
AN EXPLICIT DESCRIPTION OF THE KÄHLER-EINSTEIN
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Abstract. Fine and Premoselli (FP) constructed the first examples of mani-

folds that do not admit a locally symmetric metric but do admit a negatively
curved Einstein metric. The manifolds here are hyperbolic branched covers

like those used by Gromov and Thurston, and the construction of their model
Einstein metric is a variation of the hyperbolic metric written in polar coordi-

nates. Very recently, Guenancia and Hamenstädt (GH) proved the existence

of the first examples of manifolds that are not locally symmetric but admit
a negatively curved Kähler-Einstein metric. The GH metrics are realized on

complex hyperbolic branched covers constructed by Stover and Toledo. In this

article we generalize the construction of FP to the complex hyperbolic setting
and show that this yields a negatively curved Einstein metric that asymptoti-

cally approaches the metric of GH.

1. Introduction

Prior to 2020, the only known examples of closed manifolds which admit an Ein-
stein metric with negative sectional curvature were compact quotients of real, com-
plex, quaternionic, and Cayley hyperbolic spaces. Then, in [8], Fine and Premoselli
constructed the first examples of compact 4-manifolds which admit a negatively
curved Einstein metric, but which are not homotopy equivalent to a quotient of
a locally symmetric space (see also the corresponding conference proceedings by
Premoselli [19]).

A brief outline of the construction in [8] is as follows. Fine and Premoselli
construct a sequence of compact hyperbolic 4-manifolds Mk, each containing an
embedded, totally geodesic, (possibly disconnected) codimension two submanifold
Nk which is nullhomologous in Mk. This sequence is arranged so that, as k → ∞,
the normal injectivity radius ηk of Nk in Mk also approaches infinity. Fix an
integer d ≥ 2 and let Xk denote the d-fold cyclic branched cover of Mk about
Nk. These manifolds Xk are specific examples of the hyperbolic branched cover
manifolds considered by Gromov and Thurston in [9], and so the more interesting
portion of their construction is the negatively curved Einstein metric. Fine and
Premoselli give a very explicit construction of a negatively curved orbifold model
Einstein metric defined on the ηk-neighborhood of Nk. This metric λk is everywhere
Riemannian except it has a cone angle of 2π/d about Nk, and so λk pulls back to
a smooth metric within this same neighborhood of the ramification locus of Xk.
On the ((1/2)ηk, ηk)-annulus of the ramification locus, Fine and Premoselli use a
smooth cut-off function to interpolate between λk and the hyperbolic metric h4
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on each page of the cover. For k large, this interpolated metric gk is negatively
curved and approximately Einstein. Fine and Premoselli then construct an inverse
function theorem to show that, for k sufficiently large, this metric can be perturbed
to a genuine Einstein metric ek with negative sectional curvature.

In [11], Hamemstädt and Jäckel extend the construction in [8] to all dimensions.
Their approach is the same as above, and they use the same model orbifold Einstein
metric as in [8]. But they use subgroup separability to obtain stronger volume
bounds on the submanifolds Nk, and they develop an extension of the inverse
function theorem mentioned above.

In [20], Stover and Toledo construct complex hyperbolic branched cover mani-
folds analogous to the hyperbolic branched covers in [9]. Stover and Toledo proved
that these manifolds are not homotopy equivalent to a manifold admitting a locally
symmetric metric, and by [24] it is known that these manifolds admit a negatively
curved Kähler metric. Thus, since the first Chern class of this manifold is negative,
it admits a unique (up to scaling) Kähler-Einstein metric with negative Einstein
constant by the celebrated work of Aubin [2] and Yau [23]. Very recently, Gue-
nancia and Hamenstädt [10] proved that this Kähler-Einstein metric has negative
sectional curvature, thus verifying the first known examples of negatively curved
Kähler-Einstein metrics on manifolds that are not locally symmetric.

The argument in [10] is similar in nature to that in [8], but one major differ-
ence is that Guenancia and Hamenstädt do not give a direct construction for the
model Kähler-Einstein metric. They use [6] and [22] to show that a unique model
Kähler-Einstein metric exists [10, Theorem 2.2], they prove that the coefficient of
the horizontal distribution of this metric must satisfy a specific second-order dif-
ferential equation [10, Theorem 2.9], and then use this fact to give a quantitative
description of the sectional curvatures. They also show that, as the distance from
the ramification locus increases, this model Kähler-Einstein metric converges expo-
nentially to the pullback of the complex hyperbolic metric ([10, Theorem 2.4]). The
fact that this model Kähler-Einstein metric is negatively curved is due to Bland
[5].

Prior to the announcement of [10] the authors were working on this same prob-
lem, but taking a slightly different approach. Our goal was to take the entire process
from [8] and [11] and try to generalize it to the complex hyperbolic setting. This
has the advantage of giving a very explicit description of the model Einstein metric,
but has the downside of making it difficult, if not impossible, to determine whether
or not the resulting metric is Kähler.

Upon inspection of [10], the authors have realized that the natural extension of
the model negatively curved Einstein metric from [8] to the complex hyperbolic set-
ting coincides with the model Kähler-Einstein metric whose existence is guaranteed
by [10, Thm. 2.2]. We state this formally as follows.

Theorem 1.1. The negatively curved model Einstein metric from Fine–Premoselli
[8], generalized to complex hyperbolic branched cover manifolds, produces the model
Kähler-Einstein metric whose existence is guaranteed by Guenancia–Hamenstädt
[10, Theorem 2.2].

Combining our work in Sections 2 and 3 below with the inverse function theorems
of [8] and [11] proves the following.
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Theorem 1.2. There exist Kähler manifolds of every complex dimension which
admit a negatively curved Einstein metric but do not admit a locally symmetric
metric.

Remark 1.3. The authors want to make it clear that they are, in no way, trying
to take or share any credit for the results in [10]. The authors were working on
this project before the announcement of [10], but our work was not finished. We
have chosen to publish the results that we did have because we feel that they
both augment [10] well, and that they are useful in their own right. The math
contained in Sections 2 and 3 below was done independently and completed before
the announcement of [10] (besides the comments tying our work to [10], of course).
Also, while the authors had not yet discussed the construction of the manifolds in
Subsection 4.1 below, this seemed reasonably implicit from [20] and with the idea of
using subgroup separability from [11]. The second author briefly outlined a similar
construction in the Introduction of [16]. But, while the authors believed that they
could adapt a version of the inverse function theorem used in [11] or [13], they had
not yet looked into this at all. And, more importantly, prior to the announcement
of [10] the authors did not know that the construction in this paper may lead to a
Kähler metric.

The authors believe that the main contribution of this paper to the literature
is the actual construction of the model Einstein metric (see equations (2.4) and
(3.1)). The complex hyperbolic branched cover manifolds from [20] are known to
be Kähler by the work of Zheng [24] and now from [10]. But, from a differential
geometry point of view, neither of these papers give a very explicit description of
the metric. Our work in Sections 2 and 3 below gives a precise and “hands on”
description of such a metric that one could easily work with in other settings if
needed.

One interesting question though is whether or not the Einstein metric ek whose
existence is guaranteed by Theorem 1.2 must be the Kähler-Einstein metric ωk

from [10] for k sufficiently large? Using equation (30) from [10] we can show that
ek C2-approaches ωk (see Remark 4.4 below). But it is unknown if ωk is isolated
in which case ek must eventually equal ωk, or if there exists a dense collection of
negatively curved Einstein metrics about ωk?

One potential application of the results of this paper is the following. Assume
that the dimension of Xk is divisible by 4. Via Chern-Weil theory, the explicit
curvature formulas from Thereom 2.1 could be used to compute the signature Σ(Xk)
of Xk. Hirzebruch [12] and Viro [21] developed formulas that relate Σ(Xk) to the
Euler number of the normal bundle of the ramification locus. In this way, one
may be able to obtain information about (at least) the top Chern class of the
Stover-Toledo manifolds Xk. At present there seems to be nothing known about
the invariants of Xk.

