to carry out our argument.

The following lemma allows us to show that geodesic segments which are close

after a time change are in fact close without the time change. This is where the

assumption that the geodesic flow is on a space of negative curvature is used.

The proof requires only that geodesics in the universal cover are globally length

minimizing, so a non-positive curvature assumption would be sufficient.

Proposition 3.1. LetX be a CAT.�1/ space, and 1; 2 2 GX be geodesics. Sup-

pose there exists a time change �W Œ0; T2� ! Œ0; T1� so that dX .1.�.t//; 2.t // < �

for all t 2 Œ0; T2�. Then dX .1.t /; 2.t // < 3� for all t 2 Œ0; T1 � 2��.

Proof. First, using Lemma 2.10, we lift i to geodesic segments on the universal

cover so that d zX . Q1.�.t//; Q2.t // < � for all t 2 Œ0; T2�. If we prove the statement in

the universal cover, we have proven it in the original space. In the universal cover,

the geodesics are globally length minimizing, and d zX . Qi .t1/; Qi .t2// D jt1 � t2j:
We fix t 2 Œ0; T2�, and we know that Q2.t / is within distance � of Q1.�.t//.

Then one can reach Q2.t / from Q2.0/ by the geodesic Q2, or by following the path

Q2.0/ ! Q1.0/ ! Q1.�.t// ! Q2.t / (see Figure 1). By the length-minimizing

property of Q2,

t D d zX . Q2.0/; Q2.t // < 2� C d zX . Q1.0/; Q1.�.t/// D 2� C �.t/:

r

r

r

r

Q2.0/

Q1.0/

Q2.t/

Q1.�.t//

´

< �
±

< �

t

�.t/

Figure 1. Nearby geodesics in the CAT.�1/ space zX must shadow each other.

By interchanging the roles of the geodesics, �.t/ < 2�C t , and so jt � �.t/j < 2�:
Thus,

d zX . Q1.t /; Q2.t // � d zX . Q1.t /; Q1.�.t///C d zX . Q1.�.t//; Q2.t //

� jt � �.t/j C � < 3�:
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Since d zX . Q1.T1/; Q2.T2// < �, a similar argument shows that jT1 � T2j < 2�:

Thus, the above estimate holds for t 2 Œ0; T1 � 2��. �

The proof of the weak specification property for geodesic flow on a compact

CAT.�1/ space is an immediate corollary, via Proposition 2.6 and Lemma 2.7, of

the following result.

Theorem 3.2. Suppose that .Y;F/ is a flow on a compact space satisfying the

weak specification property. Suppose that hWY ! GX is a continuous, surjec-

tive orbit semi-equivalence to the geodesic flow on a compact, locally CAT.�1/
space X . Then the geodesic flow .GX; ¹gtº/ satisfies the weak specification prop-

erty.

Proof. Let � > 0. We fix a collection of orbit segments ¹.i ; ti/º
k
iD1 for

.GX; ¹gtº/, and show how to glue them together. Let T D T .�/ be the

constant from Lemma 2.11. As h is uniformly continuous, let ı > 0 be so

small that dY .y1; y2/ < ı implies dGX .h.y1/; h.y2// < �=6. Thus, writing

1 D h.y1/; 2 D h.y2/, it follows from Lemma 2.8 that dX .1.0/; 2.0// < �=3.

Fix lifts ¹.yi ; Oti/º
k
iD1 under h of orbit segments ¹.g�T i ; ti C 2� C 2T /ºkiD1.

That is, each .yi ; Oti/ is an orbit segment for .Y;F/ such that

¹h.fsyi /W s 2 Œ0; Oti �º D ¹gsi W s 2 Œ�T; ti C T C 2��º:

The first step is to apply the specification property to these lifted orbit segments.

Let O� be provided by the weak specification property for .Y;F/ at scale ı. There

is a point z 2 Y and a sequence of transition times O�1; : : : O�k�1 � O� such that

dOtj
.fOsj �1CO�j �1

z; yj / < ı for every 1 � j � k;

where Osj D
Pj
iD1

Oti C
Pj�1
iD1 O�i . Fix an index j , and write z0 D fOsj �1CO�j �1

z.

Consider the image under h of the orbit segment .z0; Otj /. Then for all s 2 Œ0; Otj �,

dGX .h.fsz
0/; h.fsyj // < �=6:

Thus, writing h.z0/ D  0 and reparameterizing, we see there is a time change � so

that for all s 2 Œ0; tj C 2� C 2T �,

dGX .g�.s/
0; gs.g�T j // < �=6:

Using Lemma 2.8, we see that for all s 2 Œ0; tj C 2� C 2T �,

dX .
0.�.s//; g�T j .s// < �=3:

Now we apply Proposition 3.1 to obtain that for all s 2 Œ0; tj C 2T �

dX .
0.s/; g�T j .s// < �:
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Next we apply Lemma 2.11 to obtain that for all s 2 ŒT; tj C T �,

dGX .gs
0; gs.g�T j // < 2�;

and thus for all s 2 Œ0; tj �, dGX .gs.gT 
0/; gs.j // < 2�.

Now consider  D gT .h.z//. Noting that gT 
0 is an appropriate iterate of 

under .GX; gt /, the argument above shows that for each j , an appropriate iterate

of  is 2�-shadowing for .j ; tj /.

It only remains to show that the transition times for  remain controlled. We

appeal to Corollary 2.5, which shows there exists � so that for all y 2 Y , the

image of an orbit segment .y; O�/ under the orbit equivalence h is contained in the

orbit segment .h.y/; �/. The segments of  that correspond to transitions between

the shadowed orbit segments comprise of images of orbit segments of the form

.y; O�i/ with O�i � O� , and an additional run of length at most 2T coming from the

application of Lemma 2.11. Thus the transition times are bounded above by �C2T .

It follows that .GX; ¹gtº/ satisfies weak specification. �

3.1. Geodesic flow on CAT.0/ spaces. We now briefly consider the case of non-

positive curvature.

Theorem 3.3. Let X be a compact, locally CAT.0/, geodesic metric space with

fundamental group not isomorphic to Z and topologically transitive geodesic flow.

If there exists an orbit semi-equivalence hW Susp.†; �/ ! GX , where .†; �/ is a

compact subshift of finite type, then the geodesic flow on GX satisfies the weak

specification property.

We observe that this follows from the proof given in the previous section, where

we used the assumption of CAT.�1/ in only two places; the first was to provide

the orbit-equivalent symbolic description ofGX (Proposition 2.7), which we now

assume to hold; the second was in the proof of Proposition 3.1 and we already

observed that a CAT.0/ assumption was sufficient for that argument. We conclude

that our proof also gives the statement of Theorem 3.3.

A class of examples that is covered by Theorem 3.3 is given by CAT.0/

spaces whose geodesics can be mapped homeomorphically to the geodesics for

a CAT.�1/ metric. For example, on a Riemannian surface with genus at least 2,

non-positive curvature metrics can be found so that a single closed geodesic has

curvature zero, and geodesics can be mapped homeomorphically to those for a

hyperbolic metric. Such examples are clearly expansive, although we can no

longer conclude that Hölder potentials have the Bowen property (see Section 4).

