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Splitting formulas for certain Waldhausen Nil-groups

Jean-François Lafont and Ivonne J. Ortiz

Abstract

We provide splitting formulas for certain Waldhausen Nil-groups. We focus on Waldhausen Nil-
groups associated to acylindrical amalgamations Γ = G1 ∗H G2 of the groups G1 and G2 over
a common subgroup H. For these amalgamations, we explain how, provided that G1, G2 and Γ
satisfy the Farrell–Jones isomorphism conjecture, the Waldhausen Nil-groups NilW∗ (RH; R[G1 −
H], R[G2 − H]) can be expressed as a direct sum of Nil-groups associated to a specific collection
of virtually cyclic subgroups of Γ. A special case covered by our theorem is the case of arbitrary
amalgamations over a finite group H.

1. Introduction

Waldhausen’s Nil-groups were introduced in the two seminal papers [35, 36]. The motivation
behind these Nil-groups originated from a desire to have a Mayer–Vietoris type sequence in
algebraic K-theory. More precisely, if a group Γ = G1 ∗H G2 splits as an amalgamation of two
groups G1 and G2 over a common subgroup H, then one can ask how the algebraic K-theory
of the group ring R Γ is related to the algebraic K-theory of the integral group rings RG1,
RG2, and RH. Motivated by the corresponding question in homology (or cohomology), one
might expect a Mayer–Vietoris type exact sequence:

· · · −→ Ki+1(R Γ) −→ Ki(RH) −→ Ki(RG1) ⊕ Ki(RG2) −→ Ki(R Γ) −→ · · · .

A major result in [35, 36] was the realization that the Mayer–Vietoris sequence above holds,
provided that one inserts suitable ‘error terms’, which are the Waldhausen Nil-groups associated
to the amalgamation Γ = G1 ∗H G2. In general, associated to any ring S (such as RH), and
any pair of flat S-bimodules M1 and M2 (such as the R[Gi − H]), Waldhausen defines Nil-
groups NilW∗ (S;M1,M2). The Waldhausen Nil-groups NilW∗ (RH;R[G1 − H], R[G2 − H]) are
the ‘error terms’ mentioned above.

Another context in which these Nil-groups make an appearance has to do with the reduction
to finites. To explain this we recall the existence of a generalized equivariant homology theory,
having the property that, for any group Γ, one has an isomorphism:

HΓ
n (∗; KR–∞) ∼= Kn(RΓ).

The term appearing on the left-hand side is the homology of the Γ-space consisting of a
point ∗ with the trivial Γ-action. Now, for any Γ-space X, the obvious map X → ∗ is clearly
Γ-equivariant, and hence induces an assembly map homomorphism:

HΓ
n (X; KR–∞) −→ HΓ

n (∗; KR–∞) ∼= Kn(RΓ).

The Farrell–Jones isomorphism conjecture [15] asserts that, if X = EVCΓ is a model for the
classifying space for Γ-actions with isotropy in the family of virtually cyclic subgroups, then
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the homomorphism described above is actually an isomorphism. Explicit models for EVCΓ are
known for only a few classes of groups: virtually cyclic groups, crystallographic groups (Alves
and Ontaneda [1] and Connolly, Fehrman, and Hartglass [9]), hyperbolic groups (Lück [25]
and Juan-Pineda and Leary [19]), and relatively hyperbolic groups (Lafont and Ortiz [23]). In
contrast, classifying spaces for proper actions, denoted by EFINΓ, are known for many classes
of groups. Now, for any group Γ, one always has a unique (up to Γ-equivariant homotopy) map
EFINΓ → EVCΓ, which induces a well-defined relative assembly map:

HΓ
n (EFINΓ; KR–∞) −→ HΓ

n (EVCΓ; KR–∞).

In view of the Farrell–Jones isomorphism conjecture, it is reasonable to ask whether this latter
map is itself an isomorphism. Bartels [4] has shown that the relative assembly map is split
injective for arbitrary groups Γ, and arbitrary rings R. If the relative assembly map discussed
above is actually an isomorphism, then we say that Γ satisfies the reduction to finites.

