
Differential Topology: Homework Set # 4.

1) Manifolds with boundary. This exercise is to help you get some practice working with manifolds with
boundar.

(i) If U ⊂ Rk and V ⊂ Hk are neighborhoods of 0, show that U and V are not diffeomorphic to each other.

(ii) Show that the square S = [0, 1]× [0, 1] is not a smooth manifold with boundary.

(iii) Suppose that M is a manifold with boundary, and p ∈ ∂M . Given a smooth parametrization φ : U → M
(U ⊂ Rk) with φ(0) = p, define the upper half space HpM ⊂ TpM to be the image of Hk ⊂ Rk under
dφ0 : Rk ∼= T0Rk → TpM . Show that this subset of TpM is well defined. Tangent vectors in HpM will be
called inward pointing, while vectors in TpM −HpM will be called outward pointing.

(iv) For M a manifold with boundary, and p ∈ ∂M , show that there are precisely two unit vectors in TpM which
are perpendicular to Tp(∂M) (with respect to the inner product on the ambient Rn), with one contained in
HpM , and the other contained in TpM −HpM . The one in HpM is called the inward unit normal vector to
the boundary, and the other one is called the outward unit normal vector.

(v) For M ⊂ Rn a manifold with boundary, and p ∈ ∂M , let ~np ∈ TpM ⊂ TpRn ∼= Rn be the outward unit normal
vector. This defines a map from ∂M to Rn, given by p 7→ ~np. Show that this map is smooth.

(vi) For M a manifold with boundary, and p ∈ ∂M , show that there exists a neighborhood U of p, and a smooth
function f : U → R, with the property that (a) f(x) = 0 if and only if x ∈ ∂U , and (b) for points x ∈ ∂U ,
dfx(~nx) > 0.

2) Variations on Retraction theorem and Brouwer fixed point theorem. Recall that we established in
class the smooth version of the Brouwer fixed point theorem: every smooth map f : Dn → Dn has a fixed point.
The argument relied on the retraction theorem: there are no retractions from a compact manifold with boundary
to its boundary. This exercise has you consider related notions.

(i) Give an example of a non-compact manifold M with non-empty boundary, and a retraction r : M → ∂M .

(ii) For M a manifold with non-empty boundary, assume that V is a smooth vector field on M , with the property
that V is non-zero and outward pointing at every boundary point p ∈ ∂M . Show that V must vanish at some
point q ∈ Int(M). [Hint: a smooth vector field locally gives rise to a particularly nice system of differential
equations.]

(iii) Show that in the Brouwer fixed point theorem, the fixed point might not be an interior point. Conclude that
the analogous fixed point theorem fails for smooth maps f : Int(Dn) → Int(Dn).

(iv) The Weierstrass approximation theorem states that given a continuous map f : Dn → Dn, one can find for
each ε > 0 a polynomial map p : Rn → Rn such that |f(x) − p(x)| < ε for every x ∈ Dn. Show that the
polynomial p can be chosen to additionally satisfy the property that p(Dn) ⊂ Dn.

(v) Use (iii) to establish the continuous version of the Brouwer fixed point theorem: every continuous map
f : Dn → Dn has a fixed point. [Hint: replace f by a suitable smooth map F ]



Parts (iv) and (v) above give an alternate route to the continuous Brouwer fixed point theorem. The standard
proof of this result goes via algebraic topology. Yet another proof makes use instead of Sperner’s Lemma from
combinatorics (a particularly slick argument, if you’re interested in combinatorics).

3) Applications of Brouwer’s fixed point theorem. This exercise will have you look at various applications
of Brouwer’s fixed point theorem.

(i) Show that if a manifold M without boundary supports a non-vanishing vector field, then it supports a self-map
with no fixed points.

(ii) Show that if a manifold M (possibly with boundary) is diffeomorphic to S1 × N , then M supports self-
maps with no fixed points. Conclude that Dn does not split as a product S1 × Nn−1, where Nn−1 is an
(n− 1)-dimensional manifold with boundary.

(iii) Use the Brouwer fixed point theorem to establish the following result of Frobenius: if A is an (n× n)-matrix
with real, non-negative entries, then A has a real non-negative eigenvalue. [Hint: use A to define a suitable
self-map f : Sn−1 → Sn−1 having the property that f maps the “first quadrant” of the sphere into itself, and
apply problem #1(v) .]

4) Fixed point theorems in normed vector spaces. Brouwer’s theorem ensures fixed points for self-maps
f : Dn → Dn. For applications to functional analysis, it is important to consider self-maps on more general spaces.
We say a space X has the fixed point property if every self map of X has a fixed point.

For V be a (real) vector space, and F = {v1, . . . , vr} ⊂ V a finite subset, define the convex hull of F to be:

Conv(F ) := {w ∈ V | w =
∑

tivi,where ti ≥ 0, t1 + · · · tr = 1}

We say that a subset X ⊂ V is convex if for every p, q ∈ X, we have Conv({p, q} ⊂ X. In this exercise, V will be a
vector space equipped with a norm, and we will be interested in the fixed point property for convex subsets of V .

(i) Show that if X is a compact, convex subset of a finite dimensional Hilbert space, then X has the fixed point
property.

(ii) Show that if X is the unit ball in infinite dimensional Hilbert space l2, then X is convex, but there exist self
maps σ : X → X with no fixed points. Show that X is not compact, by exhibiting a sequence in X with no
convergent subsequence.

(iii) Given a compact subset K ⊂ V of the normed vector space V , show that K is “almost finite dimensional”, in
the following sense: given ε > 0, there exists a finite subset F ⊂ K, and a map P : K → Conv(F ) satisfying
d(P (x), x) < ε for all x ∈ K.

[Hint: take F = {v1, . . . vr} to be a finite ε-net in K, define φi to be the linear ε-bump function centered at
vi, set P (x) =

[∑
φi(x)vi

]
/

∑
φi(x), and check that this has the desired properties.]

(iv) Show that if X ⊂ V is a closed, convex subset, and f : X → X has the property that f(X) has compact
closure, then f has a fixed point. Conclude that compact convex subsets of normed real vector spaces have
the fixed point property.

[Hint: Use (iii) above to reduce to the finite dimensional case.]



This gives one of the extensions of Brouwer’s fixed point theorem, originally due to Schauder. This result is
important, as it can be used to give a (topological!) proof of the classic Cauchy-Peano theorem (the most elementary
existence result on solutions to differential equations).

Other variations on Brouwer’s theorem include Kakutani’s work on set valued mappings (which was the corner-
stone for Nash proof of a “Nash equilibrium” in economics), Michael’s work on continuous selections (an important
result at the intersection of set theoretic topology and geometric topology), and Lefschetz’s fixed point theorem (a
smooth version of which we will discuss in a few weeks).