We can also rule out orbit semi-equivalence to a suspension of a shift of finite

type in many cases. Let X be a compact, locally CAT.0/ metric space. We say

that zX has a fat 1-flat if there exists a geodesic  such that for some w > 0 the

w-neighborhood U D Nw./ of  splits isometrically as R � Y . An example

of such a space is a Riemannian manifold with non-positive sectional curvature
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which has an open neighborhood U of a closed geodesic where the sectional

curvature is identically zero. See [13] for a study of Riemannian manifolds that

admit fat flats, and [16] for many negative results on hyperbolic-type properties

in the special case of Riemannian surfaces which have an embedded flat cylinder.

We show:

Theorem 3.4. LetX be a compact locally CAT.0/metric space with topologically

transitive geodesic flow such that zX admits a fat 1-flat. Then

(1) the geodesic flow .GX; ¹gtº/ does not satisfy weak specification;

(2) there does not exist an orbit semi-equivalence hW Susp.†; �/ ! GX , where

.†; �/ is a compact subshift of finite type.

Proof. Suppose that .GX; ¹gtº/ satisfies weak specification. Let ı D w
20

, and let

�.ı/ be the corresponding maximum transition time. Take a geodesic  andw > 0

be such thatNw./ splits isometrically as R�Y . Let 1 D  and 2 be a geodesic

with 2.0/ … Nw./. Let t1 D � and t2 D 1. For the weak specification property

to hold in GX , there must be some geodesic � which ı-shadows  for time t1,

then after transition time at most � , ı-shadows 2.

By Lemma 2.8, d..t/; �.t // < 2ı D w=10 for all t 2 Œ0; t1�. By the

geometry of the flat neighborhood Nw./, 
�.t / travels at most distance w=5

perpendicular to the image of  over t 2 Œ0; t1�, remaining all the while in the

w=10-neighborhood of  . Therefore, over the subsequent � D t1 units of time, it

can again travel at most distance w=5 perpendicularly away from the image of  .

Therefore at any time t 2 Œ�; 2��, �.t / is at least distance w=5 from 2.0/. To

fulfill the desired shadowing, for some such t , gt
� should be within ı of 2.

At such a time, dGX .gt
�; 2/ < ı D w

20
. Using Lemma 2.8, we must at this

point have d.�.t /; 2.0// < 2ı D w
10

. This is a contradiction, so � cannot

achieve the shadowing required. We have shown that .GX; gt / cannot have the

weak specification property.

Now suppose there is an orbit semi-equivalence hW Susp.†; �/ ! GX , where

.†; �/ is a shift of finite type. Restricting † to a transitive component †0 such

that hW†0 ! GX is surjective, the arguments of §3 show that .GX; ¹gtº/ has weak

specification. This is a contradiction, so no such hW Susp.†; �/ ! GX exists. �

Theorem 3.4 rigorously confirms the expected phenomenon that a compact

shift of finite type can not capture the dynamics of this setting. Beyond uniform

hyperbolicity, the best hope to capture the dynamics symbolically is often to code

the region of the space that experiences ‘some’ hyperbolicity using a shift of finite

type on a countable alphabet. The existence of this kind of symbolic dynamics

for smooth flows on three dimensional Riemannian manifolds was established by

Lima and Sarig [34]. This kind of phenomenon is not ruled out by Theorem 3.4.
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4. Expansivity, the Bowen property, and orbit closing

Before turning to applications of the weak specification property, we require three

further properties of the geodesic flow on a compact CAT.�1/ space.

4.1. Expansivity. The first property we want to check is expansivity. We say a

continuous flow .X;F/ is expansive if for all � > 0, there exists ı > 0 such that for

all x; y 2 X and all continuous � WR ! R with �.0/ D 0, if d.ft .x/; f�.t/.y// < ı

for all t 2 R, then y D fs.x/ for some s, where jsj < �.

Proposition 4.1. The geodesic flow on a compact CAT.�1/ space is expansive.

Proof. Consider any � WR ! R with �.0/ D 0. Suppose that 1; 2 2 GX with

dGX .gt1; g�.t/2/ < ı for all t . Then, by Lemma 2.8, dX .1.t /; 2.�.t /// < 2ı

for all t . By Proposition 3.1, it follows that dX .1.t /; 2.t // < 6ı. Choosing ı

so small that 6ı < �0, we may use Lemma 2.10 and lift the geodesics 1 and

2 to the universal cover in such a way that d zX . Q1.t /; Q2.t // < 6ı for all t .

From the definition of the boundary at 1, it follows that Q1.1/ D Q2.1/ and

Q1.�1/ D Q2.�1/. Hence 2.t / D 1.t C s/ for some s. Since dGX .1; 2/ < ı,

a straightforward calculation with the definition of dGX implies that given a

fixed �, we can choose ı small enough so that jsj < �. �

4.2. Bowen property. The second property we want is a dynamical regularity

property for functions on the space GX .

Definition 4.2. Let .X;F/ be a continuous flow. A continuous function ' on X is

said to have the Bowen property if there exists V > 0 so that for any sufficiently

small � > 0,

d.ft .x/; ft .y// < � for all t 2 Œ0; S� H)

ˇ

ˇ

ˇ

ˇ

S
Z

0

'.ftx/dt �

S
Z

0

'.fty/dt

ˇ

ˇ

ˇ

ˇ

< V

for any x; y 2 X and any S > 0.

We show that Hölder functions on GX satisfy this property.

Proposition 4.3. If ' is a Hölder continuous function on GX , then ' satisfies the

Bowen property for the geodesic flow gt .

Proof. We prove that for any V > 0, there exists an � > 0 such that

dGX .gt .1/; gt .2// < � for all t 2 Œ0; S�

H)

ˇ

ˇ

ˇ

ˇ

S
Z

0

'.gt1/dt �

S
Z

0

'.gt2/dt

ˇ

ˇ

ˇ

ˇ

< V
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for any 1; 2 2 GX and any S > 0. The idea of the proof is that, using the

CAT.�1/ property for a comparison withH
2, geodesics inX which stay close over

Œ0; S� are in fact exponentially close over that range, from which the result follows.

The need to move between the metrics on GX and X adds some technicalities to

the proof.

Let V > 0 be given, and let C; ˛ > 0 be the Hölder constants for ' so that

j'.1; 2/j < CdGX .1; 2/
˛ . We fix � > 0 to be specified later. Suppose that

dGX .gt1; gt2/ < � for t 2 Œ0; S�. By Lemma 2.8, dX .1.t /; 2.t // < 2� for

t 2 Œ0; S�. By Lemma 2.10, assuming that 2� < �0, lifting to the universal cover,

we have d zX . Q1.t /; Q2.t // < 2� for t 2 Œ0; S�.

We construct a comparison pair of geodesic segments c1.t /; c2.t / in H
2

with lengths S and with distance at most 2� between their endpoints using the

pair of triangles shown in Figure 2. By convexity of the distance function,

dH2.c1.t /; c2.t // < 2�. We translate the time parameter for c2 by a constant r

so that at the point of their nearest approach in H
2, both have the same time pa-

rameter. By interchanging the roles of c1 and c2 if necessary, we can assume that

r � 0. We write S 0 WD S � r . Then, by a standard argument for the behavior of

geodesics in H
2, we have that

dH2.c1.t /; c2.t C r// < 2�e� min¹t;S 0�tº for all t 2 Œ0; S 0�:

Applying the CAT.�1/ property, we have that

d zX . Q1.t /; Q2.t C r// < 2�e� min¹t;S 0�tº for all t 2 Œ0; S 0�;

and we can push this estimate back down to X .

zX H
2

Q1

Q2

q

q

q

p1

q

p2

q

q

q

Np1

Nq

Np2

c1

c2q

c2.r/

q

c1.S
0/

Figure 2. Comparison quadrilateral for Proposition 4.3. Corresponding sides in the

two quadrilaterals have the same length. By the CAT.�1/ condition, d zX
.p1; p2/ �

dH2. Np1; Np2/.
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Next, using Lemma 2.11 we see that that there is a constant T D T .4�/ such

that

dGX .gt1; gtCr2/ < 2dX .1.t /; 2.t C r//

< 4�e� min¹t;S 0�tº for all t 2 ŒT; S 0 � T �:

We recall from Lemma 2.11 that for small �, we can take T .4�/ D � log.4�/, and

thus lim�!0 �
˛T .4�/ D 0: We assume � is so small that 2C.3�/˛T < V=3.

