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Abstract
We construct examples of 4-dimensional manifolds M supporting a locally CAT(0)-
metric, whose universal covers QM satisfy Hruska’s isolated flats condition, and con-
tain 2-dimensional flats F with the property that @1F Š S1 ,! S3 Š @1 QM are
nontrivial knots. As a consequence, we obtain that the group �1.M/ cannot be iso-
morphic to the fundamental group of any compact Riemannian manifold of nonposi-
tive sectional curvature. In particular, if K is any compact locally CAT(0)-manifold,
then M �K is a locally CAT(0)-manifold which does not support any Riemannian
metric of nonpositive sectional curvature.

1. Introduction
Riemannian manifolds of nonpositive sectional curvature are a class of manifolds fea-
turing a rich interplay between their geometry, their topology, and their dynamics. In
the broader setting of geodesic metric spaces, we have the notion of a locally CAT(0)-
metric. These provide a metric space analogue of nonpositively curved Riemannian
manifolds, and many classic results concerning Riemannian manifolds of nonpositive
sectional curvature have now been shown to hold more generally for locally CAT(0)-
spaces. We are interested in understanding the difference, within the class of closed
manifolds, between (1) supporting a Riemannian metric of nonpositive sectional cur-
vature, and (2) supporting a locally CAT(0)-metric. A closed topological manifold
equipped with a locally CAT(0)-metric will be called a locally CAT(0)-manifold.

In two and three dimensions, there is no difference between these two classes of
manifolds (see Section 2). In contrast, Davis and Januszkiewicz [DJ] have constructed
examples, in all dimensions � 5, of locally CAT(0)-manifolds which do not support

DUKE MATHEMATICAL JOURNAL
Vol. 161, No. 1, © 2012 DOI 10.1215/00127094-1507259
Received 25 February 2010. Revision received 3 April 2011.
2010 Mathematics Subject Classification. Primary 57M50; Secondary 20F67, 20F55.
Davis’s work partially supported by National Science Foundation grants DMS-0706259 and DMS-1007068.
Januszkiewicz’s work partially supported by National Science Foundation grants DMS-0706259 and DMS-

1007068 and by State Committee for Scientific Research (Poland) grant N-N201-541738.
Lafont’s work partially supported by National Science Foundation grant DMS-0906483 and by an Alfred P.

Sloan Research Fellowship.

1

http://dx.doi.org/10.1215/00127094-1507259


2 DAVIS, JANUSZKIEWICZ, and LAFONT

any Riemannian metric of nonpositive sectional curvature (see Section 3). In this
paper, we deal with the remaining open case.

MAIN THEOREM

There exists a 4-dimensional closed manifold M with the following four properties:
(1) M supports a locally CAT(0)-metric.
(2) M is smoothable, and QM is diffeomorphic to R

4.
(3) �1.M/ is not isomorphic to the fundamental group of any compact Rieman-

nian manifold of nonpositive sectional curvature.
(4) IfK is any compact locally CAT(0)-manifold, thenM �K is a locally CAT(0)-

manifold which does not support any Riemannian metric of nonpositive sec-
tional curvature.

Let us briefly outline the idea behind the proof of our main result. First of all,
we introduce the notion of a triangulation of S3 to have isolated squares. Any such
triangulation has a well-defined type, which is the isotopy class of an associated link
in S3. In Section 4, we provide a proof that any given link in S3 can be realized as the
type of a suitable flag triangulation of S3 with isolated squares. In Section 5, we start
with a flag triangulationL of S3 with isolated squares, whose type is a nontrivial knot
and use it to construct the desired 4-manifold. This is done by considering the right-
angled Coxeter group �L associated to the triangulation L and defining M to be the
quotient of the corresponding Davis complex by a torsion-free finite index subgroup
� � �L. Standard properties of the triangulation L ensure that M is smoothable and
that the Davis complex is CAT(0) and diffeomorphic to R

4. The isolated squares
condition on the flag triangulationL ensures that the Davis complex satisfies Hruska’s
isolated flats condition. The fact that the type of L is a nontrivial knot ensures that the
Davis complex contains a periodic 2-dimensional flat F which is knotted at infinity.
But now if M supported a Riemannian metric g of nonpositive sectional curvature,
the flat torus theorem ensures that one could find a corresponding flat F 0 (in the g-
metric) which is �-equivariantly homotopic to F , and the isolated flats condition
then forces F 0 to also be knotted at infinity. However, in the Riemannian setting, it
is easy to see that a codimension two flat must be unknotted at infinity, yielding a
contradiction.

2. Smoothings in dimension 3
LetM be a manifold supporting a locally CAT(0)-metric. We say that such a manifold
supports a Riemannian smoothing provided that one can find a smooth Riemannian
manifold .N;g/, with g a Riemannian metric of nonpositive sectional curvature, and a
homeomorphism f WN !M . IfM is smooth, we require f to be a diffeomorphism.
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In low dimensions, all manifolds supporting a locally CAT(0)-metric are Rieman-
nian smoothable. In dimension 2, this is immediate from the classification of surfaces.
The corresponding result in dimension 3 is presumably well known to experts, but
does not seem to appear in the literature. For completeness, we provide a proof.

PROPOSITION 1
Let M 3 be a closed 3-manifold which supports a locally CAT(0)-metric. Then M 3

has a Riemannian smoothing.

Proof
SinceM 3 supports a locally CAT(0)-metric, it is aspherical with infinite fundamental
group. Thurston’s geometrization conjecture, recently established by Perelman (see
[Pe1], [Pe2], and [Pe3]), implies that such a manifold has a Jaco–Shalen–Johannson
(JSJ) decomposition, where each piece is either hyperbolic or Seifert fibered (i.e., an
S1-bundle over a 2-orbifold).

We first consider the case where there is a single piece in the JSJ splitting. Hyper-
bolic manifolds support metrics locally modeled on H

3 and so clearly have a Rie-
mannian smoothing. Likewise, closed Seifert fibered manifolds supporting a locally
CAT(0)-metric automatically support a metric locally modeled on the geometries
E
3 or H

2 � E
1, and hence have a Riemannian smoothing (see, e.g., [BrH, Theorem

II.7.27, p. 258]). Next, consider the case where there are at least two pieces in the JSJ
decomposition of M 3. If at least one of the components is hyperbolic, then Leeb [Lb,
Theorem 3.3] has shown that M 3 has a Riemannian smoothing. The only remaining
case is if all components in the JSJ decomposition are Seifert fibered, in which case
M 3 is a 3-dimensional graph manifold.

Within the class of 3-dimensional graph manifolds, Buyalo and Svetlov have
completely determined which manifolds support Riemannian metrics of nonposi-
tive sectional curvature. More precisely, they show (see [BuSv, Theorem 2.3]) that
a 3-dimensional graph manifold supports a Riemannian metric of nonpositive sec-
tional curvature if and only if an associated family of cohomological equations has a
solution. The “only if” portion of this result is established in [BuSv, Lemma 2.2], and
relies on the fact that a nonpositively curved Riemannian metric on a graph manifold
has the following special properties:
(1) The tori appearing in the JSJ decomposition can be chosen to be totally geode-

sic flat tori.
(2) The metric in each piece locally splits as a product, in a manner compatible

with the Seifert structure.
(3) The Seifert fibers within a piece are geodesics, and all regular fibers have the

same length.
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But a locally CAT(0)-metric on a graph manifold must satisfy the same three proper-
ties: (1) follows from the flat torus theorem (see [BrH, Chapter II.7]), while (2) and
(3) are consequences of the splitting theorems in CAT(0)-spaces (see the discussion
in [BrH, proof of Theorem II.7.27]). Using these three properties, the proof of [BuSv,
Lemma 2.2] applies verbatim, and shows that if a graph manifold supports a locally
CAT(0)-metric, then it satisfies the requisite cohomological condition for supporting
a Riemannian metric of nonpositive curvature. Applying the “if” portion of [BuSv,
Theorem 2.3], we conclude that M 3 has a Riemannian smoothing, as desired.