The remainder of this paper is laid out as follows. In Section 2 we review polar
coordinates with respect to the complex hyperbolic metric, we consider the warped-
product metric λ that corresponds to [8], and we calculate formulas for the Riemann
curvature tensor of λ. Due to the existence of nonzero mixed terms, this curvature
calculation is considerably more involved than what is required in [8]. Section 3
mirrors Section 3 of [8]. We calculate the Ricci tensor of λ, determine values for
the warping function Vα(u) for which the corresponding λα will be Einstein, we
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consider the cone angle for different choices of α, and we show that λα is negatively
curved with respect to these choices of Vα. We also prove that λα is the same metric
as ωα from [10]. In Section 4 we briefly outline the construction of the sequence of
complex hyperbolic branched cover manifolds. We then explain how to taper λα to
the complex hyperbolic metric cn on each page of the branched cover to obtain an
approximate Kähler-Einsten metric, and we discuss how this construction relates
to the work in [8] and [10].

One final comment is that Section 2 of [10] is devoted to showing that the model
Kähler-Einstein metric ωα is negatively curved and approaches the pullback of the
complex hyperbolic metric exponentially. In Proposition 3.8 we give a direct proof
that our metric λα is negatively curved, and in the ensuing remark we point out
how λα exponentially approaches cn. In light of the fact that λα is the same metric
as ωα, this gives an alternate proof of [10, Theorem 2.11]. This also extends some
of the results of Bland in [5].

Acknowledgments. The authors would like to thank Matthew Stover and Domingo
Toledo for sharing their interest in these manifolds. We would also like to thank
Ursula Hamenstädt for graciously encouraging us to complete this manuscript. The
authors were partially supported by the NSF, under grant DMS-2407438.

2. The Metric λ and Curvature Formulas

The purpose of this section is to develop curvature formulas (Theorem 2.1 below)
which we will use to build our negatively curved model Einstein metric. In this
section, all calculations are completed in the universal cover CHn.

2.1. The complex hyperbolic metric written in polar coordinates. All of
the results in this subsection were discovered by Belegradek in [3] and rescaled
to have constant holomorphic curvature of −4 in [17]. Let CHn denote complex
hyperbolic space of dimension n normalized to have constant holomorphic sectional
curvature −4, and let q ∈ CHn. With respect to an appropriately chosen frame
about q, the standard complex hyperbolic metric cn can be written as

cn = cosh2(r)cn−1 +
1

4
sinh2(2r)dθ2 + dr2

= cosh2(r)cn−1 + cosh2(r) sinh2(r)dθ2 + dr2(2.1)

We now describe the implicit frame for this representation of cn.
Let CHn−1 denote a totally geodesic copy of complex hyperbolic (n − 1)-space

in CHn, and let ϕ : CHn → CHn−1 denote the orthogonal projection map. Let
p = ϕ(q), and let r denote the distance from a given point to CHn−1. The space
ϕ−1(p) is a totally geodesic copy of CH1 which contains q. There is a 2-plane
σ ⊂ TqCHn such that expq(σ) = ϕ−1(p). Using polar coordinates (∂/∂θ, ∂/∂r) on
σ, we have

cn
∣∣
σ
=

1

4
sinh2(2r)dθ2 + dr2.

Now, let H = σ⊥ ⊂ TqCHn denote the horizontal distribution of cn at q. The map

φ := dϕq

∣∣
H : H → TpCHn−1

is an isomorphism. If we let (X̌i)
2n−2
i=1 be an orthonormal basis for TpCHn−1, then

(φ−1(X̌i))
2n−2
i=1 is an orthogonal basis for H. Let Xi = φ−1(X̌i) for each i. The

basis (Xi) is not orthonormal: we have cn(Xi, Xi) = cosh2(r) for each i. Putting
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this all together gives the desired frame for (2.1) and, moreover, gives a natural
diffeomorphism CHn \ CHn−1 ∼= R2n−2 × S1 × (0,∞).

A very important feature of this decomposition of CHn is that the horizontal
distribution is not integrable with respect to cn. Consider two orthonormal vectors
X̌i, X̌j ∈ TpCHn−1, and extend them to a frame near p (in CHn−1) in such a way

that [X̌i, X̌j ]p = 0. As above, let Xi = φ−1(X̌i) and Xj = φ−1(X̌j). It was proved
in [3] for constant holomorphic curvature −1 and rescaled in [17] for curvature −4
that [Xi, Xj ]q = 0 if and only if (X̌i, X̌j) spans a totally real 2-plane in TpCHn−1,

whereas [Xi, Xj ]q = ±2(∂/∂θ) if (X̌i, X̌j) spans a complex line.
In our curvature calculations below it will be convenient to use a holomorphic

frame (Xi)
2n−2
i=1 for H, which we define as follows. Let X̌1 ∈ TpCHn−1 be any unit

vector and define X̌2 = JX̌1, where J denotes the complex structure on CHn. We
will refer to such a pair (X̌i, X̌j) with JX̌i = ±X̌j as a holomorphic pair. Then,

assuming that X̌1, . . . , X̌2k have been defined, we define X̌2k+1 to be any unit vector
orthogonal to span(X̌1, . . . , X̌2k) and X̌2k+2 = JX̌2k+1. It is an easy exercise to
check that X̌2k+2 is in the orthogonal complement of span(X̌1, . . . , X̌2k, X̌2k+1). We
then extend this basis to a frame near p in CHn−1 in such a way that [X̌i, X̌j ]p = 0

for all i, j, and define Xi = φ−1(X̌i) for each i.
The non-integrability of H can be described in terms of a holomorphic frame as

follows. For a holomorphic frame (Xi)
2n−2
i=1 about q we have

(2.2) [Xi, Xi+1]q = 2
∂

∂θ
for 1 ≤ i ≤ 2n− 2 and i odd

and, if (Xi, Xj) is not a holomorphic pair, then

[Xi, Xj ]q = 0.

2.2. Coordinate Change and Curvature Formulas. Following [8], we make
the substitution

u = cosh(r)

into equation (2.1). This yields

(2.3) cn = u2cn−1 + u2(u2 − 1)dθ2 +
1

u2 − 1
du2.

We wish to consider the variable metric λ obtained from (2.3) by replacing u2 − 1
with a generic smooth, positive function V (u). This gives

(2.4) λ = u2cn−1 + u2V dθ2 +
1

V
du2.

Of course, properties of λ will depend on the chosen function V . For calculations
it is convenient to set W =

√
V , which gives

(2.5) λ = u2cn−1 + u2W 2dθ2 +
1

W 2
du2.

The metric λ has three differences with the metric g from Section 3.1 of [8]. The
two obvious differences are the addition of the u2 with the dθ2 term and that the
horizontal distribution is a warped copy of cn−1 instead of the hyperbolic metric
hn−2. The third, less obvious, difference is the non-integrability of H with respect
to the complex hyperbolic metric. Despite these differences the curvature formulas
for λ are, surprisingly, very similar to those of g from [8].



6 JEAN-FRANÇOIS LAFONT AND BARRY MINEMYER

Let us set up an orthonormal frame for these curvature formulas. Let (Xi)
2n−2
i=1

be a holomorphic frame for H, and let ∂/∂θ and ∂/∂r be as defined above. Set

Yi =
1

u
Xi 1 ≤ i ≤ 2n− 2(2.6)

Y2n−1 =
1

uW

∂

∂θ
(2.7)

Y2n = W
∂

∂u
.(2.8)

Lastly, if Rλ denotes the Riemann curvature tensor of λ, we set

Rλ
i,j,k,l = λ(Rλ(Yi, Yj)Yk, Yl).

Theorem 2.1. With respect to the orthonormal basis defined in equations (2.6)
through (2.8) we have, up to the symmetries of the curvature tensor, the following
formulas for the nonzero components of the Riemann curvature tensor Rλ.

Rλ
i,i+1,i,i+1 = −4

(
1 +W 2

u2

)
for i odd.(2.9)

Rλ
i,j,i,j = −1 +W 2

u2
.(2.10)

Rλ
i,2n−1,i,2n−1 = Rλ

i,2n,i,2n = −WW ′

u
.(2.11)

Rλ
2n−1,2n,2n−1,2n = −3

WW ′

u
−

(
WW ′′ + (W ′)

2
)
.(2.12)

Rλ
i,i+1,j,j+1 = 2Rλ

i,j,i+1,j+1 = −2Rλ
i,j+1,i+1,j = −2

(
1 +W 2

u2

)
for i, j odd.(2.13)

Rλ
i,i+1,2n−1,2n = 2Rλ

i,2n−1,i+1,2n = −2Rλ
i,2n,i+1,2n−1 = −2

WW ′

u
for i odd.(2.14)

In the formulas above we have 1 ≤ i, j ≤ 2n− 2 and, if i and j appear in the same
formula, we assume that (Yi, Yj) does not form a holomorphic pair.