To control j
R S

0 '.gt1/dt �
R S

0 '.gt2/dt j, we first note that

ˇ

ˇ

ˇ

ˇ

S
Z

0

'.gt1/dt �

S
Z

0

'.gt2/dt

ˇ

ˇ

ˇ

ˇ

�

ˇ

ˇ

ˇ

ˇ

S 0
Z

0

'.gt1/dt �

S
Z

r

'.gt2/dt

ˇ

ˇ

ˇ

ˇ

C 2rk'k:

Since the flow is unit speed, r � 2�, and therefore, choosing � so small that

4�k'k < V=3, and writing  0
2 D gr2, it suffices to control

ˇ

ˇ

ˇ

ˇ

S 0
Z

0

'.gt1/dt �

S 0
Z

0

'.gt
0
2/dt

ˇ

ˇ

ˇ

ˇ

:

We cover Œ0; S 0� by the intervals I1 D Œ0; T �; I2 D .T; S 0 � T /, and I3 D
ŒS 0 � T; S 0�. Note that I2 may be empty and I1 and I3 may overlap, depending on

the values of S 0 and �. Then,

ˇ

ˇ

ˇ

ˇ

S 0
Z

0

'.gt1/dt �

S 0
Z

0

'.gt
0
2/dt

ˇ

ˇ

ˇ

ˇ

�

S 0
Z

0

j'.gt1/ � '.gt
0
2/jdt

�

Z

I1

j'.gt1/ � '.gt
0
2/jdt C

Z

I3

j'.gt1/ � '.gt
0
2/jdt

C

Z

I2

j'.gt1/ � '.gt
0
2/jdt:

Over I1 and I3,

dGX .gt1; gt
0
2/ < dGX .gt1; gt2/C dGX .gt2; gt

0
2/ < � C 2�;

so by the Hölder condition, j'.gt1/ � '.gt
0
2/j � C.3�/˛. Thus

Z

I1

j'.gt1/ � '.gt
0
2/jdt C

Z

I3

j'.gt1/ � '.gt
0
2/jdt < 2C.3�/

˛T < V=3:
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To bound the integral over I2, we use the Hölder property again to obtain

Z

I2

j'.gt1/ � '.gt
0
2/jdt <

Z

I2

CdGX .gt1; gt
0
2/
˛dt

<

Z

I2

C4˛�˛e�˛min¹t;S�tºdt

< �˛
1

Z

0

C4˛e�˛min¹t;S�tºdt < V=3;

where the last inequality comes from making a sufficiently small choice of �. Thus,

ˇ

ˇ

ˇ

ˇ

S 0
Z

0

'.gt1/dt �

S 0
Z

0

'.gt
0
2/dt

ˇ

ˇ

ˇ

ˇ

< 2V=3;

and so
ˇ

ˇ

ˇ

ˇ

S
Z

0

'.gt1/dt �

S
Z

0

'.gt2/dt

ˇ

ˇ

ˇ

ˇ

< V: �

4.3. Orbit closing lemma. We prove a closing lemma for our setting, which

gives what we call the weak periodic orbit closing property. The idea is that for

the suspension flow over a shift of finite type, an orbit segment can always be

approximated by a periodic orbit. We show that this property passes to GX using

the orbit semi-equivalence. For a flow .X;F/, we write Per.t / for the set of closed

orbits of least period at most t .

Definition 4.4. A continuous flow .X;F/ satisfies the weak periodic orbit closing

property if for all � > 0, there exists R > 0 so that for any orbit segment .; t /,

there exists � 2 Per.t C R/ so that dt .; 
�/ < �.

Lemma 4.5. The geodesic flow on a compact CAT.�1/ space satisfies the weak

periodic orbit closing property.

Proof. The proof uses many of the same ideas as the proof of Theorem 3.2. Let

� > 0 be given and fix an orbit segment .; t / for .GX; ¹gtº/. Let hW Susp.†; �/ !
GX be the orbit semi-equivalence provided by Proposition 2.7, where † is a

topologically transitive shift of finite type. Let T D T .�/ be the constant from

Lemma 2.11 and let ı > 0 satisfy that y1; y2 2 Susp.†; �/, d.y1; y2/ < ı implies

dGX .h.y1/; h.y2// < �=6.
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Fix a lift .y; Ot / under h of .g�T ; t C 2� C 2T /, so

¹h.�sy/W s 2 Œ0; Ot �º D ¹gs W s 2 Œ�T; t C T C 2��º;

where ¹�sº is the suspension flow. On Susp.†; �/, it is easy to check that we

can close orbit segments to periodic orbits. That is, for all ı > 0, there exists yR

so that for all .y; Ot /, there exists y0 so that dt .y; y
0/ < ı and y0 is periodic with

period at most Ot C yR. This property follows from the corresponding fact for †.

We take such a point y0 for the orbit segment .y; t / and ı > 0 under consideration.

Then for all s 2 Œ0; Ot �, dGX .h.�sy
0/; h.�sy// < �=6. Thus, writing  0 WD h.y0/ and

reparameterizing, we see there is a time change � so that for all s 2 Œ0; tC2�C2T �,

dGX .g�.s/
0; gs.g�T // < �=6:

Using Lemma 2.8, we see that for all s 2 Œ0; t C 2� C 2T �,

dX .
0.�.s//; g�T .s// < �=3:

Now we apply Proposition 3.1 to obtain that for all s 2 Œ0; t C 2T �

dX .
0.s/; g�T .s// < �:

Now we apply Lemma 2.11 to obtain that for all s 2 ŒT; t C T �,

dGX .gs
0; gs.g�T // < 2�;

and thus for all s 2 Œ0; t �, dGX .gs.gT 
0/; gs.// < 2�: We let � D gT 

0, and we

have shown that dt .
�; / < 2�.

Now it is clear that � is a periodic orbit, so it only remains to show that its

period is controlled. Let t� be the period of �. We observe that the orbit segment

.gt
�; t� � t / is a subset of the image under h of the orbit segment .�Oty

0; R0/. So

we let R be a value so that for all y 2 Susp.†; �/, the image of an orbit segment

.y; R0/ under the orbit equivalence h is contained in the orbit segment .h.y/; R/.

This is possible by Corollary 2.5. Thus, the period of � is at most t C R, so at

scale 2�, we have verified the property that we need. �

5. Expansive flows with weak specification

We now establish the results on thermodynamic formalism and large deviations

for CAT.�1/ geodesic flows given in Theorem B. The results are proved for

expansive flows with weak specification, and thus apply to geodesic flow on

compact CAT.�1/ spaces in light of Theorem A. We prove

Theorem 5.1. Let .X;F/ be a continuous flow on a compact metric space that

is expansive and satisfies the weak specification property. Let 'WX ! R be a

continuous function satisfying the Bowen property. Then
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(1) the potential function ' has a unique equilibrium measure �' ,

(2) the equilibrium measure �' satisfies the Gibbs property,

(3) if .X;F/ satisfies the weak periodic orbit closing property, then the

'-weighted periodic orbits for the flow equidistribute to �' ,

(4) the ergodic measures are entropy dense in the space of F-invariant proba-

bility measures,

(5) the measure �' satisfies the Large Deviations Principle.

