
Differential Forms Homework set.

(1) Show that the wedge product ∧ : Ωp(M) ⊗ Ωq(M) → Ωp+q(M) descends to a well-defined operation on
cohomology. Show that, if M is oriented with ∂M = ∅, then integration of top-dimensional forms

∫
M

: Ωnc (M)→ R
descends to a well-defined operation on cohomology. What goes wrong if M is allowed to have boundary?

(2) Let Sn(r) ⊂ Rn+1 be the n-dimensional sphere of radius r, and define the n-form:

ω :=
1
r

n+1∑
i=1

(−1)i−1xidx1 · · · d̂xi · · · dxn+1

Compute
∫
Sn
ω where Sn is the unit sphere, and conclude that ω is not exact. Viewing the radius r : Rn+1 → R

as a function, verify that dr ∧ ω = dx1 · · · dxn+1. Use this to give an explicit representative for the generator
[1] ∈ Hn(Sn) for the top dimensional de Rham cohomology of the unit sphere Sn.

(3) In the proof of the Poincaré Lemma for compactly supported cohomology, we introduced a mapping π∗ :
Ω∗c(M × R)→ Ω∗−1

c (M), which was defined as follows:

π∗ : (π∗φ)f(x, t) 7→ 0

π∗ : (π∗φ)f(x, t)dt 7→ φ

∫ ∞
−∞

f(x, t)dt

where φ ∈ Ω∗(M), and f ∈ C∞c (M × R). Verify that π∗ is a chain map, i.e. has the property that dπ∗ = π∗d, and
hence that it does indeed descend to a well-defined map π∗ : H∗c (M × R)→ H∗−1

c (M).

(4) The Künneth formula for compactly supported cohomology states that for manifolds M,N with finite good
covers, one has:

H∗c (M ×N) ∼= H∗c (M)⊗H∗c (N).

In the case where M,N are orientable, show that this can be deduced from the corresponding Künneth formula for
de Rham cohomology. In the general case, use a Mayer-Vietoris argument to establish the Künneth formula.

(5) Recall that in dimension two, orientable manifolds are precisely the surfaces Sg of genus g ≥ 0. The Euler
characteristic of Sg is given by χ(Sg) = 2 − 2g, and in particular is always even. As an application of Poincaré
Duality, show that if M is a closed orientable manifold, of dimension n = 4k + 2 congruent to two mod four, then
the Euler characteristic χ(M) has to be even.

(6) Let U ⊂ Rn be an open set, and define the Hodge star operator ∗ : Ωp(U)→ Ωn−p(U) by setting:

∗ : dxπ(1) ∧ . . . dxπ(p) 7→ Sign(π) · dxπ(p+1) ∧ . . . ∧ dxπ(n)

when π ∈ Sn is an arbitrary permutation, and extending linearly. Verify that ∗ ◦ ∗ = (−1)n(n−p). Now define
the codifferential δ : Ωp(U) → Ωp−1(U) by setting δ(ω) = (−1)np+n−1(∗ ◦ d ◦ ∗)(ω). Verify that δ ◦ δ = 0. For a
differential form ω = f · dxi1 ∧ . . . ∧ dxip , with 1 ≤ i1 < . . . < ip ≤ n, verify the following formula for δ(ω):

δ(ω) =
p∑
ν=1

(−1)ν
∂f

∂xiν
dxi1 ∧ . . . ∧ d̂xiν ∧ . . . ∧ dxip



(7) Continuing with the notation from the previous exercise, we now define the Laplace operator ∆ : Ωp(U)→ Ωp(U)
via the equation ∆ = δ ◦ d+ d ◦ δ. Check that the Laplacian of a differential form ω = fdxi1 ∧ . . . ∧ dxip satisfies:

∆(ω) = −
( p∑
ν=1

df

dx2
iν

)
dxi1 ∧ . . . ∧ dxip

A p-form ω ∈ Ωp(U) is said to be harmonic provided that ∆(ω) = 0. Conclude that ω is harmonic if and only if
∗(ω) is harmonic.

Both the Hodge dual and the Laplacian can be defined on closed orientable (Riemannian) manifolds. In this
setting, the harmonic forms provide some particularly useful representatives for cohomology classes. More precisely,
one can consider the subcomplex H∗(M) ⊂ Ω∗(M) consisting of harmonic forms. It is easy to check that d leaves
the subcomplex H∗(M) invariant, and restricts to the zero map on H∗(M). This implies that there is a natural
induced map Hp(M) → Hp(M). The Hodge theorem asserts that this natural map is an isomorphism of vector
spaces. In other words, every cohomology class can be represented by a harmonic form, and this representation is
unique. The Hodge star then provides an isomorphism between the vector spaces Hp(M) and Hn−p(M) (a “dual”
formulation of Poincaré duality).

The next few problems have to do with relative de Rham cohomology. For N ⊂M a submanifold, we form the
relative de Rham complex by setting:

Ωq(M,N) := Ωq(M)⊕ Ωq−1(M)

equipped with the differential d(ω, τ) = (dω, ω|N − dτ) (check that d2 = 0). The homology of this chain complex is
called the relative de Rham cohomology of the pair (M,N). Note that if N = ∅, then one has Ω(M, ∅) = Ω(M), and
hence H∗(M, ∅) = H∗(M). The obvious short exact sequence 0→ Ω∗−1(N)→ Ω∗(M,N)→ Ω∗(M)→ 0 induces a
long exact sequence in cohomology (see Bott-Tu, pgs 78-79 for details):

. . .→ Hi−1(N)→ Hi(M,N)→ Hi(M)→ Hi(N)→ . . .

Similarly, one can define the compactly supported relative cohomology H∗c (M,N) by using the complex Ω∗c(M,N) =
Ω∗c(M)⊕ Ω∗−1

c (M).

(8) If Hn ⊂ Rn denotes the upper half space xn ≥ 0, and Rn−1 ⊂ Hn denotes its boundary xn = 0, compute
(a) the cohomology H∗(Hn), (b) the compactly supported cohomology H∗c (Hn), and (c) the relative cohomology
H∗(Hn, Rn−1), and (d) the compactly supported relative cohomology H∗c (Hn,Rn−1).

(9) From your computations in (9), what seems to be the relationship between the relative cohomology groups
of (M,∂M) and the cohomology groups of M? Prove your conjecture (this is the de Rham version of Lefschetz
duality). [Warning: this is the most involved of the problems here. Depending on the approach you take, you might
need to show various preliminary results, which could include establishing Mayer-Vietoris for relative cohomology,
variations on the 5-lemma, integration pairings on relative cohomology, etc.]