3. Obstructions in dimensions � 5
In this section, we briefly summarize the known obstructions to Riemannian smooth-
ing. These obstructions start making an appearance in dimensions at least 5.

3.1. Example: No smooth structure
Given a Riemannian smoothing f W N !M of a locally CAT(0)-manifold M , one
can forget the Riemannian structure and simply view N as a smooth manifold. This
immediately tells us that, if M has a Riemannian smoothing, then it must be homeo-
morphic to a smooth manifold; that is, the topological manifold M must be smooth-
able. The first examples of aspherical topological manifolds not homotopy equiva-
lent to smooth manifolds were constructed (in all dimensions � 13) by Davis and
Hausmann [DH] by using the reflection group trick. Nonsmoothable aspherical PL-
manifolds were constructed (in all dimensions � 8) in the same paper. For the sake
of completeness, we now sketch out a (slightly different) construction of a closed 8-
dimensional locally CAT(�1)-manifoldM 8 which is not homotopy equivalent to any
smooth 8-manifold.

Recall that Milnor [Mi] constructed an 8-dimensional PL-manifold N 8 which is
not homotopy equivalent to any smooth 8-manifold. Milnor’s example had the prop-
erty that the second rational Pontrjagin class p2.N 8/ was not an integral class, and
hence, cannot be homeomorphic to a smooth manifold. Let us take N 8 equipped with
a PL-triangulation. Charney and Davis [CD] developed a strict hyperbolization pro-
cess, which inputs a triangulated manifold M and outputs a piecewise hyperbolic
manifold h.M/ equipped with a locally CAT(�1)-metric. Furthermore, they showed
that the hyperbolization process preserves rational Pontrjagin classes. In particular,
applying their strict hyperbolization process to N 8, we obtain a locally CAT(�1)-
manifold h.N 8/, having the property that p2.h.N 8// fails to be integral, and hence
forcing h.N 8/ to be nonsmoothable. Finally, we note that the Borel conjecture is
known to hold for this class of aspherical manifolds (see [BL]), so if h.N 8/ was
homotopy equivalent to some smooth manifold, it would in fact be homeomorphic to
the smooth manifold (contradicting nonsmoothability). Similar examples can be con-
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structed in all dimensions of the form nD 4k, with k � 2 (see also the discussion in
[BLW, Section 5]).

3.2. Example: No PL structure
In a similar vein, it is also possible to construct (topological) locally CAT(0)-manifolds
that do not even support any PL structures. We recall such an example from [DJ, Sec-
tion 5a]. We let M 4.E8/ denote the E8 homology manifold. Recall that this space is
constructed by first plumbing together eight copies of the tangent disk bundle to S2,
according to the pattern given by the E8 Dynkin diagram. This results in a smooth
4-manifold with boundary N 4, whose boundary @N 4 is homeomorphic to Poincaré’s
homology 3-sphere. Coning off the boundary gives the space M 4.E8/, a simply con-
nected homology manifold of signature 8 with one singular point. Taking a triangu-
lation of N 4, one can extend it (by coning on the boundary) to a triangulation of
M 4.E8/, which we can then hyperbolize to obtain a space H 4.

The space H 4 is now a homology 4-manifold of signature 8 with one singular
point, and comes equipped with a locally CAT(0)-metric. It follows from Edwards’s
double suspension theorem that H 4 � T k is a topological .4C k/-manifold (where
T k denotes the k-torus and k � 1). The manifolds H 4 � T k come equipped with a
(product) locally CAT(0)-metric, but it follows from the arguments in [DJ, Section 5a]
that they do not admit a PL structure. Thus, in each dimension � 5 there is a locally
CAT(0)-manifold with no PL structure.

3.3. Example: Universal cover distinct from R
n

For a third family of examples, we recall that the classic Cartan–Hadamard theorem
asserts that the universal cover of a Riemannian manifold of nonpositive sectional
curvature must be diffeomorphic to R

n. In particular, a CAT(0)-manifold M with the
property that QM is not diffeomorphic to R

n cannot support a Riemannian smoothing.
Davis and Januszkiewicz constructed (see [DJ, Theorem 5b.1]) examples of locally
CAT(0)-manifolds M n (for n� 5), with the property that their universal covers QM n

are not simply connected at infinity (and hence, not homeomorphic to R
n). Further

examples of this type are described in [ADG].

3.4. Example: Boundary at infinity distinct from Sn�1

In the previous three families of examples, topological properties (smoothability, PL-
smoothings, the topology of universal cover) were used to obstruct the existence of a
Riemannian metric of nonpositive sectional curvature. The next family of examples
have obstructions that arise from the large scale geometry of the universal covers.
Associated to a CAT(0)-space X , we have a topological space called the boundary at
infinity @1X . If X is Gromov hyperbolic, then the homeomorphism type of @1X is a
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quasi-isometry invariant of X . In particular, if X is the universal cover of a compact,
locally CAT(�1)-space Y , then @1X depends only on �1.Y /. When X is the univer-
sal cover of an n-dimensional closed Riemannian manifold of nonpositive sectional
curvature, the corresponding @1X is homeomorphic to the standard sphere Sn�1.

Now consider the locally CAT(�1) 5-manifold M 5 obtained by applying a strict
hyperbolization procedure (from [CD]) to the double suspension of a triangulation of
Poincaré’s homology 3-sphere. Denote by X5 its universal cover, and observe that,
although @1X5 has the homotopy type of S4, it is proved in [DJ, Section 5c] that
@1X5 is not locally simply connected. So @1X5 cannot be homeomorphic to S4 (in
fact, is not even an absolute neighborhood retract), despite the fact that X5 is home-
omorphic to R

5. Thus, M 5 is not homotopy equivalent to a Riemannian 5-manifold
of strictly negative sectional curvature. The same argument applies to a strict hyper-
bolization of the manifold M 4.E8/ � S

1 discussed in Section 3.2. There are similar
examples in higher dimensions n > 5 obtained by strictly hyperbolizing double sus-
pensions of homology .n�2/-spheres. Thus, in each dimension n� 5 there are closed
locally CAT(�1)-manifoldsM n with universal cover homeomorphic to R

n but which
are not homotopy equivalent to any Riemannian n-manifold of strictly negative sec-
tional curvature.

3.5. Example: Stability under products
Finally, we point out one last method for producing manifolds which do not have
Riemannian smoothings.

PROPOSITION 2
Let M n be a locally CAT(0)-manifold which does not support any Riemannian
smoothing, and assume that n� 5. Then forK an arbitrary locally CAT(0)-manifold,
the productM �K is a locally CAT(0)-manifold which does not support any Rieman-
nian smoothing.

Proof
To see this, we first note that the product of the locally CAT(0)-metrics on M and
K provides a locally CAT(0)-metric on M �K . Now assume that M �K supported
a Riemannian smoothing f W N !M �K , and let g be the associated Riemannian
metric of nonpositive sectional curvature on N . Since �1.N /Š �1.M/��1.K/, the
classical splitting theorems (see [GW], [LY], [Sc]) imply that we have a correspond-
ing geometric splitting .N;g/Š .M 0; g1/� .K 0; g2/ having the properties that
� each factor can be identified with a totally geodesic submanifold of .N;g/;

and
� the factors satisfy �1.M/Š �1.M

0/ and �1.K/Š �1.K 0/.
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So we see that M 0 is a Riemannian manifold of nonpositive sectional curvature, of
dimension � 5 satisfying �1.M/ Š �1.M

0/. Since the Borel conjecture is known
to hold for this class of manifolds (see [FJ]), there exists a homeomorphism M 0!

M realizing the isomorphism of fundamental groups. This provides a Riemannian
smoothing of M , giving us the desired contradiction.

We remark that property (4) in our main theorem can be deduced by a virtually
identical argument: instead of appealing to the Borel conjecture to obtain a contradic-
tion, we resort instead to property (3) in our main theorem.

4. Special triangulations of S3

To establish our main theorem, we need to construct triangulations of the 3-sphere
having certain specific combinatorial properties. This is the focus of the present sec-
tion.