We address each one of these properties in turn in the following subsections.

5.1. Unique equilibrium states and the Gibbs property. We refer to Wal-

ters [46] as a standard reference for equilibrium states in discrete-time, and the

article by Bowen and Ruelle [7] for flows. Given a potential function ', we study

the question of whether there is a unique invariant measure which maximizes the

quantity h�C
R

' d�, where h� is the measure-theoretic entropy. More precisely,

given a flow F on a compact metric spaceX , and a continuous function 'WX ! R

(called the potential), we define the topological pressure to be

P.'/ D sup

²

h� C

Z

' d�

ˇ

ˇ

ˇ

ˇ

� is an F-invariant probability measure

³

;

and an equilibrium state for ' to be a measure achieving this supremum. An

equilibrium state for the constant function ' D 0 is called a measure of maximal

entropy. Equivalently, P.'/ is the exponential growth rate of the number of

distinct orbits for the system, weighted by ' in the following sense. For an

expansive flow, the precise definition is

P.'/ D lim
t!1

1

t
log sup

°

X

x2E

e
R t
0 '.gsx/

ˇ

ˇ

ˇE is a .t; �/-separated set
±

;

where � is an expansivity constant for the flow, and a set E is .t; �/-separated if

for every distinct x; y 2 E we have y … xBt .x; �/.
For a continuous function 'WX ! R, an invariant measure � has the Gibbs

property for ' if for all � > 0, there is a constant Q D Q.�/ > 1 such that for

every x 2 X and t 2 R, we have

Q�1e�tP.'/Cˆ.x;t/ � �.Bt .x; �// � Qe�tP.'/Cˆ.x;t/; (5.1)

where ˆ.x; t/ D
R t

0 '.fsx/ ds and Bt .x; �/ D ¹yW d.fsx; fsy/ < � for all s 2
Œ0; t �º. In particular, a measure has the Gibbs property for the function ' D 0 if

for all � > 0, there is a constant Q D Q.�/ > 1 such that for every x 2 X and

t 2 R, we have

Q�1e�th � �.Bt .x; �// � Qe�th; (5.2)
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For an expansive flow, there exists an equilibrium state for every continuous

potential. However, uniqueness can be a subtle question. In our setting, we have

the following statement.

Theorem 5.2. Let .X;F/ be a continuous flow on a compact metric space. Sup-

pose that F is expansive and has the weak specification property. Then, for every

potential ' with the Bowen property, there exists a unique equilibrium state �' .

Every such measure �' satisfies the Gibbs property for '.

For flows with the strong version of specification, this result was proved by

Franco [21], generalizing Bowen’s discrete-time argument [6]. The same essential

argument applies assuming only weak specification. However, non-trivial techni-

cal issues must be overcome since weak specification does not allow us to use

periodic orbits in the construction of the unique equilibrium state, and there are

additional technicalities in various counting arguments. Formally, the statement

for weak specification is a corollary of recent work by Climenhaga and the third

named author [11], although that work is designed to apply much more generally

in settings which do not have any global form of the specification property.

5.2. Equidistribution of weighted periodic orbits. For a < b, let Per.a; b�

denote the set of closed orbits for ¹fsº with period in the interval .a; b�, and let '

be a continuous function. We define the upper pressure of periodic orbits to be

xP �.'/ D lim sup
t!1

1

t
log

X

2Per.t�R;t�

eˆ./; (5.3)

where R > 0 is fixed and ˆ./ is the value given by integrating ' around

the periodic orbit. For an expansive flow, xP �.'/ is well defined, and satisfies
xP �.'/ � P.'/. This was proved in the ' D 0 case in [3]. To extend to ' ¤ 0,

the proof of [3, Theorem 5] shows that choosing one point x on each of the

orbits  in Per.t � R; t � yields a .t; ˛/-separated set for some small ˛ > 0.

Since jˆ./ �
R t

0 '.gsx /j � R sup j'j, it follows that xP �.'/ � P.'/. It is a

straightforward exercise to verify that the value of xP �.'/ is independent of the

choice of R.

We define the lower pressure of periodic orbits (with window size R) to be

x
P �
R.'/ D lim inf

t!1

1

t
log

X

2Per.t�R;t�

eˆ./: (5.4)

If there existsR such that
x
P �
R.'/ D xP �.'/, then

x
P �
R0.'/ D xP �.'/ for anyR0 � R,

and we call this common value the pressure of periodic orbits, denoted P �.'/.
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For a periodic orbit  , let � be the natural measure around the orbit. That is,

if  has period t , and x 2  , then

Z

 d� WD
1

t

t
Z

0

 .fsx/ds

for all  2 C.X/. We say the periodic orbits weighted by ' equidistribute to a

measure � if for any fixed R > 0 which is sufficiently large, we have

1

C.t; R/

X

2Per.t�R;t�

eˆ./� �! �; (5.5)

where C.t; R/ is the normalizing constant .
P

2Per.t�R;t� e
ˆ./� /.X/. Equidis-

tribution of weighted periodic orbits for equilibrium states was first investigated in

a uniformly hyperbolic setting by Parry [40], and for geodesic flow on manifolds

of non-positive curvature by Pollicott [43].

The proof of the Variational Principle [46, Theorem 9.10] shows that if

x
P �
R.'/ D P.'/, then any weak� limit of 1

C.t;R/

P

2Per.t�R;t� e
ˆ./� is an equi-

librium state for '. See Remark 3 of [24] and §2.3 of [9]. Thus if we know that

P �.'/ D P.'/, and that ' has a unique equilibrium state�, it follows immediately

that the periodic orbits weighted by ' equidistribute to �.

Lemma 5.3. Suppose an expansive flow .X;F/ has the weak periodic orbit

closing property of Definition 4.4. Then there exists R > 0 so that for any

continuous potential with the Bowen property,
x
P �
R.'/ D P.'/, and thus P �.'/ D

P.'/.

Proof. We already verified that xP �.'/ � P.'/. For the other inequality, let 2� be

an expansivity constant and take a sequence of .t; 2�/-separated sets Et so that

1

t
log

X

x2Et

e
R t
0 '.gsx/ �! P.'/:

Then by the weak periodic orbit closing property, for each x 2 Et , there exists

a periodic orbit .x/ with dt .x; .x// < � and ¹.x/ j x 2 Et º � Per.t; t C R�.