It is a simple calculation to check that, when W =
√
u2 − 1, the formulas in The-

orem 2.1 reduce to either −4, −1, or −2 respectively (see equations (4.4) through
(4.6) of [17] for the correct curvature values with respect to cn).

The remainder of this section is devoted to proving Theorem 2.1. The method
used in proving Proposition 3.2 of [8] seems significantly more complicated due to
the non-integrability of E, which is expressed by the Lie brackets in (2.2) and con-
tributes to the nonzero mixed terms of Rλ listed above. Additionally, the formulas
developed by Belegradek in [3] do not seem to work due to the 1/W 2 term in front
of the du2. Thus, we calculate the formulas for Rλ directly. How we proceed is
that we first explain why we can restrict to n = 3. Then, using the results of [15],
we calculate formulas for the Lie brackets for our basis. Finally, using these Lie
bracket formulas we calculate formulas for the Levi-Civita connection, and then use
the connection to calculate the above formulas for the Riemann curvature tensor.
The reader who is uninterested in these calculations and only cares about the use
of Theorem 2.1 can skip to Section 3.

2.3. Reduction to n = 3. Curvature formulas for cn in equation (2.1) with respect
to a holomorphic frame are worked out in [3] and [17]. In making the substitution
u = cosh(r) to obtain (2.3), the only change in our implicit frame is that ∂/∂u is
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now a (positive) scaled copy of ∂/∂r. So, in particular, equations (2.6) through
(2.8) still provide a holomorphic frame for (2.3).

A mixed term of a Riemann curvature tensor, with respect to a given fixed
orthonormal frame, is any term that does not correspond to the sectional curvature
of a coordinate plane with respect to the given frame. Equivalently, this is any term
that is not of the form Ri,j,i,j for some i and j. With respect to a holomorphic
frame, a mixed term Rcn

a,b,c,d of the curvature tensor Rcn of cn is nonzero only when

the respective vectors {Ya, Yb, Yc, Yd} contain exactly two holomorphic pairs. In
other words, if {Ya, Yb, Yc, Yd} is not of the form {Yi, Yi+1, Yj , Yj+1} for some i, j
odd, then the mixed term Rcn

a,b,c,d = 0. This property is then inherited by the

warped-product metric λ from (2.5).
There are two distinct ways in which the collection {Yi, Yi+1, Yj , Yj+1} can con-

tain two holomorphic pairs:

(1) Both 1 ≤ i, j ≤ 2n − 2. In this case, both pairs are contained in the
horizontal distribution H.

(2) i = 2n−1 or j = 2n−1. In this case, one pair comes from H and the other
pair has the same span as {∂/∂θ, ∂/∂u}.

All of these cases are covered when the complex dimension of H is at least two or,
equivalently, when n ≥ 3. Therefore, to simplify calculations below, we will restrict
to n = 3 which, again, covers all possible nonzero values for Rλ. Note that, when
n = 3, the horizontal distribution H is a scaled copy of CH2.

2.4. A frame and Lie Brackets for CH2. Direct calculations of curvature for-
mulas in complex hyperbolic space can be very difficult. In [15] the second author
gave a direct calculation to obtain curvature formulas for CH2 with respect to polar
coordinates about a totally geodesic (and totally real) copy of the hyperbolic plane
H2. Using [15] seems to be the easiest way to calculate the curvatures in Theorem
2.1. In this subsection we give a quick overview of the necessary results from [15].
Note that in [15] curvatures were scaled to lie in [−1,−1/4]. These formulas were
scaled for curvatures in [−4,−1] in [17].

To avoid confusion1, we will use (τ, σ) to denote polar coordinates in CH2 about
H2. The horizontal distribution in this setting is spanned by two vectors denoted S
and T , where S is parallel to J(∂/∂τ) and T is parallel to J(∂/∂σ). The complex
hyperbolic metric c2 can then be written as

c2 = cosh2(σ)dS2 + sinh2(σ)dτ2 + cosh2(2σ)dT 2 + dσ2.

Let

(2.15) X̌1 = S X̌2 =
∂

∂τ
X̌3 = T X̌4 =

∂

∂σ
.

It should be noted that this swaps the definitions of X1 and X2 from [15]. The
nonzero Lie brackets with respect to this frame are

(2.16) [X̌1, X̌2]c2 = X̌3 [X̌1, X̌3]c2 = X̌2 [X̌2, X̌3]c2 = X̌1.

Notice that we have included a c2 subscript to distinguish these Lie brackets from
the Lie brackets for λ in the following subsection. We now define our orthonormal

1The variables (θ, r) were used in [15], but these variables were already used in (2.1) above.
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frame for c2 by

(2.17) X1 =
1

cosh(σ)
X̌1, X2 =

1

sinh(σ)
X̌2, X3 =

1

cosh(2σ)
X̌3, X4 = X̌4.

A direct calculation, where one remembers that X4 = ∂/∂σ, gives

[X1, X2]c2 =
cosh(2σ)

sinh(σ) cosh(σ)
X3 [X1, X3]c2 =

sinh(σ)

cosh(σ) cosh(2σ)
X2(2.18)

[X1, X4]c2 =
sinh(σ)

cosh(σ)
X1 [X2, X3]c2 =

cosh(σ)

sinh(σ) cosh(2σ)
X1(2.19)

[X2, X4]c2 =
cosh(σ)

sinh(σ)
X2 [X3, X4]c2 =

2 sinh(2σ)

cosh(2σ)
X3.(2.20)

2.5. Lie brackets for the frame (2.6) through (2.8). We now return our at-
tention to the metric λ from (2.5) with the simplifying assumption that n = 3.
We will use the basis (X1, X2, X3, X4) from (2.17) as our orthogonal frame for the
horizontal distribution H. We extend this to an orthogonal basis for λ by setting

X5 =
∂

∂θ
X6 =

∂

∂u
.

Recall from equation (2.2) that, since (X1, X2) and (X3, X4) form holomorphic
pairs, both [X1, X2] and [X3, X4] have an X5 component of 2X5.

Define the corresponding orthonormal basis (Yi) for λ by

(2.21) Yi =
1

u
Xi (1 ≤ i ≤ 4) Y5 =

1

uW
X5 Y6 = WX6.

A direct calculation, using equations (2.18) through (2.20) and remembering that
Y6 = W (∂/∂u), yields the following Lie brackets. For ease of notation we make the
substitutions a = cosh(σ), b = sinh(σ), and c = cosh(2σ).

Proposition 2.2. The values for the Lie brackets of λ with respect to the frame
given in (2.21) are

[Y1, Y2] =
c

uab
Y3 +

2W

u
Y5 [Y2, Y3] =

a

ubc
Y1 [Y3, Y5] = 0

[Y1, Y3] =
b

uac
Y2 [Y2, Y4] =

a

ub
Y2 [Y3, Y6] =

W

u
Y3

[Y1, Y4] =
b

ua
Y1 [Y2, Y5] = 0 [Y4, Y5] = 0

[Y1, Y5] = 0 [Y2, Y6] =
W

u
Y2 [Y4, Y6] =

W

u
Y4

[Y1, Y6] =
W

u
Y1 [Y3, Y4] =

4ab

uc
Y3 +

2W

u
Y5 [Y5, Y6] =

W + uW ′

u
Y5

Proof. To demonstrate the techniques used to calculate these Lie brackets, we cal-
culate [Y1, Y2] and [Y5, Y6] and leave the remainder to the reader. For this first Lie
bracket, we have

[Y1, Y2] =
1

u2
[X1, X2] =

1

u2

( c

ab
X3 + 2X5

)
=

c

uab
Y3 +

2W

u
Y5.
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For the second Lie bracket, we have to remember to calculate the partial derivative
since Y6 = W (∂/∂u). Thus, we obtain

[Y5, Y6] = W

[
1

uW
X5,

∂

∂u

]
= −W

∂

∂u

(
1

uW

)
X5 = −W

(
−W + uW ′

u2W 2

)
X5

=
W + uW ′

u
Y5.