Recall that a simplicial complex is flag provided that it is determined by its 1-
skeleton; that is, every k-tuple of pairwise incident vertices spans a .k � 1/-simplex
�k�1 (for k � 3). A subcomplex †0 of a simplicial complex † is full provided that
every simplex � �†whose vertices lie in†0 satisfies � �†0. We say that a cyclically
ordered 4-tuple of vertices .v1; v2; v3; v4/ in a simplicial complex forms a square
provided that each consecutive pair of vertices determines an edge in the complex,
while the pairs .v1; v3/ and .v2; v4/ do not determine an edge.

Definition 3
A flag triangulation of S3 is said to have isolated squares provided that no two squares
in the triangulation intersect (i.e., each vertex lies in at most one square). For such a
triangulation, the collection of squares form a link in S3. We call the isotopy class of
this link the type of the triangulation.

In this section, we establish the following.

THEOREM 4
Let k � S3 be any prescribed link in the 3-sphere. Then there exists a flag triangula-
tion of S3, with isolated squares, and with type the given link k.

We establish this result in several steps, gradually building up the triangulation to
have the properties we desire.

Step 1: Triangulating the solid torus. As a first step, we describe a triangulation
of a solid torus D

2 � S1. Recall that there is a canonical decomposition of the 3-
dimensional cube Œ0; 1�3 �R

3 into six tetrahedra. This triangulation is determined by
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Figure 1. Basic triangulation of a triangular prism

the inequalities 0 � x�.1/ � x�.2/ � x�.3/ � 1, where � ranges over the six possible
permutations of the index set ¹1; 2; 3º. Now if we restrict to the region where x1 �
x2, we obtain a triangulation of the triangular prism �2 � Œ0; 1� into exactly three
tetrahedra. Let us denote by F;G the two square faces of the triangular prism defined
via the hyperplanes x1 D 0 and x1 D x2, respectively. The triangulation of the prism
cuts each of these squares into two triangles along the diagonal originating at the
origin. We call the bottom of the prism the triangle corresponding to the intersection
with the hyperplane x3 D 0, and we call the top of the prism the triangle arising from
the intersection with the hyperplane x3 D 1. Figure 1 contains an illustration of this
decomposition of the triangular prism. In the picture, the two square sides facing us
are F and G, respectively.

We can now take three copies of the triangular prism and cyclically identify each
Fi to the corresponding GiC1. This gives a new triangulation of a triangular prism
(with nine tetrahedra), with an inherited notion of “top” and “bottom.” This new tri-
angulation has the following key properties:
� There exists a unique edge e of the triangulation joining the center of the

bottom triangle to the center of the top triangle.
� The center of the bottom triangle is adjacent to every vertex in the triangula-

tion.
� Aside from the center of the bottom triangle, the center of the top triangle is

adjacent to no other vertices in the bottom of the prism.
We call a copy of this canonical triangulation of the triangular prism a block. Fixing
an identification of D

2 with the base of the triangular prism, we can think of a block
as a triangulation of D

2 � Œ0; 1�.
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To obtain the desired triangulation of the solid torus D
2 � S1, we “stack” four

blocks together. More precisely, we take four blocks and cyclically identify the top of
each block with the bottom of the next block. This gives us a triangulation of the solid
torus D

2 � S1 into thirty-six tetrahedra. We say that blocks are adjacent or opposite
according to whether or not they share a vertex. Corresponding to the above properties
for the individual blocks, this triangulation of the solid torus satisfies the following.
� The triangulation contains a canonical, unique square having the property that

it is entirely contained within the interior of D
2 � S1; the four vertices of this

square are called interior vertices.
� All the remaining vertices of the triangulation lie on the boundary of D

2 � S1

and are called boundary vertices.
� Every tetrahedron in the triangulation contains at least one interior vertex.
� Every interior vertex has the property that, if one looks at all adjacent bound-

ary vertices, these vertices are all contained in single block (the unique block
whose bottom contains the given interior vertex).

We call the unique square in the interior of this triangulation of D
2 � S1 the core of

the solid torus. Observe that, of the thirty-six tetrahedra occurring in the triangulation,
exactly twenty-four of them arise as the join of a triangle in @D2�S1 with an interior
vertex, while the remaining twelve occur as the join of an edge in @D2 � S1 with an
edge in the core.

Step 2: Getting squares realizing the link k. Next, let us take the desired link k,
and take pairwise disjoint regular closed neighborhoods ONi of the individual com-
ponents of the link. Each of these neighborhoods is homeomorphic to a solid torus,
and we denote by Ni � ONi the slightly smaller solid torus of radius half as large. We
proceed to construct a triangulation of S3 as follows. First, within each of the tori Ni ,
we use the triangulation described in Step 1, identifying the components of the link
with the cores of the various triangulated solid tori. Second, by removing the interi-
ors of all the ONi , we obtain a compact 3-manifold M with boundary @M D

`
@ ONi .

Since 3-manifolds can be triangulated, we now choose an arbitrary triangulation of
this 3-manifold M , obtaining a triangulation of M [

`
Ni � S

3. The closure of the
complementary region is a disjoint union of the sets ONi nNi , each of which is topo-
logically a fattened torus S1 � S1 � Œ0; 1�. Furthermore, we are given triangulations
T0;T1 of the two boundaries S1 � S1 � ¹0º, S1 � S1 � ¹1º (coming from the tri-
angulations of @Ni and @M , respectively). But any two triangulations of the 2-torus
S1 � S1 have subdivisions which are simplicially isomorphic, by the 2-dimensional
Hauptvermutung. Letting T 0 denote such a triangulation, we assign this triangulation
on the level set S1 � S1 � ¹1=2º.

Finally, we extend the triangulation into the two regions S1 � S1 � Œ0; 1=2� and
S1�S1� Œ1=2; 1� by using the following procedure. On each of these two regions, we
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have a triangulation Ti on one of the boundary components and a subdivision T 0 of the
triangulation on the other boundary component. We proceed to subdivide inductively
each of the regions � � I , where � ranges over the simplices of the triangulation Ti .
First of all, we add in edges �0�I for each vertex in the triangulation Ti . Now assum-
ing that we have already triangulated the product T

.k�1/
i � I of the .k � 1/-skeleton

of Ti with the interval, let us extend the triangulation to T k
i � I . Given a k-simplex

�k , we have that the region �k � I is topologically a closed .k C 1/-dimensional
ball, with boundary that can be identified with .�k � ¹0º/

`
.�k � ¹1º/

`
.@�k � I /.

Furthermore, the bottom level consists of a simplex (the original �k 2 Ti ), the top
level consists of a subdivision of the simplex (the subdivision of �k inside T 0), and
each of the faces has already been triangulated. In other words, we see that we have
a topological D

kC1, along with a given triangulation of @DkC1. But it is now easy
to extend: just cone the given triangulation on the boundary inward. Performing this
process on each of the �k � I now provides us with a triangulation of the set T k

i � I .
This results in a triangulation of the 3-sphere with the following three properties:
� The triangulation contains a collection of squares, whose union realizes the

given link k.
� For each of the squares, the union of the simplices incident to the square forms

a regular neighborhood D
2 � S1, triangulated as in Step 1.

� All these regular neighborhoods are pairwise disjoint.
Step 3: Getting rid of all other squares. At this stage, we have constructed a

triangulation of S3 which contains a collection of squares realizing the given link
k. However, there are still two problematic issues: our triangulation might not be
flag, and it might fail the isolated squares condition. The third step is to modify the
triangulation in order to ensure these two additional conditions. To fix some notation,
we will keep using Ni to denote the regular neighborhood of the squares that we are
interested in keeping. Recall that each of these is topologically a solid torus D

2 �S1,
with triangulation combinatorially isomorphic to the triangulation given in Step 1. We
first modify the given triangulation in the complement of the Ni , and subsequently
change it within the regions Ni .