For any fixed  2 Per.t; t C R�, since Et is .t; 2�/-separated, there are at most

.T CR/=2� elements in the set ¹x 2 Et W .x/ D º. We also have

ˇ

ˇ

ˇ

ˇ

ˆ..x//�

t
Z

0

'.gsx/

ˇ

ˇ

ˇ

ˇ

�

ˇ

ˇ

ˇ

ˇ

t
Z

0

'.gs.x// �

t
Z

0

'.gsx/

ˇ

ˇ

ˇ

ˇ

CRk'k � V CRk'k;

where V is the constant appearing in the Bowen property for '. Thus,

X

2Per.t;tCR�

eˆ./ �
X

¹.x/jx2Et º

eˆ./ �
2�

T CR
e�V�Rk'k

X

x2Et

e
R t
0 '.gsx/;
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and so

1

t CR
log

X

2Per.t;tCR�

eˆ./ �
t

t CR

�1

t
log

X

x2Et

e
R t
0 '.gsx/

�

�
K

t CR
;

where K D V CRk'k � log.2�.T CR/�1/. Taking a limit as t ! 1, we obtain

x
P �
R.'/ � P.'/. We already verified that xP �.'/ � P.'/, so this completes the

proof. �

Thus, for an expansive flow with weak specification and weak periodic orbit

closing, and any continuous 'WX ! R with the Bowen property, since ' has a

unique equilibrium state �' , it follows that the periodic orbits weighted by ' are

equidistributed in the sense that for any fixed sufficiently large R > 0,

1

C.t; R/

X

2Per.t�R;t�

eˆ./� �! �' :

We remark that a stronger equidistribution statement can be asked for by

allowing R > 0 to be ANY fixed window size in the above. This stronger version

is what is obtained in the setting of e.g. [40, 9]. We emphasize that this stronger

statement cannot be obtained from our hypotheses because knowledge of
x
P �
R.'/

a priori gives no information on
x
P �
ı
.'/ for ı < R, and the weak specification and

periodic orbit closing hypotheses are not strong enough to ensure that there are

periodic orbits of length ŒT; T C ı/ when ı is small.

5.3. Entropy density of ergodic measures. For a discrete-time dynamical sys-

tem .X; f / or flow .X;F/, the entropy density of ergodic measures is the property

that for any invariant measure �, for any � > 0, we can find an ergodic measure �

such thatD.�; �/ < � and jh� � h�j < �, where D is any choice of metric on the

space of measures on X compatible with the weak� topology (see §6.1 of [46]).

Entropy density is known to be true for maps with the almost product prop-

erty [42], which is a weaker hypothesis than the specification property. The basic

argument was first proved for Z
d -shifts with specification by Eizenberg, Kifer

and Weiss [19]. No reference is available for maps with weak specification, or for

flows. In this section, we carefully prove entropy density for flows with weak spec-

ification. While this extension is expected, care must be taken in the argument,

and dealing with the variable gap length is a non-trivial extension of the existing

proofs.

We remark that the time-1 map f1 of a flow with weak specification may not

satisfy the entropy density condition. Consider a suspension flow with constant

roof function 1. An ergodic measure for f1 is supported on a single height, i.e

on X � ¹hº for some h 2 Œ0; 1/. Take an f1-invariant measure given by a convex

combination of an ergodic measure onX�¹0º, and an ergodic measure onX�
®

1
2

¯

.
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This measure can clearly not be approximated weak� by an ergodic f1-invariant

measure.

We remark that entropy density of ergodic measures is not true for geodesic

flow on many CAT.0/ spaces. The ergodic measures are not even dense. For

example, we can take the setting of Theorem 3.4 and consider a CAT.0/ space

with a fat 1-flat. A measure whose support is two distinct parallel geodesics in

the flat is not a weak� limit of ergodic measures. This phenomenon was proved

rigorously in [16] for rank one surfaces with an embedded flat cylinder.

Before we proceed, we first require a general lemma that says that weak

specification actually allows us to approximate infinitely many orbit segments.

Lemma 5.4. Let .X;F/ be a continuous flow on a compact metric space and

assume that F satisfies the weak specification property. Then the conclusion of the

specification property holds for any countably infinite sequence of orbit segments.

Proof. Let ı > 0 be the scale, and � > 0 the maximum transition time for the

scale ı=3 provided by the weak specification property for F. Let ¹.xi ; ti/ºi2N be a

countably infinite sequence of orbit segments. For each j 2 N, we use the weak

specification on the first j orbit segments ¹.xi ; ti/º
j
iD1 to produce a point yj 2 X

and corresponding transition times �
.j /
i (1 � i � j ), so that appropriate iterates

of yj .ı=3/-shadow the prescribed orbit segments. Since the space X is compact,

one can choose an accumulation point for the sequence ¹yj ºj2N, call it y. Passing

to a subsequence, we may assume that yj ! y.

We now want to verify that y has the desired property. To do this, we need to

produce a countable collection �i of transition times, and check the corresponding

specification property. First, look at the sequence ¹�
.j /
1 ºj2N � Œ0; � �. Passing to a

subsequence if necessary, we may assume ¹�
.j /
1 ºj2N converges to �1 2 Œ0; � �. Next

consider the sequence ¹�
.j /
2 ºj�2;j2N � Œ0; � �. Again, passing to a subsequence, we

can choose a limiting �2 2 Œ0; � �. Continuing in this manner, we obtain a sequence

of transition times ¹�iºi2N.

Now, given k 2 N, we consider the finitely many orbit segments ¹.xi ; ti/º
k
iD1.

Recall that sj WD
Pj
iD1 ni C

Pj�1
iD1 �i is the time taken to shadow the first j orbit

segments. By compactness, there is an � > 0 with the property that, for any

pair of points satisfying d.z; z0/ � �, we have dsk .z; z
0/ < ı=3. By continuity

of the flow, there is also an �0 > 0 so that for all x 2 X , jt � t 0j < �0, and

1 � i � k, we have dti .ft .x/; ft 0.x// < ı=3. We now choose a y0 WD yN from

the approximating sequence having the following two properties: (i) d.y0; y/ < �,

and (ii) each j�
.N/
i � �i j < �

0=k, for 1 � i � k.

From property (i), we conclude that dsk .y; y
0/ < ı=3, and from property (ii),

it follows immediately that j.s
.N/
i C �

.N/
i /� .si C �i/j < �

0 holds for all 1 � i � k.
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We now have the estimate:

dti .fsi�1C�i�1
y; xi/ � dti .fsi�1C�i�1

y; fsi�1C�i�1
y0/C dti .fsi�1C�i�1

y0; xi /

� dsk .y; y
0/C dti .fsi�1C�i�1

y0; xi/

� dsk .y; y
0/C dti .fsi�1C�i�1

y0; f
s

.N/

i�1
C�

.N/

i�1

y0/

C dti .fs.N/

i�1
C�

.N/

i�1

y0; xi /

� ı=3C ı=3C ı=3 D ı:

The first and third inequalities are just applications of the triangle inequality for

the metric dti . The second inequality comes from the definition of the metrics

dt , along with the fact that si�1 C �i�1 C ti � sk for every 1 � i � k. For the

last inequality, the first term is controlled by property (i), while the second term is

controlled by property (ii) and the choice of �0. The last term is controlled by the

specification property at scale ı=3 for the point y0 D yN . This gives the desired

estimate, and since this can be done for every k 2 N, completes the proof. �

Let MF.X/ denote the space of F-invariant probability measures on X . The

following proposition is the main result of this section.

Proposition 5.5. Let F be an expansive flow with the weak specification property.

Then the ergodic measures are entropy dense in MF.X/. That is, if � 2 MF.X/,

then for any � > 0 we can find an F-invariant ergodic measure � such that

D.�; �/ < � and jh� � h�j < �.