Let us now specialize to the case where R = Z, that is, we will be focusing on integral group
rings. In this situation, the obstruction to the relative assembly map being an isomorphism
lies in the Nil-groups associated to the various infinite virtually cyclic subgroups of Γ. More
precisely, if every infinite virtually cyclic subgroup V � Γ satisfies the reduction to finites,
then the entire group Γ satisfies the reduction to finites (see [15, Theorem A.10]). Now, for a
virtually cyclic group V , the failure of the reduction to finites can be measured by the cokernel
of the relative assembly map. Let us recall that infinite virtually cyclic groups V come in two
flavors (see [32]):
• groups that surject onto the infinite dihedral group D∞ = Z2 ∗ Z2, and hence can be

decomposed as V = A ∗C B, with A,B, and C finite, and C of index two in the groups A
and B;

• groups that do not surject onto D∞ that can always be written in the form V = F �α Z,
where F is a finite group and α ∈ Aut(F ).

In the case where V surjects onto D∞, the cokernel of the relative assembly map coincides
with the Waldhausen Nil-group associated to the splitting V = A ∗C B. In the case where V
does not surject onto D∞, the cokernel of the relative assembly map consists of two copies of
the Farrell Nil-group associated to V = F �α Z, denoted by NK∗(ZF, α).

We now have two contexts in which Waldhausen Nil-groups make an appearance:
(1) they measure failure of the Mayer–Vietoris sequence in algebraic K-theory;
(2) they contain obstructions for groups to satisfy the reduction to finites.

Having motivated our interest in these groups, we can now state our main theorem.

Main Theorem. Let Γ = G1 ∗H G2 be an acylindrical amalgamation, and assume that
the Farrell–Jones isomorphism conjecture holds for the groups Γ, G1, and G2. Denote by V
a collection of subgroups of Γ consisting of one representative from each conjugacy class of
subgroups V satisfying:

(1) V is virtually cyclic;
(2) V is not conjugate to a subgroup of G1 or G2;
(3) V is maximal with respect to subgroups satisfying (1) and (2).

Then for arbitrary rings R we have the following isomorphisms:

NilW∗ (RH;R[G1 − H], R[G2 − H]) ∼=
⊕
V ∈V

HV
∗ (EFINV −→ ∗; KR–∞),

where HV
∗ (EFINV → ∗; KR–∞) are the cokernels of the relative assembly maps associated to

the virtually cyclic subgroups V ∈ V.
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Remark 1. An amalgamation Γ = G1 ∗H G2 is said to be acylindrical if there exists an
integer k such that, for every path η of length k in the Bass–Serre tree T associated to the
splitting of Γ, the stabilizer of η is finite. The notion of an acylindrical amalgamation was
first formulated by Sela [33] in relation to his work on the accessibility problem for finitely
generated groups. We use a generalization of Sela’s original definition that is due to Delzant
[13]. More generally, given a family C of subgroups, Delzant calls an amalgamation (k, C)-
acylindrical provided that, for the associated action of Γ on its Bass–Serre tree, the stabilizer
of any path of length k lies in C. The version that we are using corresponds to the case where
C = FIN , the family of finite subgroups of Γ.

Let us now give some examples of acylindrical amalgamations. Observe that, if the
amalgamating subgroup H is finite, then the amalgamation is automatically acylindrical (with
k = 1), as every edge will have a finite stabilizer. If the amalgamating subgroup H has the
property that |gHg−1 ∩ H| < ∞ for every g ∈ Gi − H (for either i), then the amalgamation
is acylindrical (with k = 3). In particular, we note that this is satisfied for any acylindrical
amalgamation where H is malnormal in either Gi. We refer the reader to Remark 9 for a more
thorough discussion of this notion, and to Corollary 4 for a concrete application.