Let us denote by X the closure of the complement of the union of the Ni . This
is topologically a 3-manifold with boundary, equipped with a triangulation (from the
previous two steps). Now the standard method of obtaining a flag triangulation is
to take the barycentric subdivision of a given triangulation. But unfortunately, this
process creates lots of squares. Recently, Przytycki and Świa�tkowski [PS], building
on earlier work of Dranishnikov [Dr], have found a different subdivision process that
takes a 3-dimensional simplicial complex and returns a subdivision of the complex
that is flag and has no squares. For an arbitrary simplicial complex Z, we denote
by Z� the simplicial complex obtained by applying this procedure to Z. We modify
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the given triangulation of S3 in two stages. First we modify the triangulation in X ,
by replacing X by X�. Next, we describe the extension of this triangulation into the
various components Ni . For the original triangulation of each of the Ni , we see that
the thirty-six tetrahedra are of one of two types:
(a) Twenty-four of them are the join of one of the interior vertices with a triangle

on @Ni .
(b) Twelve of them are the join of one of the four edges on the core square with

an edge on @Ni .
Now the subdivision X� restricts to a subdivision on each simplex in @Ni , which
changes the simplicial complex @Ni into .@Ni /�. The effect of this subdivision on
simplices in @Ni is to subdivide each edge in @Ni into two, and to replace each original
triangle by the subdivision in Figure 2. We extend the subdivision .@Ni /� of @Ni to a
subdivision N 0i of the original Ni in the most natural way possible:
(a) Each tetrahedron in Ni that was a join of an interior vertex with a triangle

� � @Ni gets replaced by the join of the same vertex with �� (i.e., we cone
the subdivision of � to the interior vertex), subdividing the original tetrahedron
into ten new tetrahedra (the cone over Figure 2).

(b) Each tetrahedron that was a join of an edge on the square with an edge on @Ni
gets replaced by two tetrahedra (i.e., the join of the internal edge with each of
the two edges obtained from subdividing the boundary edge).

This changes the original triangulation on each Ni into a new triangulation N 0i with
a total of 264 tetrahedra. We will continue to use the term block to refer to the sub-
complexes of the N 0i that are subdivisions of the original blocks in Ni . Observe that,
in each of the Ni , our subdivision process did not introduce any new vertices in the
interior of the Ni . As such, the core squares have been left unchanged (and we will
still refer to them as the cores of the N 0i ).

Figure 2. Dranishnikov subdivision of triangles
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Finally, we note that by construction the two subdivisions N 0i of Ni , and X� of
X coincide on their common subcomplex @Ni D Ni \ X . In particular, they glue
together to give a well-defined triangulation † of S3.

Step 4: Verifying that † has the desired properties. Note that the triangulation †
contains a copy of X�, as well as copies of each N 0i . These partition the triangulation
† into various pieces.

LEMMA 5
The complex X�, the individual N 0i , and the intersections X� \N 0i are all full sub-
complexes of †.

Proof
This follows easily from the following two facts:
� Each of the intersections X� \N 0i D .X \Ni /

� is a full subcomplex of X�.
� Each of the intersections X� \ N 0i D @N

0
i is a full subcomplex of the corre-

sponding N 0i .
The first statement is a direct consequence of [PS, Lemma 2.10], where it is shown
that if U is any subcomplex of W , then U � is a full subcomplex of W �. The second
statement is a consequence of the construction of the triangulation N 0i , since by con-
struction, each simplex of N 0i which is not contained in @N 0i contains a vertex in the
interior of N 0i (and hence in N 0i � @N

0
i ).

LEMMA 6
The triangulation N 0i is flag.

Proof
Given a collection of pairwise incident vertices V , there are three possibilities: V
contains two, one, or no interior vertices of N 0i . We consider each of these three cases
in turn.

If V contains no interior vertices, then V � @N 0i , and since the latter is a full
subcomplex of N 0i (see Lemma 5), V is in fact a collection of vertices in @N 0i which
are pairwise adjacent within @N 0i . But recall that @N 0i is just the triangulation .@Ni /�,
and hence is flag. This implies that V spans a simplex in @N 0i .

If V contains one interior vertex v, then, by the previous argument, V �¹vº spans
a simplex in @N 0i D .@Ni /

� which is contained within some (maximal) 2-dimensional
simplex � in .@Ni /�. Note that, since all vertices V � ¹vº are adjacent to the inte-
rior vertex v, they must lie in the block B corresponding to v. So the 2-dimensional
simplex � � .@Ni /� can additionally be chosen to lie within that same block B . This
means that there exists a 2-dimensional simplex � 2 @Ni with the property that � is
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one of the ten triangles in �� (see Figure 2). Finally, observe that � must lie within
the block B , so the join of � with the interior vertex v defines a tetrahedron inside the
original triangulation Ni (of type (a) in the terminology of Step 3). But recall how the
subdivision .@Ni /� of the triangulation @Ni was extended into Ni : for tetrahedra of
type (a), the subdivision on the boundary was coned off to the interior vertex. This
implies that the join of � and the vertex v defines a tetrahedron in N 0i , and as the set
V is a subset of the vertex set of this tetrahedron, we deduce that V spans a simplex
in N 0i .

Finally, if V contains two interior vertices v;w, let Bv;Bw denote the corre-
sponding blocks. Since V � ¹v;wº is a collection of vertices in @N 0i D .@Ni /

� which
are adjacent to both interior vertices, we see that the set V � ¹v;wº must lie within
Bv \ Bw , which is a 1-dimensional complex homeomorphic to S1 (subdivided into
6 consecutive edges). Since V � ¹v;wº are pairwise adjacent, there is an edge � in
Bv \ Bw whose vertex set contains V � ¹v;wº. This edge is contained in a subdi-
vision of an edge � from the original triangulation @Ni , where � is an edge which
is common to the two blocks Bv and Bw . In particular, the join ! � � of � with the
edge ! in the core joining v to w defines a tetrahedron in the original triangulation
Ni (of type (b) in the terminology of Step 3). Again, from the way the subdivision
.@Ni /

� was extended inward, we recall that the tetrahedron ! � � , being of type (b),
is replaced by two tetrahedra ! � � and ! � � 0, where �� D � [ � 0. Since the join of
� and ! defines a tetrahedron in N 0i and since the set V is a subset of the vertex set
of this tetrahedron, we again deduce that V spans a simplex in N 0i .

COROLLARY 7
The triangulation † is flag.

Proof
If all the vertices are contained in X�, then the claim follows immediately from the
fact that X� itself is flag (see [PS, Proposition 2.13]). So we can now assume that at
least one of the vertices is contained in the interior of one of the N 0i .

Note that an interior vertex in one of the N 0i has its closed star entirely contained
within the same N 0i . So we see that the tuple of pairwise adjacent vertices must be
entirely contained within the same subcomplex N 0i . But by Lemma 6, we have that
each of the subdivided N 0i are themselves flag, finishing the proof.

PROPOSITION 8
The only squares in † are the cores of the various N 0i .
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Proof
To see this, let us start with an arbitrary square .v1; v2; v3; v4/ inside the triangula-
tion †. Our goal is to show that all four vertices must be interior vertices to a single
N 0i , which would then force the square to be the core of the corresponding N 0i . To
this end, we first note that, if the square does not contain any interior vertex to any
of the N 0i , then it is contained entirely within X�. But from Lemma 5, the latter is a
full subcomplex of †, and by the result of Przytycki and Świa�tkowski [PS, Proposi-
tion 2.13], has no squares. So, we may assume that at least one of the vertices is an
interior vertex to some N 0i .

If all the vertices are interior to N 0i , then we are done, so by way of contradiction
we can also assume that the square contains a vertex which is not interior toN 0i (which
we call exterior vertices to N 0i ). Now the square .v1; v2; v3; v4/ contains exactly four
edges, and since it contains vertices which are both interior and exterior to N 0i , we
must have that at least two of the four edges connect an interior vertex to an exterior
vertex (call these intermediate edges).