□

2.6. The Levi-Civita connection and the proof of Theorem 2.1. Recall that,
in the special case of an orthonormal basis, the Koszul formula reduces to

λ(∇Y X,Z) = −1

2

(
λ
(
[X,Z], Y

)
+ λ

(
[Y,Z], X

)
+ λ

(
[X,Y ], Z

))
.

Combining this equation with the formulas in Proposition 2.2 provides the following
36 components of the Levi-Civita connection.

Proposition 2.3. The Levi-Civita connection ∇ compatible with λ is determined
by the following 36 equations.

•∇Y1Y1 =− b

ua
Y4 −

W

u
Y6 • ∇Y1

Y2 = − 1

2u

(
a

bc
+

b

ac
− c

ab

)
Y3 +

W

u
Y5

•∇Y1
Y3 =− 1

2u

(
− a

bc
− b

ac
+

c

ab

)
Y2 • ∇Y1

Y4 =
b

ua
Y1

•∇Y2Y1 =− 1

2u

(
a

bc
+

b

ac
+

c

ab

)
Y3 −

W

u
Y5 • ∇Y2Y2 = − a

ub
Y4 −

W

u
Y6

•∇Y2
Y3 =− 1

2u

(
− a

bc
− b

ac
− c

ab

)
Y1 • ∇Y2

Y4 =
a

ub
Y2

•∇Y3
Y1 =− 1

2u

(
− a

bc
+

b

ac
+

c

ab

)
Y2 • ∇Y3

Y2 = − 1

2u

(
a

bc
− b

ac
− c

ab

)
Y1

•∇Y3
Y3 =− 4ab

uc
Y4 −

W

u
Y6 • ∇Y3

Y4 =
4ab

uc
Y3 +

W

u
Y5

•∇Y4
Y1 =0 • ∇Y4

Y2 = 0 • ∇Y4
Y3 = −W

u
Y5 • ∇Y4

Y4 = −W

u
Y6

•∇Y1
Y5 =− W

u
Y2 • ∇Y2

Y5 =
W

u
Y1 • ∇Y3

Y5 = −W

u
Y4 • ∇Y4

Y5 =
W

u
Y3

•∇Y1Y6 =
W

u
Y1 • ∇Y2

Y6 =
W

u
Y2 • ∇Y3

Y6 =
W

u
Y3 • ∇Y4

Y6 =
W

u
Y4

•∇Y5
Y1 =− W

u
Y2 • ∇Y5

Y2 =
W

u
Y1 • ∇Y5

Y3 = −W

u
Y4 • ∇Y5

Y4 =
W

u
Y3

•∇Y5
Y5 =−

(
W + uW ′

u

)
Y6 • ∇Y5

Y6 =
W + uW ′

u
Y5

• 0 = ∇Y6Y1 = ∇Y6Y2 = ∇Y6Y3 = ∇Y6Y4 = ∇Y6Y5 = ∇Y6Y6

Note that the coefficients of the form(
± a

bc
± b

ac
± c

ab

)
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that occur in some terms of the connection are expected as they are the same terms
that occur (up to scale) in the curvature formulas in [15].

With the formulas for the connection, we can now prove Theorem 2.1.

Proof of Theorem 2.1. Theorem 2.1 contains six different curvature formulas. We
will compute one example for each of these six formulas. The interested reader can
confirm that the remainder of the formulas work in an identical manner, and that
all components which are not listed are 0. In what follows we use the notation
∇i := ∇Yi

.
To verify (2.9) we will compute the more tedious R1,2,1,2 (as opposed to R3,4,3,4)

and choose the simpler calculations for the other formulas. We have

R1,2,1,2 = λ
(
∇2∇1Y1 −∇1∇2Y1 +∇[Y1,Y2]Y1, Y2

)
= λ

(
∇2

(
−b

ua
Y4 −

W

u
Y6

)
−∇1

(
− 1

2u

(
a

bc
+

b

ac
+

c

ab

)
Y3 −

W

u
Y5

)
+

c

uab
∇3Y1 +

2W

u
∇5Y1, Y2

)
=

−1

u2
− W 2

u2
− 1

4u2

(
a

bc
+

b

ac
+

c

ab

)(
−a

bc
− b

ac
+

c

ab

)
− W 2

u2

− c

2u2ab

(
−a

bc
+

b

ac
+

c

ab

)
− 2W 2

u2

= − 1

u2
− 4W 2

u2
− 1

4u2

(
−a4 − b4 + 3c4 − 2a2b2 − 2a2c2 + 2b2c2

a2b2c2

)
.

Substituting a = cosh(σ), b = sinh(σ), and c = cosh(2σ), it is a tedious2 exercise
in hyperbolic trigonometric identities to show that

−a4 − b4 + 3c4 − 2a2b2 − 2a2c2 + 2b2c2

a2b2c2
= 12.

This gives R1,2,1,2 = −4

(
1 +W 2

u2

)
.

To prove (2.10) we calculate R2,4,2,4, remembering that Y4 =
1

u

∂

∂σ
:

R2,4,2,4 = λ
(
∇4∇2Y2 −∇2∇4Y2 +∇[Y2,Y4]Y2, Y4

)
= λ

(
∇4

(
−a

ub
Y4 −

W

u
Y6

)
− 0 +

a

ub
∇2Y2, Y4

)
= λ

(
1

u2 sinh2(σ)
Y4 −

a

ub
· −W

u
Y6 −

W 2

u2
Y4 −

cosh2(σ)

u2 sinh2(σ)
Y4 +

a

ub
· −W

u
Y6, Y4

)
= −1 +W 2

u2
.

2Making repeated use of the identities a2 + b2 = c, b2 − a2 = −1, and a2b2 = 1
4
sinh2(2σ).
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For equation (2.11) we calculate R4,5,4,5:

R4,5,4,5 = λ
(
∇5∇4Y4 −∇4∇5Y4 +∇[Y4,Y5]Y4, Y5

)
= λ

(
∇5

(
−W

u
Y6

)
−∇4

(
W

u
Y3

)
+ 0, Y5

)
= −W

u

(
W + uW ′

u

)
− W

u

(
−W

u

)
= −WW ′

u
.

Our only option to prove (2.12) is to calculate R5,6,5,6. To this end, we have

R5,6,5,6 = λ
(
∇6∇5Y5 −∇5∇6Y5 +∇[Y5,Y6]Y5, Y6

)
= λ

(
∇6

(
−W + uW ′

u
Y6

)
− 0 +

W + uW ′

u
∇5Y5, Y6

)
= −W

(
u(W ′ +W ′ + uW ′′)− (W + uW ′)

u2

)
−
(
W + uW ′

u

)2

= −3
WW ′

u
−
(
WW ′′ + (W ′)

2
)
.

For the first mixed term (2.13), we calculate

R1,2,3,4 = λ
(
∇2∇1Y3 −∇1∇2Y3 +∇[Y1,Y2]Y3, Y4

)
= λ

(
∇2

(
−1

2u

(
−a

bc
− b

ac
+

c

ab

)
Y2

)
−∇1

(
−1

2u

(
− a

bc
− b

ac
− c

ab

)
Y1

)
+

c

uab
∇3Y3 +

2W

u
∇5Y3, Y4

)
= λ

(
−1

2u

(
−a

bc
− b

ac
+

c

ab

)(
−a

ub
Y4 −

W

u
Y6

)
+

1

2u

(
− a

bc
− b

ac
− c

ab

)
·(

−b

ua
Y4 −

W

u
Y6

)
+

c

uab

(
−4ab

uc
Y4 −

W

u
Y6

)
− 2W 2

u2
Y4, Y4

)
.

To calculate R1,2,3,4, the Y6 terms are irrelevant since Y6 is orthogonal to Y4. But
notice that, by a direct algebra calculation, the coefficients of the Y6 term sum to 0
(this is actually needed in the computation R1,2,3,6 = 0). Returning our attention
to the current calculation, the coefficients of the Y4 term simplify to

1

2u2

(
− a2

b2c
+

ac

ab2
+

bc

a2b
+

b2

a2c

)
− 4

u2
− 2

W 2

u2
.

