
Differential Topology: Homework Set # 2.

1) Submersions and submanifolds. Use submersions to establish that the following spaces are smooth manifolds.
We use the notation Mn(C) to denote (n× n)-matrices with complex entries (which we can naturally identify with
Cn2 ∼= R2n2

), In ∈ Mn(C) to denote the identity matrix, and AT to denote the transpose of a matrix A.

(i) The subspace SLn(C) ⊂ Mn(C), consisting of all matrices A satisfying det(A) = 1.

(ii) The subspace SOn(C) ⊂ Mn(C), consisting of all matrices A satisfying both AT A = In and det(A) = 1.

(iii) The subspace Sp2n(C) ⊂ Mn(C), consisting of all matrices A satisfying the equation AT JA = J , where J is

the (2n× 2n)-matrix given by J =
[

0 In

−In 0

]
.

(iv) Show that the set of (z1, z2, z3, z4, z5) ⊂ C5 ≡ R10 satisfying the pair of equations:

z5
1 + z3

2 + z2
3 + z2

4 + z2
5 = 0

||z1||2 + ||z2||2 + ||z3||2 + ||z4||2 + ||z5||2 = ε

forms a 7-dimensional submanifold in R10 (for ε > 0).

The manifolds considered in (i)-(iii) are some of the most important families of complex Lie groups. In fact, the
tangent spaces of these complex Lie groups exhaust all but five of the complex (non-trivial) simple Lie algebras.
Example (iv) yields interesting manifolds: for ε close enough to zero, the resulting manifold is homeomorphic to
S7, but is not diffeomorphic to S7. This is one of the simplest description of an exotic sphere.

2) Transversality. Recall that transversality is a condition on a pair of submanifolds which says that the tangent
spaces of the submanifolds at each point of intersection span out the entire ambient tangent space. Infinitesimally,
this says that the two submanifolds do not “line up along a lower dimensional subspace”.

(i) For N1, N2 a pair of transversal submanifolds of M , show that for p ∈ N1 ∩N2, we have that Tp(N1 ∩N2) =
TpN1 ∩ TpN2.

(ii) Extend (i) by showing that if f : N → M is transverse to a submanifold M ′ ⊂ M , then the tangent space to
the submanifold N ′ := f−1(M ′) at a point p ∈ N ′ is given by TpN

′ = df−1
p (Tf(p)M

′).

(iii) Given a pair of smooth maps f : M1 → M2 and g : M2 → M3, assume that g is transversal to N ⊂ M3. Show
that f is transversal to g−1(N) if and only if the composite g ◦ f is transversal to N .

3) Homotopy. Recall that a pair of smooth maps f0, f1 : Mk → N l are said to be smoothly homotopic provided
that there exists a smooth map (called a smooth homotopy) F : [0, 1] × Mk → N l having the property that
F |{0}×Mk ≡ f0 and F |{1}×Mk ≡ f1. We denote by ft : Mk → N l the map F |{t}×Mk . We write f ∼ g if f, g
are smoothly homotopic maps. Smooth homotopy is a precise formulation of the intuitive notion of “smoothly
deforming” one map into another.

(i) Show that if f0, f1 are smoothly homotopic maps, then there is a smooth homotopy F satisfying the additional
property that the associated ft satisfy ft ≡ f0 for 0 ≤ t ≤ 1/3 and ft ≡ f1 for 2/3 ≤ t ≤ 1.



(ii) Show that ∼ is a transitive relation: i.e. if f ∼ g and g ∼ h, then f ∼ h.

(iii) Show that if M is a connected manifold, then M is arcwise connected: given any two points p, q ∈ M , there
exists a smooth curve γ : [0, 1] → M satisfying γ(0) = p, γ(1) = q.

(iv) A manifold M is contractible if the identity map on M is smoothly homotopic to a point map M → p for
some p ∈ M . Show that if M is contractible, then any two maps f0, f1 from an arbitrary manifold N into M
are automatically smoothly homotopic.

(v) A manifold M is simply connected if any pair of smooth maps f0, f1 : S1 → M are smoothly homotopic. Show
that any contractible manifold is simply connected.

(vi) Show that for k > 1, the sphere Sk is simply connected. [Hint: use Sard’s theorem and stereographic
projection.]

4) Stability of Morse functions. Show that Morse functions on compact manifolds are stable, by establishing
the following:

(i) Let f be a smooth function on an open set U ⊂ Rn. For each x ∈ U , denote by H(x) the Hessian of f at the
point x. Prove that f is Morse if and only if the following inequality holds for all x ∈ U :

0 < det(H)2 +
n∑

i=1

( ∂f

∂xi

)2

(ii) Use (i) to show that if ft is a smoothly homotopic family of functions on Rn, and f0 is Morse on a neighborhood
of a compact set K ⊂ Rn, then ft is Morse on K for t sufficiently close to 0.

(iii) Use (ii) to show that if f is a Morse function on a compact manifold M , and ft is a smooth homotopy of f ,
then ft is Morse for t sufficiently close to 0.

(iv) Where is compactness of M used? What would you need to assume about the Morse function in order to
obtain an analogous statement for non-compact M?