We now argue that in fact the square must contain exactly two intermediate edges.
Indeed, if there were � 3 intermediate edges, then one could find a pair of adjacent
intermediate edges that share a common exterior vertex. Up to cyclic relabeling, we
may assume that v1 is the exterior vertex. Considering the other endpoints of these
two intermediate edges, we see that v2; v4 are interior vertices for N 0i , which are
both adjacent to the exterior vertex v1 2 @N 0i . But this implies that the two blocks
whose bottoms contain v2 and v4 cannot be opposite, so must in fact be adjacent.
This forces v2 and v4 to be adjacent vertices in the core of N 0i , contradicting the fact
that .v1; v2; v3; v4/ forms a square. So our hypothetical square .v1; v2; v3; v4/ must
have exactly two intermediate edges, leaving us with exactly two possibilities:
(1) The intermediate edges are not adjacent in the square .v1; v2; v3; v4/.
(2) The intermediate edges are adjacent at an interior vertex ofN 0i , and the remain-

ing edges are exterior.
We now explain why each of these possibilities gives rise to a contradiction.

In case (1), we note that up to cyclic relabeling, we have that v1; v2 are adjacent
vertices in the core of the N 0i , while v3; v4 are adjacent vertices in @N 0i . We can also
assume that the top of the block B1 corresponding to v1 attaches to the bottom of the
block B2 corresponding to v2. Now recall that an interior vertex is only adjacent to
boundary vertices in its corresponding block. Since v3 is adjacent to v2, we have that
v3 must lie in the block B2. Similarly, the vertex v4 being adjacent to v1 must lie in
the block B1. Since v3 and v4 are adjacent, we conclude that one of these two vertices
must lie in the common boundary B1 \ B2. But such a vertex is incident to both v1
and v2, violating the square condition for .v1; v2; v3; v4/.
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It remains to rule out case (2). To this end, we may again assume that v1 is
the common interior vertex for the two intermediate edges. Now if B denotes the
block corresponding to v1, then we have that the boundary vertices v2; v4, both being
adjacent to v1, must actually lie in B . Moreover, for .v1; v2; v3; v4/ to be a square,
we must have that v3 is not adjacent to v1, and hence that v3 … B . Next we argue
that the vertex v3 must lie inside N 0i , that is, that v3 … Int.X�/. So let us assume,
by way of contradiction, that v3 2 Int.X�/. Thinking of the point v3 in terms of the
original triangulation X , there are four possible cases: v3 is a vertex in X , or v3 is
in the interior of a simplex of dimension 1, 2, or 3. Each of these cases leads to a
contradiction, as follows.
(1) A vertex in the interior of the original triangulationX is at (combinatorial) dis-

tance � 2 from @X� in the subdivided triangulation X�. Since v3 is adjacent
to vertices v2; v4 2 @X�, this first case cannot occur.

(2) If v3 is in the interior of a 1-simplex �1 �X , then v3 2 Int.X�/ would force
the 1-simplex to have at most one endpoint on @X . In the subdivided X�, v3
would then be the midpoint of ��1 , which has at most one neighbor on @X�,
again a contradiction.

(3) If v3 is in the interior of a 2-simplex �2 �X , then v3 2 Int.X�/ and adjacent
to two vertices on @X� forces the simplex �2 to be the join of an edge on @X
(containing v2; v4) with a vertex in Int.X/. Since the pair of vertices v2; v4 on
an edge of the subdivided triangle ��2 are both adjacent to an interior vertex of
��2 , they have to be incident to each other (see Figure 2), contradicting the fact
that .v1; v2; v3; v4/ form a square.

(4) If v3 is in the interior of a 3-simplex �3 � X , then �3 is either the join of an
edge in @X with an edge in Int.X/, or the join of a 2-simplex in @X with a
vertex in Int.X/. In either case, thinking now of the subdivided complex X�,
we can view v2; v4 2 �

�
3 as vertices lying on the subdivision of a single face

of �3, which are both incident to an interior vertex of ��3 . But then Lemma
2.11 in [PS] implies that v2 and v4 are adjacent to each other, which again
contradicts the fact that .v1; v2; v3; v4/ forms a square.

Since this rules out all four possibilities, v3 2 Int.X�/ cannot occur.
Since v3 2 N 0i is adjacent to both the vertices v2; v4 2 B , we see that the latter

are either both in the top of B or both in the bottom of B , while v3 lies in an adjacent
block B 0. Let us assume that the vertices lie in the top of B (the other case being com-
pletely analogous), so that we can view v2; v4 as lying in the bottom of the block B 0.
We now have the following situation occurring inside the boundary of the block B 0:
we have two vertices v2; v4 lying in the bottom of the block, and we have a vertex
v3 which does not lie in the bottom of B 0, but which is adjacent to both v2 and v4.
Recall that the triangulation of the block B 0 is a subdivision (given in Step 3) of a
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Figure 3. Triangulation on the boundary of a block

canonical triangulation of the triangular prism. This subdivision takes the boundary
of the original triangulation and applies the Dranishnikov subdivision procedure to it:
each edge gets subdivided into two, and each triangle gets replaced by the subdivi-
sion in Figure 2. The resulting triangulation on S1 � Œ0; 1� is shown in Figure 3. In
the illustration, the left and right sides of the rectangle have to be identified, and the
“bottom” and “top” of the boundary of the block is precisely the bottom and the top
of the rectangle. Note that this triangulation actually consists of six original triangles
(see Step 1), each of which has been subdivided into ten triangles as in Figure 2 (see
Step 3). Finally, inspecting the triangulation in Figure 3, we observe that there are
exactly six vertices which are adjacent to two distinct vertices in the bottom of the
block: these are the only possibilities for v3. But for each of these six vertices, we
see that the two adjacent vertices in the bottom of the block (i.e., the corresponding
v2 and v4) are adjacent to each other, contradicting the fact that .v1; v2; v3; v4/ was a
square.

Since we have ruled out all other possibilities, we see that the square cannot
contain any intermediate edges; that is, the four vertices of our hypothetical square
.v1; v2; v3; v4/ must all lie in the interior of a single N 0i . This implies that our square
must coincide with the core of one of the N 0i , as desired.

It follows from Corollary 7 that the triangulation† is flag, and from Proposition 8
that it has isolated squares with type given by the original link k. This completes the
proof of Theorem 4.

5. Constructing the manifold
In this section, we establish the main theorem. Our goal is to use some of the triangu-
lations of S3 constructed in the previous section to produce a 4-dimensional manifold
M with the desired properties. In order to do this, we start by reviewing some prop-
erties of the Davis complex for right-angled Coxeter groups.

Recall that one can associate to the 1-skeleton of any simplicial complex L a
corresponding right-angled Coxeter group �L. This group has one generator xi of
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order two for each vertex vi of the simplicial complex L, and a relation xixj D xjxi
whenever the corresponding vertices vi ; vj are adjacent in L. Let us consider the
associated Davis complex QPL. This complex is obtained via the following procedure.
We first consider the cubical complex Œ�1; 1�V.L/, that is to say, the standard cube
with dimension equaling the number of vertices in the simplicial complex L. Now
every face of the cube is an affine translation of Œ�1; 1�S for some subset S � V.L/,
which we call the type of the face. Consider the cubical subcomplex PL � Œ�1; 1�V.L/

consisting of all faces whose type defines a simplex in L, and let QPL be its universal
cover. Observe that .Z/jV.L/j acts on PL where each generator xi acts by reflection
on the corresponding coordinate. The Coxeter group �L is the group of all lifts of
this action to QPL. The kernel of the resulting morphism �L! .Z2/

jV.L/j coincides
with the fundamental group of PL (see the discussion in [Da1, pp. 11–12]). There is
a natural piecewise flat metric on PL, obtained by making each k-dimensional face
in the cubulation of PL isometric to Œ�1; 1�k �R

k . Properties of the cubical complex
PL are intimately related to properties of the simplicial complex L. For instance, we
have the following:
(a) If L is a flag complex, then the piecewise flat metric on PL is locally CAT(0).
(b) The links of vertices in PL are canonically simplicially isomorphic to L.
(c) If L is the join of two subcomplexes L1;L2, then the space PL splits isomet-

rically as a product of PL1 and PL2 .
(d) If L0 is a full subcomplex of a flag complex L, then the natural inclusion

induces a locally convex embeddingPL0 ,! PL (and hence induces an embed-
ding �1.PL0/ ,! �1.PL/).