Another exercise in hyperbolic trig identities shows that

− a2

b2c
+

ac

ab2
+

bc

a2b
+

b2

a2c
= 4

which verifies equation (2.13).
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Finally, to prove (2.14) we calculate

R3,4,5,6 = λ
(
∇4∇3Y5 −∇3∇4Y5 +∇[Y3,Y4]Y5, Y6

)
= λ

(
∇4

(
−W

u
Y4

)
−∇3

(
W

u
Y3

)
+

4ab

uc
∇3Y5 +

2W

u
∇5Y5, Y6

)
= λ

(
W 2

u2
Y6 −

W

u

(
−4ab

uc
Y4 −

W

u
Y6

)
+

4ab

uc
· −W

u
Y4

+
2W

u

(
−W + uW ′

u

)
Y6, Y6

)
= −2

WW ′

u
.

□

3. The Model Einstein Metric

This section very closely mirrors Section 3 of [8]. In this section we determine the
collection of all functions V for which λ is Einstein with constant −(2n+ 2). This
collection of functions V is parameterized by a choice of constant α. We analyze
the various cone angles that are created for different choices of α, we prove that λα

is equal to ωα from [10], and we give an independent proof that λα is negatively
curved.

3.1. Ricci Tensor and the family of model Einstein metrics. First recall
that, given a point q ∈ M and an orthonormal basis (Yi)

2n
i=1 of TqM , the Ricci

tensor with respect to the metric λ is the function Ricq : TqM × TqM → R given
by

Ricq(A,B) =

2n∑
i=1

λq (R(A, Yi)B, Yi) .

When the point q is understood from context, we will omit it from the notation.
A direct calculation proves the following.

Proposition 3.1. With respect to the orthonormal basis (Yi)
2n
i=1 defined in equa-

tions (2.6) through (2.8), the values of the Ricci tensor Ric for λ are

Ric(Yi, Yi) = −2n

(
1 +W 2

u2

)
− 2

WW ′

u
for 1 ≤ i ≤ 2n− 2

Ric(Y2n−1, Y2n−1) = Ric(Y2n, Y2n) = −(2n+ 1)
WW ′

u
−

(
WW ′′ + (W ′)

2
)

Ric(Yi, Yj) = 0 for i ̸= j.

Proof. First note that, up to the symmetries of the curvature tensor, there are no
nonzero terms in Theorem 2.1 of the form Rλ

i,k,j,k with i ̸= j. This proves that

the Ricci tensor is diagonal (the last equation in the Proposition), which is not
immediately obvious since the Riemann curvature tensor contains nonzero mixed
terms.
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For the first equation in the Proposition, we have in the i odd case

Ric(Yi, Yi) =

2n∑
k=1

λ (R(Yi, Yk)Yi, Yk)

= Rλ
i,i+1,i,i+1 +

2n−2∑
k=1,k ̸=i,i+1

(
Rλ

i,k,i,k

)
+Rλ

i,2n−1,i,2n−1 +Rλ
i,2n,i,2n

= −4

(
1 +W 2

u2

)
− (2n− 4)

(
1 +W 2

u2

)
− 2

WW ′

u

= −2n

(
1 +W 2

u2

)
− 2

WW ′

u
.

The i even case is identical, and the middle equation is an equally straightforward
calculation. □

A metric λ is Einstein with Einstein constant C if

Ricq(A,B) = C · λq(A,B)

for all A,B ∈ TqM and for all q ∈ M . Also, recall that the metric λ from (2.4)
is a function of V (u) where we set W 2 = V for convenience in our calculations.
The following Theorem describes exactly the functions V (u) for which λ is Einstein
with the same Einstein constant as the complex hyperbolic metric.

Theorem 3.2. The metric λ from (2.5) is Einstein with Einstein constant −2(n+
1) exactly when

(3.1) V (u) = u2 − 1 +
α

u2n

for α ∈ R.

Remark 3.3. We are intentionally trying to use the same notation as [8] for read-
ability. In [8] the authors use the variable a for the constant in (3.1). But we have
already used a = cosh(σ) in the previous section, and so we have changed notation
to α to avoid confusion.

Proof of Theorem 3.2. This argument is essentially identical to that in [8]. We need
to solve the system of differential equations

−2n
(
1 +W 2

)
− 2uWW ′ = −2(n+ 1)u2(3.2)

−(2n+ 1)WW ′ − u
(
WW ′′ + (W ′)

2
)
= −2(n+ 1)u.(3.3)

But notice that differentiating both sides of (3.2) with respect to u gives (3.3). So
we really just need to solve (3.2).

Observing that V ′ = 2WW ′, equation (3.2) is equivalent to

−2n (1 + V )− uV ′ = −2(n+ 1)u2.

Rearranging terms, we can rewrite this equation as

(3.4) V ′ +
2n

u
V = (2n+ 2)u− (2n)u−1.

From here, a simple integrating factor of u2n gives the solution

V = u2 − 1 +
α

u2n
.
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□

Remark 3.4. Notice that the exponent in the denominator of the last term of V in
(3.1) is different than the exponent in [8, Proposition 3.2]. If E denotes the Einstein
constant for the ambient symmetric space, then it appears that the formula for this
exponent is −(E + 2).

For α ∈ R we use the notation Vα to denote the function V from (3.1) with
constant α, and use λα to denote the metric λ with the choice of Vα. The metric
λα is well-defined for all values α and u ≥ 1 such that Vα(u) > 0.

3.2. Cone angles and curvatures of the model Einstein metric. In this
subsection we consider the metric λα written in polar coordinates on R2n = R2n−2×
S1 × [0,∞). When α = 0 the metric λα = λ0 = cn and thus defines a smooth
metric on R2n. But when α ̸= 0 this metric will have a cone angle about R2n−2.
The following Lemma, which is mostly the same as from [8] with the substitution
n− 3 = 2m, quantifies how this cone angle depends on α.

In what follows we let uα denote the largest root of Vα. Note that when uα > 0,
the metric λα is well-defined for all u ∈ (uα,∞). We also define f(u) = (1−u2)u2n

and observe that roots of Vα are equivalent to solutions of the equation f(u) = α.

Lemma 3.5. Let

v =

√
n

n+ 1
αmax =

1

n+ 1
v2n cα =

uα

2
V ′
α(uα) = u2

α − nα

u2n
α

.

(1) The root uα is positive if and only if α ∈ (−∞, αmax]. The map γ :
(−∞, αmax] → [v,∞) defined by γ(α) = uα is a decreasing homeomor-
phism.

(2) When α ∈ (−∞, αmax), the metric λα has a cone angle about R2n−2 at
u = uα with cone angle 2πcα.

(3) The map β : (−∞, αmax] → [0,∞) defined by β(α) = cα is a decreasing
homeomorphism. In particular, as α varies from 0 to αmax, the cone angle
2πcα takes every value from 2π to 0 exactly once.

Lemma 3.5 is the last thing that we needed to prove Theorem 1.1.

Proof of Theorem 1.1. Recall that we need to prove that our model Einstein metric
λα is isometric to the Kähler-Einstein metric ωα whose existence is guaranteed
by [10, Theorem 2.2]. In [10, Theorem 2.9] the authors argue that fα(r), the
warping function for the horizontal fiber of ωα, must satisfy a specific differential
equation. The initial conditions for this differential equation are f ′

α(0) = 0 and

fα(0) ∈
(√

n
n+1 , 1

)
= (v, 1). With respect to equation (2.4), the coefficient of

the horizontal distribution is u = cosh(r). Also, recall in (2.4) that we made the
substitution V (u) = u2 − 1 = sinh2(r) = (cosh′(r))2.

In the differential equation (3.4) we set u = f(r) and V (u) = (f ′(r))2. Note
that, in terms of (3.4)

V ′ =
dV

du
=

dV

dr
· dr
du

= 2f ′(r)f ′′(r)

(
1

f ′(r)

)
= 2f ′′(r).

Substituting into (3.4) gives

2f ′′ +
2n(f ′)2

f
= (2n+ 2)f − 2n

f



EXPLICIT DESCRIPTION OF KÄHLER-EINSTEIN METRICS 15

which can be rearranged as

f ′′

f
+ n

(f ′)2

f2
+ n

1

f2
= n+ 1.