The strategy is to construct a closed F-invariant set Y � X such that every

invariant measure supported on Y is weak*-close to �, and such that the topolog-

ical entropy of Y is close to h�. For x 2 X and t 2 R, we define a measure Et .x/

by
Z

 dEt .x/ D
1

t

t
Z

0

 .fsx/ ds;

for all  2 C.X/. The measures Et .x/ are sometimes called the empirical

measures for the flow; they are not F-invariant in general. Given a setU � M.X/,

let

Xt;U WD ¹x 2 X j Et .x/ 2 U º:

From now on, we fix � > 0, and let B WD B.�; 5�/ and for m � 1, let

Ym WD ¹x j fsx 2 Xm; xB for all s � 0º: (5.6)

Each Ym is closed and forward invariant, so we can consider the dynamics of the

semi-flow F
C D ¹ft W t � 0º on Ym. We could modify the definition of Ym by

replacing “s � 0” with “s 2 R” to get a flow-invariant set, but we avoid this
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to simplify the book-keeping of arguments that appear later in our proof. It is

unproblematic to work with a set which is only forward invariant because measures

which are invariant for FCjYm
can easily be shown to be invariant for F. More

precisely, consider � 2 MFC.Ym/. Then for each t � 0, � 2 Mft
.X/. Since ft

is invertible, then � is f�t invariant. Thus � 2 MF.X/. We prove the following

lemma.

Lemma 5.6. For any m � 1, if � 2 MFC.Ym/, then D.�; �/ � 6�.

Proof. Assume that � 2 MFC.Ym/ is ergodic. Then there exists a generic point

x 2 Ym so Et .x/ converges to �. For a large value of t , we chop the orbit .x; t /

into segments of lengthm and a remainder, and use that for each i , fimx 2 Xm; xB.

More precisely, for t 2 R, write t D smC q where s is an integer and 0 � q < m.

Then

D.Et .x/; �/ �

s�1
X

iD0

m

t
D.Em.fimx/; �/C

q

t
D.Eq.fsmx/; �/:

Since by (5.6), D.Em.fimx/; �/ � 5�, we have
Ps�1
iD0

m
t
D.Em.fimx/; �/ �

5�. For the remaining error term, writing M for the diameter of the space of

probability measures on X , let t be large enough so that mM=t < �. Then

D.Et .x/; �/ < 6�. Thus, taking t ! 1, we have the lemma for � ergodic. The

result for � non-ergodic follows from ergodic decomposition. �

We will let Y WD YKn for values of K and n to be chosen shortly. By

expansivity, the entropy map � ! h� is upper semi-continuous. So by the

variational principle and the fact that measures in Y are weak�-close to �, then

the topological entropy of Y cannot be much larger than h�; by choosing � small

enough, we can guarantee that h.Y / < h� C  . To show that Y has entropy close

to h�, we use our specification property to build a large number of .t; �/-separated

points inside Y for arbitrarily large t , thus giving a lower bound on the topological

entropy of Y .

We rely on the following result, whose proof is a general argument based on

the definition of entropy and the Birkhoff ergodic theorem. In the discrete-time

case, it is a corollary of Proposition 2.1 of [42] (see also Proposition 2.5 of [47]).

Proposition 5.7. Let � be ergodic and h < h�. Then there exists � > 0 such that

for any neighborhood U of �, there exists T so that for any t � T there exists a

.t; �/-separated set � � Xt;U such that #� � eth.

Now use the ergodic decomposition of � to find � D
Pp
iD1 ai�i such that

the �i are ergodic, the ai 2 .0; 1/ such that
Pp
iD1 ai D 1, D.�; �/ � �, and

h� > h� � �. See [48] for a proof that this is possible.
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Let hi D 0 when h�i
D 0, and max.0; h�i

� �/ < hi < h�i
otherwise. Take

3�i and Ti so that the conclusion of Proposition 5.7 holds for �i and hi , and let �0

be the minimum of the �i , and T be the maximum of the Ti . Let

Var.D; �/ WD sup¹D.ıx; ıy/ j d.x; y/ < �º;

where ıx denotes the Dirac measure at x. Note that since the map x ! ıx
is continuous, we have Var.D; �/ ! 0 as � ! 0. Choose � < �0 so that

Var.D; �/ < �. Choose t such that letting ti WD ai t , then ti � T for every i . Note

that t D
Pp
iD1 ti . We are free to choose t as large as we like relative to p, and

�.�/, the maximum transition time provided by the weak specification property

for F at scale �. We will specify how large t should be chosen later.

Let Ui D B.�i ; �/. Take .ti ; 3�/-separated sets �i � Xti ;Ui
such that #�i �

etihi . Now we use the weak specification property for the flow at scale � to define

a map

ˆW

1
Y

iD1

.�1 � � � � � �p/ �! X:

That is, given .x11; : : : x1p; x21; : : : ; x2p; : : :/, where xij 2 �j , we find a point

y 2 X which �-shadows .x11; t1/, then after a transition period of time at most � ,

�-shadows .x12; t2/, and so on. Such a y can be found by the infinitary version of

the weak specification property, see Lemma 5.4.

We will show that for sufficiently large t , the image of ˆ is a subset of Y , and

then use ˆ to construct .t; �/-separated sets for large t which satisfy cardinality

estimates that yield the estimate we require on h.Y /.

First we show that the image of ˆ belongs to Y . The construction was chosen

so that each time a portion of the orbit of y approximates a sequence of orbit

segments in �1 � � � � � �p , the orbit has spent exactly the right amount of time

approximating each of �1; : : : ; �p so that the appropriate empirical measure for y

is close to �. Thus, in what follows, we show that the empirical measures of y are

close to � along a subsequence corresponding to the times when y approximates

a sequence in
Qk
iD1.�1 � � � � � �p/. From there we bootstrap to all sufficiently

large times.

Fix a point y in the image ofˆ, so y D ˆ.x11; : : : x1p ; x21; : : : ; x2p; : : :/, where

xij 2 �j for all i � 1; j 2 ¹1; : : : ; pº. Let �ij .y/ be the length of the transition

time in the specification property that occurs immediately after approximating the

orbit segment .xij ; tj /. Let c D
Pp
iD1 ti C .p � 1/� and bk D kc C .k � 1/� .

Then c is the upper bound on the total time taken to approximate a sequence of

orbits in �1 � � � � � �p , and bk is the upper bound on time spent approximating a

sequence of orbits in
Qk
iD1.�1 � � � � � �p/. The precise time to approximate such

a sequence of orbits for a point y is given by ck.y/ D
Pp
iD1 ti C

Pp�1
iD1 �ki .y/ and

bk.y/ D
Pk
iD1 ci .y/C

Pk�1
iD1 �ip.y/ respectively (with b0 D b0.y/ D 0).
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Lemma 5.8. If t was chosen sufficiently large, then D.Ec.fbk.y/y/; �/ � 5� for

all k � 0.

Proof. Fix k � 1, and write

y0 D fbk�1.y/y; �j D �kj .y/;

and

si D

i
X

jD1

tj C

i�1
X

jD1

�j ;

so si is the total time that y0 initially spends approximating the corresponding

sequence in �1�� � ���i . Then, writingM for the diameter ofMF.X/ in the metric

D, we remove the ‘uncontrolled’ portion of the orbit of y from consideration by

using the estimate

D
�

Ec.y
0/;

p
X

iD1

ti

c
Eti .fsi�1C�i�1

y0/
�

�
p

c
�M:

Now since dti .fsi�1C�i�1
y0; xki / < �, for each i , we have

D
�

Eti .fsi�1C�i�1
y0/;Eti .xki /

�

< ti Var.D; �/ < ti�:

Thus, by choosing t , and hence c, so large that p
c
�M < �, we have

D
�

Ec.y
0/;

p
X

iD1

ti

c
Eti .xki /

�

<
p

c
�M C

p
X

iD1

ti

c
� < 2�:

Now since for each i , xki 2 Xti ;Ui
, we have

D
�

p
X

iD1

ti

c
Eti .xki /;

p
X

iD1

ti

c
�i

�

�

p
X

iD1

ti

c
� < �:

Furthermore, we have t � c D
Pp
iD1 ti C .p � 1/� � t C p� , so if t is chosen to

be much larger than p� then ti=c is close to ti=t D ai and we can ensure that

D
�

p
X

iD1

ti

c
Eti .xki /;

p
X

iD1

ai�i

�

< �:

Putting all this together, we have

D.Ec.fbk�1
y/; �/ �D

�

Ec.y
0/;

p
X

iD1

ti

c
Eni

.xki /
�

CD
�

p
X

iD1

ti

c
Eti .xki /;

p
X

iD1

ti

c
�i

�

CD
�

p
X

iD1

ti

c
�i ;

p
X

iD1

ai�i

�

CD
�

p
X

iD1

ai�i ; �
�

< 5�: �
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The previous lemma was where we required that t is large relative to � and p.