(e) If the geometric realization of L is homeomorphic to an .n� 1/-dimensional
sphere, then PL is an n-dimensional manifold.

(f) If L is a PL-triangulation of Sn�1 then PL is a PL-manifold, and in addition,
if L is a flag complex, then @1 QPL is homeomorphic to Sn�1.

(g) If L is a PL-triangulation of Sn�1, then PL is a smooth manifold.
With the exception of (g), these results can be found in [Da1]. Property (a) is due to
Gromov (a proof is given in [Da1, Theorem 12.2.1, p. 233]). Properties (b), (c), and
(e) follow immediately from the construction (see [Da1, Section 1.2]). Property (d)
follows from the fact that the natural piecewise spherical structure on the flag complex
L is CAT(1) (see [Da1, pp. 516–517]). (This was also the essential fact in the proof
of (a).) For (f), see [Da1, pp. 197, 237]. The argument for (g) goes as follows. Since
L is a PL-triangulation of Sn�1, the fundamental chamber, K WD PL \ Œ0; 1�jV.L/j, is
an n-disk and its faces are also disks. It follows as in [Da2, Section 17] that there is
a face-preserving PL-homeomorphism from K to a smooth manifold with corners (in
which each stratum is a disk) and that this smooth manifold with corners structure on
K induces a smooth structure on PL.
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In the previous section, we showed that given a prescribed link k in S3, one can
construct a triangulation of S3 with isolated squares, and with type the given link.
Let us apply this result in the special case where k is a nontrivial knot inside S3. Let
L denote the corresponding triangulation of S3. Since we are in the special case of
dimension 3, the triangulation L, in addition to being flag, is automatically PL. We
now consider the cubical complex M WD PL associated to the corresponding right-
angled Coxeter group �L. In view of our earlier discussion, we have the following.

FACT 1
The space M is a smooth 4-manifold (from (g) above), and the natural piecewise
Euclidean metric on M induced from the cubulation is locally CAT(0) (from (a)
above). Furthermore, the boundary at infinity of QM is homeomorphic to S3 (from
(f) above), and QM is diffeomorphic to R

4.

The very last statement in Fact 1 can be deduced from work of Stone [St, Theo-
rem 1], who showed that a metric (piecewise flat) polyhedral complex which is both
CAT(0) and a PL-manifold without boundary must in fact be PL-homeomorphic to
the appropriate R

n. Since our QM satisfies these conditions, this ensures that QM is
PL-homeomorphic to the standard R

4. But in the 4-dimensional setting, there is no
difference between PL and smooth, so QM is in fact diffeomorphic to R

4.
Our goal now is to show that M has the properties postulated in our main theo-

rem. Note that properties (1) and (2) are included in Fact 1, while property (4) can be
easily deduced from property (3) (see the comment after the proof of Proposition 2).
So we are left with establishing property (3), which is that �1.M/ cannot be iso-
morphic to the fundamental group of any nonpositively curved Riemannian manifold.
This last property will be established by looking at the large-scale geometry of flats
inside the universal cover QM .

As a starting point, let us describe some flats inside QM . Observe that each square
inside the triangulation L is a full subcomplex isomorphic to a 4-cycle �. The right-
angled Coxeter group associated to a 4-cycle is a direct product of two infinite dihe-
dral groups �� ŠD1 �D1 D .Z2 � Z2/ � .Z2 � Z2/ (see (c) above) embedded in
the group �L. The corresponding complex P� is isometric to a flat torus (with cubu-
lation given by sixteen squares, obtained via the identification S1 �S1 D���). By
considering the unique square inside the triangulation L, we obtain the following.

FACT 2
M contains a locally convex (hence �1-injective), 2-dimensional flat torus T 2 (see (d)
above). Furthermore, the torus T 2 is not locally flat inside the ambient 4-dimensional
manifoldM because it is locally knotted at each vertex, in the sense that at each such
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vertex v, there is a canonical simplicial isomorphism .lkv.M/; lkv.T
2// Š .L;k/,

where k is the unique (knotted) square in the triangulation L (see (b) above).

Since the embedding T 2 ,!M is locally convex, by lifting to the universal cover,
we obtain a 2-dimensional flat F ,! QM which is locally knotted at lifts of vertices.
This induces an embedding of the corresponding boundaries at infinity, giving us an
embedding of @1F Š S1 into @1 QM Š S3. The rest of our argument relies on the
following “local-to-global” assertion.

ASSERTION

The embedding @1F Š S1 into @1 QM Š S3 defines a nontrivial knot in the boundary
at infinity of QM .

That is to say, the “local knottedness” of the flat propagates to “global knotted-
ness” of its boundary at infinity. For the sake of exposition, we delay the proof of the
assertion, and first show how we can use it to deduce the main theorem. To this end,
let us assume that .M 0; g/ is a closed manifold equipped with a Riemannian metric of
nonpositive sectional curvature and that we are given an isomorphism of fundamental
groups � W � D �1.M/! �1.M

0/. From this assumption, we want to work towards
a contradiction.

The first step is to use the isomorphism of fundamental groups to obtain an equiv-
ariant homeomorphism between the corresponding boundaries at infinity. As a cau-
tionary remark, we recall that given a pair X1;X2 of CAT(0)-spaces with geometric
G-actions, a celebrated example of Croke and Kleiner [CK] shows that the corre-
sponding boundaries at infinity @1X1 and @1X2 need not be homeomorphic. Even
if the boundaries at infinity are homeomorphic, an example of Bowers and Ruane
[BoR] (see also Buyalo [Bu]) shows that the homeomorphism might not be equivari-
ant with respect to the G-action.

In his thesis, Hruska [H] introduced CAT(0)-spaces with isolated flats. Subse-
quent work of Hruska and Kleiner [HK] established the following two foundational
results for CAT(0)-spaces with isolated flats.
(1) For a pair X1;X2 of CAT(0)-spaces with geometric G-actions, if X1 has

isolated flats, then so does X2 (see [HK, Corollary 4.1.3]), and there is a
G-equivariant homeomorphism between @1X1 and @1X2 (see [HK, Theo-
rem 4.1.8]).

(2) For a group G acting geometrically on a CAT(0)-space X , we have that X has
the isolated flats property if and only if G is a relatively hyperbolic group with
respect to a collection of virtually abelian subgroups of rank � 2 (see [HK,
Theorem 1.2.1]).
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As such, if we could establish that our group � is a relatively hyperbolic group with
respect to a collection of virtually abelian subgroups of rank at least two, then result
(2) above would ensure that our CAT(0)-manifold QM has the isolated flats property.
Result (1) above would then give the desired �-equivariant homeomorphism between
@1 QM and @1 QM 0. So our next goal is to establish the following.

FACT 3
The group � D �1.M/ is hyperbolic relative to the collection of all virtually abelian
subgroups of � of rank � 2.

The notion of a group G being relatively hyperbolic with respect to a collection
A of subgroups of G was originally suggested by Gromov [Gr], whose approach was
later formalized by Bowditch [Bo]. Alternate formulations appear in Farb’s thesis (see
[Fa]), in work of Druţu and Sapir [DrSa], and in the memoir of Osin [Os]. We refer
the reader to the original sources for a detailed definition as well as basic properties of
such groups. For our purposes, we merely need to know that the property of a group
G being hyperbolic relative to a collection of virtually abelian subgroups of rank � 2
is inherited by finite index subgroups of G. In particular, to show the desired property
for � , we see that it is sufficient to establish that our original Coxeter group �L is
relatively hyperbolic with respect to higher rank virtually abelian subgroups (since
� � �L is of finite index).

Caprace [Ca, Corollary D(ii)] recently provided a criterion for deciding whether
a Coxeter group is hyperbolic relative to the collection of its higher rank virtually
abelian subgroups. In the right-angled case the condition is that the flag complex L
which defines �L contains no full subcomplex isomorphic to the suspension †K of a
subcomplex K with three vertices which is either
(a) the disjoint union of three points, or
(b) the disjoint union of an edge and one point.
In both cases, †K does not have isolated squares. Since the Coxeter group �L with
which we are working is associated to a triangulation L of S3 with isolated squares,
we conclude that �L is relatively hyperbolic with respect to the collection of all vir-
tually abelian subgroups of rank � 2, and hence Fact 3.