This is the differential equation derived in Theorem 2.9 of [10]. To see that the
solution Vα of this equation is the same solution as ωα, just compare the initial
conditions listed above for fα with Lemma 3.5. □

Proof of Lemma 3.5. Again, this proof is very similar to [8], but the presence of
the u2 in the dθ2 term of (2.5) causes enough differences that we verify all details
below.

For (1), just note that uα is the largest value of u which satisfies f(u) = α.
Statement (1) then follows from consideration of the graph of f(u)− α.

To prove statement (2), fix α ∈ (−∞, αmax). To calculate the cone angle of λα

we need to consider values of u near uα. One has, for u near uα,

Vα(u) = Vα(uα) + V ′
α(uα)(u− uα) +O

(
(u− uα)

2
)
≈ 2cα

uα
(u− uα).

We then, in the metric λα, make the substitution

s =

√
2uα

cα
(u− uα)

Direct calculations verify the following:

du2 =
2cα
uα

(u− uα)ds
2 ≈ Vαds

2

c2αs
2

u2
α

=
2cα
uα

(u− uα) ≈ Vα

u2 =

(
s2cα
2uα

+ uα

)2

.

Substituting for λα in (2.5), we have

(3.5) λα ≈
(
s2cα
2uα

+ uα

)2

cn−1 +

(
s2cα
2uα

+ uα

)2
c2αs

2

u2
α

dθ2 + ds2.

Notice that, as u → uα, we have s → 0. Therefore, as u → uα, the leading (linear)
coefficient of dθ2 in (3.5) approaches c2αs

2. Thus, λα has cone angle of 2πcα about
R2n−2.

To verify (3), recall that uα is the largest solution to the equation f(u) = α or,
equivalently, (1− uα)

2u2n
α = α. This gives

cα = u2
α − nα

u2n
α

= u2
α − n(1− u2

α)u
2n
α

u2n
α

= (1 + n)u2
α − n.

This equation defines an increasing homeomorphism from [v,∞) → [0,∞). Com-
posing with γ from (1) yields the desired decreasing homeomorphism β. For the
last claim, just note that when α = 0 we have u0 = 1 and therefore c0 = 1. Thus,
when α = 0, the cone angle is 2π (which is clear since λ0 = cn). The claim then
follows from the fact that β is decreasing. □

Notice the immediate corollary of Lemma 3.5.



16 JEAN-FRANÇOIS LAFONT AND BARRY MINEMYER

Corollary 3.6. For any integer d ≥ 2, there exists a unique α = αd ∈ (0, αmax]
such that the metric λα has cone angle 2π/d about CHn−1.

We now aim to find upper and lower bounds for the sectional curvature of λα in
order to give an independent proof of [10, Theorem 2.11]. It turns out that λα also
has the same upper and lower curvature bounds as the model Einstein metric in
[8], but verifying this is more involved due to the nonzero mixed terms in Theorem
2.1. Recall that W 2 = Vα = u2 − 1 + αu−2n. From this, we observe that

2WW ′ = V ′
α = 2u− 2nαu−2n−1

2
(
(W ′)

2
+WW ′′

)
= V ′′

α = 2 + 2n(2n+ 1)αu−2n−2.

The following Corollary restates the curvature formulas from Theorem 2.1 with the
above calculations.

Corollary 3.7. With respect to the orthonormal basis defined in equations (2.6)
through (2.8) we have, up to the symmetries of the curvature tensor, the following
formulas for the nonzero components of the Riemann curvature tensor Rα of λα.

Rα
i,i+1,i,i+1 = −4− 4α

u2n+2
for i odd.(3.6)

Rα
i,j,i,j = −1− α

u2n+2
.(3.7)

Rα
i,2n−1,i,2n−1 = Rα

i,2n,i,2n = −1 +
nα

u2n+2
.(3.8)

Rα
2n−1,2n,2n−1,2n = −4− 2n(n− 1)α

u2n+2
.(3.9)

Rα
i,i+1,j,j+1 = 2Rα

i,j,i+1,j+1 = −2Rα
i,j+1,i+1,j = −2− 2α

u2n+2
for i, j odd.(3.10)

Rα
i,i+1,2n−1,2n = 2Rα

i,2n−1,i+1,2n = −2Rα
i,2n,i+1,2n−1 = −2 +

2nα

u2n+2
.(3.11)

In the formulas above we have 1 ≤ i, j ≤ 2n − 2 and, if i and j appear in the
same formula, we assume that (Yi, Yj) does not form a holomorphic pair. We also
assume i is odd in (3.11).

With these formulas we can now prove the following.

Proposition 3.8. For all α ∈ (0, αmax), the metric λα has all sectional curvatures
bounded above by a negative constant. Moreover, the sectional curvature K of λα

satisfies

−4− 2n(n− 1)α

u2n+2
≤ K ≤ −1 +

nα

u2n+2

Proof. First note that, of the curvatures of the coordinate planes in equations (3.6)
through (3.9), the only one that is greater than −1 is (3.8). But, using the notation
for αmax and v from Lemma 3.5, observe that

−1 +
nα

u2n+2
< −1 +

nαmax

v2n+2
= −1 +

n

n+ 1
· 1

v2
= 0.

Therefore, K < 0 for all coordinate 2-planes with respect to the orthonormal frame
defined in (2.6) through (2.8), but we also have to account for the nonzero mixed
terms.

In what follows we use the notation from Subsection 2.1. Let E = CHn−1 × S1,
q ∈ E× (0,∞), and p = ϕ(q) where ϕ is the orthogonal projection onto the CHn−1
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factor. Let σ ⊂ Tq(E × (0,∞)) be a 2-plane such that σ ̸= span(∂/∂θ, ∂/∂u). Our
goal is to choose a convenient frame to calculate K(σ). By construction, dϕ(σ) is
at least 1-dimensional in TpCHn−1. Let A ∈ σ be a unit vector orthogonal to ∂/∂u

which satisfies that dϕ(A) ̸= 0, and let X̌1 ∈ TpCHn−1 be a unit vector which is
parallel to dϕ(A). Choose B ∈ σ so that (A,B) is an orthonormal basis for σ. Let
X̌2 = JX̌1, and choose a unit vector X̌3 orthogonal to span(X̌1, X̌2) in such a way
that dϕ(B) ∈ span(X̌1, X̌2, X̌3). Extend (X̌1, X̌2, X̌3) to orthogonal vector fields
(X1, X2, X3) about q in exactly the same manner as described in Subsection 2.1.
Finally, let

Y1 =
1

u
X1, Y2 =

1

u
X2, Y3 =

1

u
X3, Y5 =

1

uW

∂

∂θ
, Y6 = W

∂

∂u
.

Then there exist constants a1, a5, b1, b2, b3, b5, b6 such that

A = a1Y1 + a5Y5 B = b1Y1 + b2Y2 + b3Y3 + b5Y5 + b6Y6

with

a21 + a25 = 1
∑

b2i = 1 a1b1 + a5b5 = 0.

We then compute

K(σ) = λα(R
α(A,B)A,B)

= a21b
2
2R

α
1,2,1,2 + a21b

2
3R

α
1,3,1,3 + (a1b5 − a5b1)

2Rα
1,5,1,5 + a21b

2
6R

α
1,6,1,6 + a25b

2
2R

α
2,5,2,5

+ a25b
2
3R

α
3,5,3,5 + a25b

2
6R

α
5,6,5,6 + 2a1a5b2b6

(
Rα

1,2,5,6 −Rα
1,6,2,5

)
= (4a21b

2
2 + a21b

2
3)

(
−1− α

u2n+2

)
+ ((a1b5 − a5b1)

2 + a21b
2
6 + a25b

2
2 + a25b

2
3)

(
−1 +

nα

u2n+2

)
+ a25b

2
6

(
−4− 2n(n− 1)α

u2n+2

)
+ 6a1a5b2b6

(
−1 +

nα

u2n+2

)
= (4a21b

2
2 + a21b

2
3)

(
−1− α

u2n+2

)
+ ((a1b5 − a5b1)

2 + a25b
2
3)

(
−1 +

nα

u2n+2

)
+ (a1b6 + a5b2)

2
(
−1 +

nα

u2n+2

)
+ a25b

2
6

(
−4− 2n(n− 1)α

u2n+2

)
+ 4a1a5b2b6

(
−1 +

nα

u2n+2

)
< (2a21b

2
2 + a21b

2
3)

(
−1− α

u2n+2

)
+ ((a1b5 − a5b1)

2 + a25b
2
3)

(
−1 +

nα

u2n+2

)
+ (a1b6 + a5b2)

2
(
−1 +

nα

u2n+2

)
+ a25b

2
6

(
−2− n(n− 1)α

u2n+2

)
+ 2(a1b2 + a5b6)

2
(
−1 +

nα

u2n+2

)
.