In the next lemma, we specify how largeK needs to be chosen. The idea is that an

orbit segment of y of lengthK.cC�/will consist ofK�2 sub-segments of length

c where Lemma 5.8 applies and so the empirical measures along the subsegments

are close to �. Additional deviation of the empirical measure along the whole

orbit segment is made arbitrarily small by choosing K large. This is the strategy

for the proof of the following lemma.

Lemma 5.9. If y is a point in the image of ˆ, then y 2 Y .

Proof. Given s � 0, we need to show that fsy 2 XKt;xB for a suitably chosen K.

The idea is that taking the unique m so that bm.y/ < s � bmC1.y/, we have

EKt.fsy/ D

K�2
X

iD1

c

Kt
Ec.fbmCi

y/C error.

The error term has two sources. First, there are at most K segments of y’s orbit,

each of length at most � , used as the transition segments in the application of the

specification property in the construction ofˆ. Second, there is a run of length at

most tC� at both the start and end of the orbit segment .fsy;Kt/. More precisely,

using Lemma 5.8, we have

D.EKt.fsy/; �/ �
c.K � 2/

Kt
5�C

�K

Kt
M C

2M.t C �/

Kt

�
c

t
5�C

�M

t
C
2M

K
C
2M�

Kt
:

We see that if K and t are large enough, then the right hand side is arbitrarily

small. Thus y 2 YKt D Y . �

Now we prove our entropy estimates. We use ˆ to define a map

ˆmW

m
Y

iD1

.�1 � � � � � �p/ �! Y:

For each
N
x 2

Qm
iD1.�1 � � � � � �p/, we make a choice of

N
y 2

Q1
iD1.�1 � � � � � �p/

with yij D xij for i 2 ¹1; : : : ; mº, j 2 ¹1; : : : ; pº, and we define ˆm.
N
x/ WD ˆ.

N
y/.

By Lemma 5.9, the image of ˆm belongs to Y . For j 2 ¹1; : : : ; mp � 1º,
let �j .

N
x/ 2 Œ0; � � denote the j th transition time that occurs when applying the

specification property in the definition of ˆm.
N
x/.

Lemma 5.10. There exists a constantC so that for allm, the image ofˆm contains

a .bm; �=2/-separated set Em with #Em � C�m#
Qm
iD1.�1 � � � � � �p/.
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Proof. Let k 2 N be large enough so that, writing � WD �=k, we have d.x; fsx/ <

�=2 for every x 2 X and s 2 .��; �/. We partition the interval Œ0; mp�� into kmp

sub-intervals I1; : : : ; Ikmp of length �, denoting this partition as P .

Given
N
x 2

Qm
iD1.�1 � � � � � �p/, take the sequence n1; : : : ; nk so that

�1.
N
x/C � � � C �i .

N
x/ 2 Ini

for every 1 � i � mp � 1:

Now let l1 D n1 and liC1 D niC1 � ni for 1 � i � k � 2, and let l.
N
x/ WD

.l1; : : : ; lk�1/. Since �iC1.
N
x/ 2 Œ0; � �, we have ni � niC1 � ni C k for each i , so

l.
N
x/ 2 ¹0; : : : ; k � 1ºmp�1.

Given Nl 2 ¹0; : : : ; k � 1ºmp�1, let �
Nl �

Qm
iD1.�1 � � � � � �p/ be the set of all

N
x such that l.

N
x/ D Nl . If

N
x;

N
x0 2 �

Nl and i 2 ¹1; : : : ; k � 1º, then by construction,

�1.
N
x/ C � � � C �i .

N
x/ and � 0

1.N
x/ C � � � C � 0

i .N
x/ belong to the same element of the

partition P .

We show that ˆm is 1-1 on each �
Nl . Fix Nl and let

N
x;

N
x0 2 �

Nl be distinct. Let j

be the smallest index such that xj ¤ x0
j . Write �i D �i .

N
x/ and � 0

i D �i .
N
x0/. Let

r D
Pj
iD1.ti C �i / and r 0 D

Pj
iD1.ti C � 0

i /. Since
Pj
iD1 �i and

Pj
iD1 �i belong

to the same element of P , then jr � r 0j D
ˇ

ˇ

Pj
iD1 �i �

Pj
iD1 �

0
i

ˇ

ˇ < �.

Because xj ¤ x0
j 2 �i for some i 2 ¹i; : : : ; pº and �i is .ti ; 3�/-separated, we

have dti .xj ; x
0
j / > 3�. Now we have

dbm
.ˆm

N
x;ˆm

N
x0/ � dti .frˆmN

x; frˆm
N
x0/ > dti .frˆm N

x; fr 0ˆm
N
x0/ � �=2;

where the �=2 term comes from the fact that dti .frˆmN
x0; fr 0ˆm

N
x0/ � �=2 by our

choice of �. For the first term, observe that

dti .frˆm N
x; fr 0ˆm

N
x0/ � dti .xj ; x

0
j / � dti .xj ; frˆm N

x/ � dti .fr 0ˆm
N
x0; x0

j /

> dti .xj ; x
0
j / � 2�:

It follows that dbm
.ˆm

N
x;ˆm

N
x0/ > �=2. Thus, ˆm is 1-1 on �

Nl and ˆm.�
Nl / is

.bm; �=2/-separated. There are kmp�1 choices for Nl , so letting C D kp, by the

pigeon hole principle, there exists Nl so that #�
Nl � C�m#

� Qm
iD1 �1 � � � � � �p

�

.

For this Nl , we let Em WD ˆm.�
Nl /. �

We have that

Cm#Em �
�

p
Y

iD1

#�i

�m

� em
Pp

iD1
tihi D emt

Pp

iD1
aihi

� emt
Pp

iD1
ai .h�i

��/ D emt.h���/:
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Thus, 1
tm

log #Em > h� � 2� � 1
t

logC . Note that bm � m
Pp
iD1 ti C mp� D

m.t C p�/, and thus tm=bm � t=.t C p�/. Sending m ! 1, we obtain

h.Y / � lim inf
m!1

tm

bm

1

tm
log #Em �

t

t C p�

�

h� � 2� �
1

t
logC

�

:

This is true for all large t , so this shows that h.Y / � h� � 2�.

Since h.Y / D sup¹h�W � is ergodic and � 2 MFC.Y /}, we can find an er-

godic measure � supported on Y with h� � h� � 2�. The discussion preceding

Lemma 5.6 shows that � 2 MF.X/. Thus � satisfies the conclusion of Proposi-

tion 5.5.