Applying Hruska and Kleiner’s results from [HK], we conclude that the origi-
nal QM is a CAT(0)-space with the isolated flats property, and that there exists a �-
equivariant homeomorphism from @1 QM to @1 QM 0. The nontrivial knot @1F Š S1

inside @1 QM Š S3 appearing in the Assertion can be identified with the limit set of the
corresponding subgroup �1.T 2/Š Z

2 � � D �1.M/. Since we have an equivariant
homeomorphism between the boundaries at infinity of QM and QM 0, this immediately
yields the following.
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FACT 4
The boundary at infinity @1 QM 0 is homeomorphic to S3, and the limit set of the canon-
ical Z

2-subgroup in � Š �1.M 0/ defines a nontrivial knot S1 ,! @1 QM 0 Š S3.

On the other hand, the flat torus theorem implies that there exists a Z
2-periodic

flat F 0 ,! QM 0, with the property that @1F 0 coincides with the limit set of the Z
2.

In particular, @1F 0 defines a nontrivial knot inside @1M 0. Taking any point p 2 F 0,
we can use geodesic retraction to define a map O	 W @1 QM 0 ! T 1p

QM 0, where T 1p QM
0

denotes the unit sphere in the tangent space Tp QM 0 (and hence is isometric to the
standard round 3-sphere). The map O	 is given by assigning to a point x 2 @1 QM the
unique vector v 2 T 1p QM

0 having the property that the unit speed geodesic ray ema-
nating from p and defining the point x has initial vector equal to v. Since geodesics
in a Riemannian manifold of nonpositive curvature cannot branch, the map O	 gives
a continuous bijection from the @1 QM 0 to T 1p QM

0, and so is in fact a homeomor-
phism. The image O	.@1F 0/ consists of all unit vectors in T 1p QM

0 which are tangent
to the flat F 0, since the latter is totally geodesic. So within the tangent space Tp QM 0,
we have that O	.@1F 0/ D Tp QF 0 \ T 1p QM

0, the intersection of the unit sphere with a
2-dimensional vector subspace. We conclude that the homeomorphism 	 takes the
knotted pair .@1 QM 0; @1 QF 0/ to the unknotted pair .T 1p QM

0; T 1p
QF 0/. This contradiction

allows us to conclude that no such Riemannian manifold .M 0; g/ can exist.

So in order to complete the proof of the main theorem, we are left with establish-
ing the assertion. We note that a similar result was shown in the setting of CAT(�1)-
manifolds by Farrell and Lafont [FL]. For the convenience of the reader, we provide
a (slightly different) argument for the assertion.

The basic idea is as follows: picking a vertex v 2 F , we have a geodesic retrac-
tion map 	 W @1 QM ! lkv. QM/. Under this map, we see that @1F maps to the link,
lkv.F /, inside lkv. QM/. Recall from Fact 2 that the torus is locally knotted in QM ; that
is, the pair .lkv. QM/; lkv.F // is simplicially isomorphic to .S3; k/, where S3 is the
3-sphere equipped with the triangulation L and where k is the knot in S3 given by
the unique square in the triangulation L. Now the retraction map 	 is not a homeo-
morphism, but is nevertheless close enough to a homeomorphism for us to use it to
compare the pair .@1 QM;@1F / with the knotted pair .lkv. QM/; lkv.F //Š .S

3; k/.
More precisely, a continuous map f W X ! Y between metric spaces is a near-
homeomorphism provided that it can be approximated arbitrarily closely by a home-
omorphism: for any 
 > 0, there exists a homeomorphism f� WX! Y with the prop-
erty that for all points p 2 X , the inequality d.f .p/; f�.p// < 
 holds. For any set
Z � lkV . QM/, we denote byZ1 the preimage p�1.Z/� @1 QM . We need the follow-
ing basic result established in [FL, Proposition 2, p. 627] (see also the discussion in
[DJ, Section (3c)]).
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FACT 5
For any open set U � lkv. QM/, the map 	 W U1! U is a proper homotopy equiva-
lence. Better yet, the map 	 is a near-homeomorphism.

To show that @1F defines a nontrivial knot in @1 QM , we need to establish that
the complement @1 QM �@1F cannot be homeomorphic to S1�R

2. This will follow
if we can show that �1.@1 QM � @1F / is a nonabelian group. To do this, we decom-
pose @1 QM � @1F into a union of a suitable pair of open sets. This is done by first
decomposing lkv. QM/ and then using the map 	 to “lift” the decomposition to @1 QM .

Let lkv.F / � N1 � N2 � lkv. QM/ be nested open regular neighborhoods of
the knot k D lkv.F / inside S3 Š lkv. QM/. Define open sets in lkv. QM/ by setting
U2 WD N2, and U1 WD lkv. QM/ � NN1, where NN1 denotes the closure of N1. Note
that we have homeomorphisms U2 Š S1 �D

2
ı (where D

2
ı is the open 2-dimensional

disk) and U1 \ U2 Š N2 � NN1 Š S1 � S1 � R, while U1 is homeomorphic to the
complement of the nontrivial knot k � S3. So at the level of �1, we have that (a)
�1.U1 \U2/Š Z˚Z, and (b) �1.U1/ is a nonabelian group. The latter fact follows
from work of Papakyriakopoulos [Pa], who showed that �1 of the complement of a
nontrivial knot cannot be isomorphic to Z. But by Alexander duality, such a group
must have abelianization isomorphic to Z; hence, it cannot be abelian.

Corresponding to this decomposition of lkv. QM/, we have an associated open
decomposition of @1 QM in terms of the corresponding .U1/1, .U2/1. We now define
an open decomposition of @1 QM � @1F by setting U WD .U1/1 and V WD .U2/1 �
@1F . The intersection satisfies U \V D .U1\U2/1. From the Seifert–Van Kampen
theorem, we have

�1.@
1 QM � @1F /D �1.U / ��1.U\V / �1.V /:

Applying Fact 5 to the discussion in the previous paragraph, we obtain that (a) �1.U \
V /Š Z˚ Z, and (b) �1.U / is nonabelian. So to see that �1.@1 QM � @1F / is non-
abelian, it suffices to show that the nonabelian group �1.U / injects into the amalga-
mation. This will follow from the following.

FACT 6
The map i� W �1.U \ V /! �1.V / induced by inclusion is injective.

We have thus completely reduced the proof of the assertion (and hence of the
main theorem) to establishing Fact 6. The proof of this is tricky because the circle
@1F is wildly embedded in V . The proof of this last fact will be broken into several
steps.

Step 1: Choosing the basis for �1.U \V /. Recall that 	 gives a proper homotopy
equivalence between U \V D .U1\U2/1 and the space U1\U2 DN2� NN1, where
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N1 � N2 are nested open regular neighborhoods of the knot k. Since U2 D N2 can
be identified with S1 �D

2
ı , where S1 � ¹0º corresponds to the knot k, we choose the

generators for �1.N2 � NN1/Š Z˚Z to have the following two properties:
(A) The generator h1; 0imaps to a generator represented by ŒS1�¹0º� 2 �1.N2/Š

Z under the obvious inclusion.
(B) The generator h0; 1i is chosen so that a representative curve � exists which,

under the natural inclusion into N2 Š S1 �D
2
ı , (i) projects to a curve ˛ which

is a generator for �1.D2ı�¹0º/Š Z in the D
2
ı-factor, and (ii) is null-homotopic

in N2.
We choose the generators of �1.U \V /Š Z˚Z to map to the above two generators
of �1.U1 \U2/ under the homotopy equivalence 	.