This last expression is clearly negative. To obtain an upper curvature bound, a
quick observation shows that we want to choose a1 = b6 = 0. This forces a5 = ±1
and, by orthogonality, we must have b5 = 0. The last expression above reduces to(

−1 +
nα

u2n+2

) (
b21 + b23 + b22

)
=

(
−1 +

nα

u2n+2

)
.

The lower curvature bound is easily seen to occur when |a5| = |b6| = 1, which yields

K(σ) = −4− 2n(n− 1)α

u2n+2
.

□
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Remark 3.9. The extreme curvature values of λα are functions of both the dimen-
sion n and ramification degree d. The maximum and minimum curvatures both
occur at the ramification locus, when u = uα. As d → ∞, we have uα → v and
α → αmax. We saw in the above argument that, in this situation, (nα)/u2n+2

will then approach 1 as d → ∞. The lower curvature bound thus approaches
−4− 2(n− 1) = −2(n+ 1) while the upper curvature bound approaches 0. There-
fore, for any ε > 0, one can choose the ramification degree d sufficiently large so
that the lower curvature bound of λα lies in (−2(n + 1),−2(n + 1) + ε) while the
upper curvature bound lies in (−ε, 0). Note that these are the same curvature
bounds stated in the Introduction of [10].

It is also easy to deduce [10, Theorem 2.4 (4)] from our previous work. Note
that |λα − cn| ≤ 2α/u2n. Recalling that u = cosh(r) and r denotes the distance
from the branching locus, we see that the model Einstein metric λα approaches cn
exponentially in r.

4. Complex hyperbolic branched covers and convergence to the
Kähler-Einstein metric

In this section we first show how to construct a sequence of complex hyperbolic
branched cover manifolds (Xk) with a specific geometric property (namely, that the
normal injectivity radius of the branching locus goes to infinity while the diameter
of the branching locus remains fixed). We will then discuss how to use our model
Einstein metric λα to construct a smooth, approximately Einstein metric gk on Xk

for each k. This metric will be negatively curved for k sufficiently large. Finally we
will show how to use an inverse function theorem to perturb gk to obtain a negatively
curved Einstein metric ek on Xk. Since our approximate Einstein metric gk is
isometric to ωd,R from [10], equation (30) from [10] shows that ek asymptotically
approaches the unique Kähler-Einstein metric on Xk with negative Ricci constant.

The authors want to emphasize that the work in this section was completed after
the announcement of [10]. This section really just combines known results from the
literature, including [10], with a small amount of work to check that they apply to
our metric λα. But we include full details here for completeness.

4.1. The sequence of complex hyperbolic branched cover manifolds. Fix
integers d, n ≥ 2. The goal of this subsection is to prove the following.

Theorem 4.1. There exists a sequence of compact Kähler manifolds (Mk) of com-
plex dimension n with connected, totally geodesic submanifolds (Nk) which satisfy
the following.

(1) The universal cover of Mk is isometric to CHn.
(2) The submanifold Nk ⊂ Mk is embedded, has real codimension 2, and its

preimage in the universal cover of Mk is isometric to multiple disjoint copies
of CHn−1.

(3) Nk is isometric to Nℓ for all indices k, ℓ.
(4) The fundamental class [Nk] ∈ H2n−2(Mk,Z) is d-divisible.
(5) The normal injectivity radius ηk of Nk in Mk satisfies ηk ≥ k.

Remark 4.2. By condition (4), the cyclic d-fold branched cover Xk of Mk about Nk

is a smooth manifold. By (5) the normal injectivity radius of the branching locus
of Xk will approach infinity as k → ∞. The branched cover manifold Xk is Kähler
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by [24] and, for k sufficiently large, this is the manifold which admits a negatively
curved Kähler-Einstein metric.

Proof of Theorem 4.1. The construction of the pair (Mk, Nk) is recursive. We first
show how to construct (M0, N0) and then, given (Mk, Nk), we show how to con-
struct (Mk+1, Nk+1) which satisfies (1)− (5) above.

Using the notation of [20], let Γ < PU(n, 1) be a cocompact congruence arith-
metic lattice of simple type. It is known that, after possibly passing to a finite
congruence cover, we may assume that the quotient M = Γ \ CHn contains an
embedded submanifold N satisfying (2) above. In the event that this submanifold
is disconnected, we let N denote one of its components.

By a result of Stover and Toledo [20, Proposition 5.1], there exists a finite cover
(M ′, N ′) of (M,N) such that [N ′] ∈ H2n−2(M

′,Z) is d-divisible. We set M0 = M ′

and, if N ′ is connected, we let N0 = N ′. If N ′ contains multiple components,
then an application of the Universal Coefficient Theorem [10, Lemma 3.8] shows
that each individual component of N ′ must also have fundamental class that is
d-divisible. Choose one such component and call it N0.

We now assume that the pair (Mk, Nk) satisfying (1) − (5) in Theorem 4.1 has
been constructed, and we show how to construct the pair (Mk+1, Nk+1). This
argument is analogous to that of [10, Proposition 3.3]. To start, if the normal
injectivity radius ηk of Nk is k + 1 or greater, then we just set Mk+1 = Mk and
Nk+1 = Nk. So we may assume that ηk < k + 1.

Let Γk < PU(n, 1) be such that Mk = Γk \ CHn. The preimage of Nk in CHn

will generally have many connected components, each isometric to CHn−1. Fix one
of these components and call it V . Let Λk = StabΓk

(V ) denote the stabilizer of V
in Γk. Since ηk < k + 1 there exists a geodesic with endpoints in Nk whose length
is at most 2(k + 1), which meets Nk orthogonally at each endpoint, and which
does not admit a homotopy into Nk. Connecting these endpoints with a geodesic
contained in Nk gives a closed path inMk which corresponds to a nontrivial element
γ ∈ π1(Mk) ∼= Γk. Note that, by construction, γ ̸∈ Λk.

By a result of Bergeron [4], there exists a finite index subgroup Γ′
k < Γk such

that Λk < Γ′
k but γ ̸∈ Γ′

k. By [7] there exist only finitely many homotopy classes
of closed curves in Mk with length less than 2(k+1)+diam(Nk). So, after finitely
many steps, we obtain a finite index subgroup Γk+1 < Γk with Λk < Γk+1 which
satisfies the following. Let Mk+1 = Γk+1 \ CHn, and let Nk+1 ⊂ Mk+1 be equal
to Λk \ V . Then Nk+1 is connected, is isometric to Nk, and has normal injectivity
radius ηk+1 ≥ k + 1. This verifies conditions (1)− (3) and (5) in the Theorem.

For property (4), first notice that Mk+1 is a finite cover of Mk since Γk+1 < Γk

has finite index. Since the fundamental class of Nk is d-divisible, by [10, Lemma 3.7]
we have that the lift of Nk in Mk+1 has d-divisible fundamental class. This lift may
have multiple connected components, one of which is Nk+1. But [10, Lemma 3.8]
shows that, if the fundamental class of the preimage of Nk is d-divisible, then the
fundamental class of each component is d-divisible. Thus, Nk+1 satisfies condition
(4) of the Theorem. □

4.2. The approximate Einstein metric. In this subsection we consider the man-
ifold pairs (Mk, Nk) constructed in Theorem 4.1. Fix an integer d ≥ 2 as in the
Theorem, and let Xk denote the d-fold cyclic branched cover of Mk about Nk.