5.4. Large deviations principle. We obtain the large deviations principle for

all the measures considered in this section. The large deviations principle is a

statement which describes the decay rate of the measure of points whose Birkhoff

sums are experiencing a large deviation from their expected value given by the

Birkhoff ergodic theorem.

Definition 5.11. Let m be an equilibrium measure for a potential ' (with respect

to F). We say that m satisfies the upper large deviations principle if for any

continuous observable  WX ! R and any � > 0,we have

lim sup
t!1

1

t
logm

²

xW

ˇ

ˇ

ˇ

ˇ

1

t

Z t

0

 .fsx/ ds �

Z

 dm

ˇ

ˇ

ˇ

ˇ

� �

³

� �q.�/; (5.7)

where the rate function q is given by

q.�/ WD P.'/ � sup
�2MF.X/

j
R

 dm�
R

 d�j��

�

h�.f /C

Z

' d�

�

; (5.8)

or q.�/ D 1 when ¹� 2 MF.X/W
ˇ

ˇ

R

 dm �
R

 d�
ˇ

ˇ � �º D ;. We say that

the lower large deviations principle holds if the above statement holds with � in

place of �, and lim inf in place of lim sup in (5.7). We say that m satisfies the

large deviations principle if both upper and lower large deviations hold: that is,

the above statement holds with equality in place of � in (5.7), and the lim sup

becomes a limit. For a discrete-time dynamical system .X; f /, we say the lower

large deviations principle holds (and similarly for upper) if the above statement

holds with t replaced by n and 1
t

R t

0 '.fsx/ ds replaced by
Pn�1
iD0 '.f

ix/ in (5.7),

and MF.X/ replaced by Mf .X/ in (5.8).

For a fixed observable , the statement above is known as the level-1 large devi-

ations principle. If level-1 large deviations holds for every continuous observable

 (as opposed to, say, only for every Hölder continuous or smooth  ), then this is

equivalent to the level-2 large deviations principle. The level-2 property is often
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formulated as a large deviation result for empirical measures, i.e. a description of

the rate of decay of the measure of the set of points x satisfying D.Et.x/; m/ � �

as t ! 1. See [12, 47] for a precise statement of this formulation, and the ar-

gument that level-2 large deviations follows from the statement of Definition 5.11.

We have the following result.

Proposition 5.12. For an expansive flow .X;F/ with weak specification and a

continuous function 'WX ! R with the Bowen property, the unique equilibrium

state satisfies the large deviations principle.

A large deviations result for measures with a weak Gibbs property for semi-

flows (i.e. continuous systems .X; ¹ftºt�0/ which may not be invertible) with

weak specification was announced in the preprint [2]. Since every flow is a semi-

flow, and our equilibrium states have the Gibbs property, those results apply here.

We give a short independent proof using the entropy density of ergodic measures,

which is not proved in [2]. We treat the upper and lower large deviations bounds

separately.

5.4.1. Upper large deviations. For the upper large deviations principle, we can

reduce to considering the time-1 map of the flow. It is easy to see that the upper

large deviations principle for the flow follows from the upper large deviations

principle for the time-1 map. This follows because (5.7) can be verified for any

continuous function  by applying the large deviations principle for the time-1

map to the continuous function  1 WD
R 1

0  .fsx/ds.

The Gibbs property (5.1) for the flow immediately yields the Gibbs property

with respect to the time-1 map.

Q�1e�tP.'/C
Pn�1

iD0 '1.f
ix/ � �.Bn.x; �I f1// � Qe�tP.'/C

Pn�1
iD0 '1.f

ix/;

where Bn.x; �I f1/ D ¹yW d1.f
i
1 x; f

i
1 y/ < � for all i 2 ¹0; : : : ; n � 1ºº, and

d1 is the metric equivalent to d given by d1.x; y/ D supt2Œ0;1/ d.ftx; fty/.

Note also that from the variational principle and flow invariance of the measure

P.'1; f1/ D P.';F/.

It is well known that in the discrete-time case the upper large deviations

principle follows from the upper Gibbs property and upper semi-continuity of

the entropy map � ! h� (which follows from expansivity of the flow). This

follows from Theorem 3.2 of [42], whose hypotheses are the existence of an upper-

energy function and upper semi-continuity of the entropy map. The existence of

an upper-energy function e� can easily be deduced from the upper bound in the

Gibbs property and by setting e� WD P.�1; f1/ � �1.x/. See §7.2 of [11] for this

argument.

Thus, we have the upper large deviations for '1 for � with respect to f1, and

thus the upper large deviations principle for ' with respect to the flow of (5.7).
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5.4.2. Lower large deviations. We now verify the lower large deviations prin-

ciple. In the discrete-time case, lower large deviations is proved as Theorem 3.1

of Pfister and Sullivan [42] under the following three hypotheses (see also Theo-

rem 3.1 of [47]):

(1) upper semi-continuity of the entropy map;

(2) existence of a “lower-energy function,” which follows easily from the lower

Gibbs property;

(3) entropy density of ergodic measures in the space of invariant measures.

The entropy density of ergodic measures is the most difficult hypothesis to check,

and we carried this out in §5.3. The rest of the argument is fairly standard.

Nevertheless, we do not know of a reference in continuous time, so we sketch

the proof. First observe that it is clear that entropy density of ergodic measures

means that it is possible to consider only ergodic measures in the expression

sup

²

h�.f /C

Z

'd�W

ˇ

ˇ

ˇ

ˇ

Z

 dm �

Z

 d�

ˇ

ˇ

ˇ

ˇ

� �

³

:

Thus, for the lower large deviations, it will suffice to show that for any ergodic �

with
ˇ

ˇ

R

 dm �
R

 d�
ˇ

ˇ > � and ı > 0 sufficiently small that

lim
t!1

1

t
logm

²

xW

ˇ

ˇ

ˇ

ˇ

1

t

t
Z

0

 .fsx/ ds �

Z

 d�

ˇ

ˇ

ˇ

ˇ

� ı

³

� P.'/ �

�

h� C

Z

'd�

�

:

(5.9)

This is achieved by a combination of the Gibbs property form, and basic cardinal-

ity estimates for �. A sketch goes as follows. For a suitable small � > 0, from the

Katok entropy formula, and the Birkhoff ergodic theorem, we can find a sequence

of .t; �/ separated sets with #Et > e
t.h���/ so that for � 2 ¹';  º, we have

sup
y2Bt .x;�/;x2Et

ˇ

ˇ

ˇ

ˇ

1

t

t
Z

0

�.fsx/ ds �

Z

� d�

ˇ

ˇ

ˇ

ˇ

� ı:

Then

m

²

xW

ˇ

ˇ

ˇ

ˇ

1

t

t
Z

0

 .fsx/ ds �

Z

 d�

ˇ

ˇ

ˇ

ˇ

� ı

³

�
X

x2Et

m.Bt .x; �//:

By the Gibbs property, m.Bt .x; �// � C�1e�tP.'/C
R t

0 '.fsx/ds , and since x 2 Et ,

t
Z

0

 .fsx/ds �

Z

t d� � tı:
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Thus

m

²

xW

ˇ

ˇ

ˇ

ˇ

1

t

t
Z

0

 .fsx/ ds �

Z

 d�

ˇ

ˇ

ˇ

ˇ

� ı

³

� Q�1#Ete
�tP.'/Ct d��tı

� Q�1e�t.P.'/�.h�C
R

'd�/C�Cı/:

The proof of the lower large deviations principle follows.
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