Step 2: ha; bi 2 ker.i�/) aD 0. Consider the commutative diagram

Z˚ZŠ �1.U \ V /

��

i�
�1.V / �1

�
.N2/1

�
Š Z

��

Z˚ZŠ �1.U1 \U2/ �1.N2/Š Z

where all horizontal arrows are induced by the obvious inclusions, and the two vertical
arrows are the isomorphisms induced by the geodesic retraction maps. By the choice
of the basis on �1.U \ V /, we have that 	�.ha; bi/D ha; bi 2 �1.U1 \ U2/, which
by property (A) maps to a 2 ZŠ �1.N2/. From the commutativity of the diagram,
we conclude that if ha; bi 2 ker.i�/, then aD 0.

Step 3: h0; bi 2 ker.i�/) b D 0. For this last step, we use some basic properties
of linking numbers for curves in aspherical 3-manifolds. A brief explanation of these
notions is provided in the Appendix to this paper. Let � be the representative curve
chosen to satisfy property (B) in our choice of basis for �1.N2 � NN1/ (see Step 1),
and let O� be a curve in �1.U1 \ U2/ mapping to � under the homotopy equivalence
	. The b-fold iterate b 	 O� is a representative for the element h0; bi 2 �1.U1 \U2/.

Now consider the pair of continuous curves b 	 O�; @1F inside the oriented
3-manifold .U2/1 Š S1 �D

2
ı . If h0; bi 2 ker.i�/, then we see that b 	 O� is homotopic

to a point in V D .U2/1� @1F , and hence we have vanishing of the linking number
L.b 	 O�; @1F / D 0. Since near-homeomorphisms preserve the linking number (see
Lemma 9 in the Appendix), we conclude that L.	.b 	 O�/; 	.@1F //D 0.

We also know exactly what the 	-images of these curves are: 	.b 	 O�/ D b 	 � ,
while 	.@1F /D S1 � ¹0º � S1 �D

2
ı . So we can now compute their linking number

directly. Take a bounding disk D for b 	 � which intersects S1 � ¹0º transversally.
Projecting onto the D

2
ı-factor, we see that the projection of D is a bounding disk for

the projection of the curve b 	 � and that each intersection with S
1 � ¹0º projects to
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an intersection with ¹0º 2D
2
ı . This tells us that the linking number L.b 	 �;S1 � ¹0º/

coincides with the linking number, in the plane, of the curve b 	 ˛ with the point ¹0º.
In two dimensions, the linking number of a curve with a point coincides with the
winding number of the curve around the point. Finally, recall that from property (B)
(see Step 1), the curve ˛ obtained by projecting � on the D

2
ı-factor is a generator for

�1.D
2
ı�¹0º/Š Z. It now follows immediately that the b-fold iterate b 	˛ has winding

number ˙b (according to the choice of orientations).
Combining the discussion in the last two paragraphs, we conclude that b D 0,

completing the proof of Fact 6.

6. Concluding remarks
Finally, we point out a few interesting questions that come up naturally from this
work. As discussed in Section 3.2, locally CAT(0)-manifolds whose universal covers
are not diffeomorphic to R

n cannot support a Riemannian smoothing. In dimensions
n¤ 4, there is no difference between “homeomorphic to R

n” and “diffeomorphic to
R
n.” In contrast, it is known that R

4 supports many distinct smooth structures (in
fact, continuum many). Moreover, the method used to construct the Davis examples
of closed aspherical manifolds whose universal covers are not homeomorphic to R

n

requires n� 5. So one can ask the following.

Question
Can one find locally CAT(0) closed 4-manifolds M 4 with the property that their uni-
versal covers QM 4 are either
(1) not homeomorphic to R

4, or
(2) homeomorphic, but not diffeomorphic to R

4?

Thurston [Th] proved that QM 4 must be homeomorphic to R
4 if it has at least one

“tame” point. We remark that the result of Stone [St] tells us that there is no hope of
constructing such examples via piecewise flat metric complexes (for their universal
covers would then have to be diffeomorphic to the standard R

4). Moreover, if one asks
instead for aspherical closed 4-manifolds, then Davis [Da2] has constructed examples
where the universal cover is not homeomorphic to R

4 (but it is unknown whether
those examples support a locally CAT(0)-metric).

Now concerning the dimension restriction in our construction, we note that this
was due to the need for finding triangulations of spheres with the property that the
associated Davis complex had the isolated flats condition (in order to obtain a well-
defined boundary at infinity). The “isolated squares” condition we introduced was
designed to ensure that Caprace’s criterion was fulfilled. In attempting to generalize
this construction to higher dimensions, we run into the difficulty, described by the
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work of Januszkiewicz and Świa�tkowski [JS, Section 2.2] (see also the discussion in
[PS, Appendix]), that there is no higher-dimensional analogue of the Dranishnikov–
Przytycki–Świa�tkowski procedure for modifying triangulations in order to get rid of
squares.

Finally, we remark that our construction relies on the presence of flats with spe-
cific large-scale behavior in order to obstruct Riemannian smoothings. As such, our
methods require the presence of zero curvature. If one desires examples which are
strictly negatively curved, we are brought to the following.

Question
Can one construct examples of smooth, locally CAT(�1)-manifolds M n with the
property that @1 QM is homeomorphic to Sn�1, but which do not support any Rie-
mannian metric of nonpositive sectional curvature?

Appendix. Linking numbers in aspherical 3-manifolds
LetM 3 be an oriented, aspherical 3-manifold. Given a pair �1; �2 of disjoint oriented
curves, with �1 null-homotopic, there is a well-defined linking number L.�1; �2/.
For smooth curves this is obtained by looking at the oriented intersection number of
�2 with a smooth bounding disk for the curve �1. Since M 3 is aspherical, any two
such bounding disks for �1 are homotopic (rel @) to each other, and hence yield the
same oriented intersection number with �2. This linking number has the property that
if �1 
 �01 (resp., �2 
 �02) are two smooth curves homotopic to each other in the
complement of �2 (resp., �1), then

L.�1; �
0
2/DL.�1; �2/DL.�

0
1; �2/:

If we have disjoint continuous curves �1; �2, with �1 null-homotopic, we can still
define the linking number. Fix a reference Riemannian metric on M 3, and choose an

 > 0 small enough so that (i) 2
 is smaller than the injectivity radius of the manifold,
and (ii) 2
 is smaller than the distance between the curves �1 and �2. Pick smooth
curves �0i which are 
-approximations to the �i , that is, that satisfy d.�i .t/; �0i .t// < 

for all t . We now set L.�1; �2/ to be equal to L.�01; �

0
2/.

To see that this linking number is well defined, let �00i be some other 
-approxima-
tions to the curves �i . From property (i) in the choice of 
, we have that there are
well-defined “straight-line” homotopies �0i 
 �

00
i (using geodesics in the manifold).

From property (ii) in the choice of 
, the traces of these homotopies are disjoint from
each other, so from the discussion above we deduce that

L.�01; �
0
2/DL.�

0
1; �
00
2/DL.�

00
1; �
00
2/;

which establishes that L.�1; �2/ is indeed independent of the choice of 
-approxima-
tion. Two obvious properties of linking numbers are:
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� if �1 is homotopic to a point in the complement of �2, then L.�1; �2/D 0;
� the linking number is invariant under homeomorphisms.
This second property can be slightly improved.

LEMMA 9 (Invariance under near-homeomorphisms)
Let M1;M2 be a pair of oriented, aspherical 3-manifolds, and let f WM1!M2 be
a near-homeomorphism. Let �1; �2 be a pair of curves in M1, with the property that
�1 is null-homotopic. If .f ı �1/\ .f ı �2/D;, then we have

L.�1; �2/DL.f ı �1; f ı �2/:

Proof
Fix a reference Riemannian metric on M2, and choose 
 > 0 so that 2
 is smaller
than both the injectivity radius of M2 and the distance between f ı �1 and f ı
�2. Take a homeomorphism f� WM1!M2 with the property that for all p 2M1,
d.f�.p/; f .p// < 
. Then we have

L.�1; �2/DL.f� ı �1; f� ı �2/DL.f ı �1; f ı �2/:

The first equality above is due to homeomorphism invariance of linking number, while
the second equality is due to the existence of disjoint homotopies f ı�i 
 f� ı�i .
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