By Corollary 3.6 there exists a unique α = αd ∈ (0, αmax) such that the cone
angle of λα about some copy of CHn−1 in CHn is 2π/d. Define a smooth function
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χ : R → [0,∞) which satisfies χ(u) = 1 if u ≤ 1/2 and χ(u) = 0 for u ≥ 1. We
then write

Vk(u) = u2 − 1 +
α

u2n
χ

(
u

ηk

)
and let g′k denote the metric λ associated with this choice of Vk. Since Vk = u2 − 1
at all points of distance at least ηk from CHn−1, the metric g′k descends to a well-
defined orbifold metric on Mk. By abuse of notation we again denote this metric
g′k, and note that g′k will be everywhere Riemannian except at Nk. At each point
of Nk the metric g′k will have a cone angle of 2π/d.

Let ρk : Xk → Mk denote the d-fold cyclic branched covering map, and equip
Xk with the metric gk := ρ∗k(g

′
k). By an abuse of notation we also use Nk to denote

the branching locus of Xk. By construction the metric gk is smooth about Nk, and
gk is certainly negatively curved and Einstein within the (1/2)ηk-tube of Nk and
outside of the ηk-tube of Nk. Since ηk → ∞, all derivatives of χ(u/ηk) approach 0 as
k → ∞. Therefore, for k sufficiently large, gk will be negatively curved everywhere
and will be approximately Einstein on the ((1/2)ηk, ηk)-annulus about Nk. This
approximation becomes finer as k → ∞. We summarize this information in the
following Proposition.

Proposition 4.3. There exists an integer K such that, for all k ≥ K, there exists
a smooth Riemannian metric gk on Xk with the following properties.

(1) There is a constant c > 0 such that sec(gk) < −c, where sec denotes the
sectional curvature.

(2) Ric(gk)+(2n+2)gk is nonzero only in the annular neighborhood (1/2)ηk <
r < ηk.

(3) For any m ∈ N, there exists a constant A depending on m but not on k
such that

||Ric(gk) + (2n+ 2)gk||Cm ≤ A(
cosh

(
1
2ηk

))2n+2

(4) We have

lim
k→∞

∫
Xk

∣∣Ric(gk) + (2n+ 2)gk|2dvolgk = 0

Proof. Statement (2) is clear by the definition of χ. Statement (1) is also clear
since the curvature of g′k is bounded above by a negative constant, and gk is a
C2-approximation of g′k. Statement (3) is identical to [8, Proposition 3.1 (1)] but
with replacing n− 3 by 2n.

For (4), first note that the integrand is supported on the ((1/2)ηk, ηk)-annulus
about Nk. The metric gk only differs from cn within the normal bundle of Nk, and
the maximum length of any unit vector in this annulus is uW ≈ u2 ≤ cosh2(ηk).
Thus, an upper bound for the gk-volume of this region is given by

d · vol(Nk) · cosh2(ηk) · η2k.

From Theorem 4.1 (3) we know that vol(Nk) is constant. Then, using the approx-
imation cosh(x) ≈ (1/2)ex for x large, statement (4) then follows from statement
(3) assuming n > 1. □
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4.3. Perturbing gk to obtain a negatively curved Einstein metric. In this
subsection we will closely follow the notation and results from [11, Sections 2, 4]
and [8, Section 4], both of which originate (at least) from the work of Anderson in
[1]. The proof of Theorem 1.2 below is identical to the proof of [11, Theorem 4.3].
Technically, one would need to replace n−1 with 2n+2 in equations (2.1), (2.3), and
the subsequent Lemmas of [11], but the proofs of these Lemmas are independent of
this positive constant. Alternately, one could simply scale our approximate Einstein
metric g′k appropriately so that its Einstein constant is −(n− 1). Then, the results
of [11] apply directly. The goal of this subsection is to provide the terminology
and results necessary from [8] and [11] to justify Theorem 1.2, with the hope that
this subsection can also serve as a gentle introduction for non-experts to the above
references.

Let Met (Xk) denote the collection of smooth, symmetric, bilinear forms on TXk

of any signature. The collection of Riemannian metrics on Xk forms an open cone
within Met (Xk). One would like to define an operator E : Met (Xk) → Met (Xk)
by

E(g) = Ric(g) + (2n+ 2)g

but this operator is not elliptic and thus the inverse function theorem will not
generally be applicable. The remedy for this issue is called Bianchi guage fixing.
Given g ∈ Met (Xk), define Φg : Met (Xk) → Met (Xk) by

Φg(h) = Ric(h) + (2n+ 2)h+ div∗h(βg(h))

where div∗h is the L2-adjoint of the divergence with respect to g and βg : Met (Xk) →
T ∗X is the Bianchi operator. We omit the definitions since we will not use them
here, but we direct the interested reader to see [8], [11], and the references therein.
An important property of Φg is that, if |βg| is bounded and Ric(g) < λg for some
λ < 0, then Φg(h) = 0 if and only if h satisfies both Ric(h) = −(2n + 2)h and
βg(h) = 0. See [1, Lemma 2.1] or [11, Lemma 2.1]. So, at least for metrics with
negative Ricci curvature, Φg is sufficient to be able to detect Einstein metrics near
g. But it is generally not necessary as it will miss Einstein metrics e which satisfy
βg(e) ̸= 0 as discussed in [1].

The reason why it is advantageous to add βg to E to obtain Φg is that the
operator Φg is now elliptic. Its linearization (at g) can be explicitly calculated as

Lg(h) := (DΦg)g(h) =
1

2
∆Lh+ (2n+ 2)h

where ∆L = ∇∗∇h+Ric(h) is the Lichnerowicz Laplacian. A good reference for the
notation is [18, Section 9.3]. Koiso [14] proved that, if g is Einstein with negative
sectional curvature, then Lg has a uniform L2-spectral gap. Our metric gk is only
approximately Einstein, but an analog to this result was proved in [8, Lemma 4.4]
(see also the corresponding [11, Lemma 4.1]) to apply to this situation.

All of the results above apply in all dimensions. The reason why the nega-
tively curved Einstein metrics from [8] are only guaranteed to exist in dimension
4 is twofold. The first reason is because the construction of the manifold pairs
(Mk, Nk) in [8] do not give sufficient L2-control of Φgk(gk). Hamenstädt and Jäckel
in [11] observed that, by using subgroup separability to bound the diameter of the
branching locus, one could obtain such L2-control of Φgk(gk). This is encoded in
Proposition 4.3 (4) above. The second reason is due to the bound on L−1

g . In

[8] Fine and Premoselli are able to find an upper Lipschitz bound for L−1
g that
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depends on k [8, Lemma 4.13], whereas Hamenstädt and Jäckel are able to con-
struct a C0-estimate for L−1

g [10, Lemma 2.2] and use this to find such a bound
that is independent of k [10, Proposition 4.2]. This [10, Proposition 4.2] replaces
the estimate needed by Fine and Premoselli in [8, Theorem 4.15] and is the key to
extending their results to all dimensions.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Consider

Φgk : C2(Met (Xk)) → C0(Met (Xk))

where Cℓ(Met (Xk)) denotes Met (Xk) with the Cℓ-topology. By [10, Proposi-
tion 4.2] there exists ε > 0, independent of k, such that Φgk surjects onto the
ε-neighborhood of Φgk(gk), denoted B(Φgk(gk), ε). By Proposition 4.3 (4) we
have that ||gk||L2 → 0, and consequently ||Φgk(gk)||C0 → 0. Thus there exists
K ∈ N such that, for all k ≥ K, 0 ∈ B(Φgk(gk), ε). Therefore, there exists
ek ∈ C2(Met (Xk)) such that Φgk(ek) = 0. It is known that Φgk is Lipschitz with
constant independent of k (see [8, Lemma 4.1] and [11, Proposition 4.2]). Hence,
by possibly choosing a larger K if necessary, we have that ek is positive-definite
and negatively curved. The metric ek is thus the desired negatively curved Einstein
metric. Moreover, by letting ε → 0 as k → ∞, one can ensure that

lim
k→∞

||gk − ek||C2 = 0

□

Remark 4.4. From the equation above, we see that our model Einstein metric C2-
approximates the negatively curved Einstein metric ek, and this approximation gets
closer as k → ∞. By equation (30) in [10] we see that gk also C2-approximates
the negatively curved Kähler-Einstein metric ωk. It is unclear to the authors if,
eventually, one must have ek = ωk for all k, or if this sequence of manifolds supports
a sequence of negatively curved Einstein metrics that C2-converge to ωk.
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