Remark 2. The cokernels HVi∗ (EFINVi → ∗; KR–∞) are the familiar Waldhausen or (two
copies of the) Farrell Nil-groups, according to whether the virtually cyclic group Vi surjects
onto D∞ or not. Note that every virtually cyclic subgroup V that maps onto D∞ contains
a canonical index two subgroup V ′ that does not map onto D∞ (the pre-image of the
obvious index two subgroup Z � D∞). Recent independent work by various authors (Davis
[11], Davis, Khan, and Ranicki [12], as well as a paper in preparation by Davis, Quinn,
and Reich) has established that the Waldhausen Nil-group of V is isomorphic to the Farrell
Nil-group of V ′.

Remark 3. From the computational viewpoint, the Main Theorem combined with Remark
2 completely reduces (modulo the isomorphism conjecture) the computation of Waldhausen
Nil-groups associated to acylindrical amalgamations to that of Farrell Nil-groups.

Remark 4. Consider the simple case of a free product Γ = G1 ∗ G2. In this situation, the
group Γ is known to be (strongly) relatively hyperbolic, relative to the subgroups G1 and G2.
Assuming the Farrell–Jones isomorphism conjecture for Γ, previous work of the authors [24,
Corollary 3.3] yields the following expression for Kn(R Γ):

HΓ
n (EFIN Γ) ⊕

⎛
⎝⊕

i=1,2

HGi
n (EFINGi −→ EVCGi)

⎞
⎠⊕

(⊕
V ∈V

HV
n (EFINV −→ ∗)

)
,

where V is the collection of virtually cyclic subgroups mentioned in our Main Theorem (we
omitted the coefficients KR–∞ to simplify notation). Now, morally speaking, the Waldhausen
Nil-group is the portion of the K-theory of Γ that does not come from the K-theory of the
factors Gi. In the expression above, it is clear that the second term is determined by the K-
theory of the factors. Furthermore, recalling the well-known fact that every finite subgroup
of Γ has to be conjugate into one of the Gi, one sees that the first term also comes from the
K-theory of the factors. Hence the Waldhausen Nil-group should correspond to the last term
in the expression above. Our Main Theorem came about from trying to make this heuristic
precise.
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2. Proof of Main Theorem

Given the group Γ = G1 ∗H G2 satisfying the hypotheses of our theorem, let us form the family
F of subgroups of Γ consisting of all virtually cyclic subgroups that can be conjugated into
either G1 � Γ or G2 � Γ. Observe that we have a containment of families F ⊂ VC of subgroups
of Γ, which in turn induces an assembly map:

ρ : HΓ
n (EF Γ; KR–∞) → HΓ

n (EVC Γ; KR–∞).

Our proof will focus on analyzing the map ρ, and, in particular, on gaining an understanding of
the cokernel of that map. Let us start by describing the Waldhausen Nil-group as the cokernel
of a suitable assembly map. Corresponding to the splitting Γ = G1 ∗H G2, we have a simplicial
action of Γ on the corresponding Bass–Serre tree T (see [34]). From the natural Γ-equivariant
map T → ∗, we get an assembly map:

ρ′ : HΓ
n (T ; KR–∞) −→ HΓ

n (∗; KR–∞) ∼= K∗(R Γ).

We begin with the following important fact.

Fact. The map ρ′ is split injective, and

coker(ρ′) ∼= NilW∗ (RH;R[G1 − H], R[G2 − H]).

A proof of the Fact can be found in Davis [11, Lemma 7] (see also Remark 5 at the end of
this section). In view of this result, we are merely trying to identify the cokernel of the map
ρ′. The first step is to relate the cokernel of ρ′ with the cokernel of the map ρ.

Claim 1. The map ρ is split injective, and there is a canonical isomorphism

coker(ρ) ∼= coker(ρ′).

Proof. We observe that we have four families of subgroups that we are dealing with: the
three that we have looked at so far are VC, ALL, and the family F that we introduced at
the beginning of our proof (consisting of virtually cyclic subgroups conjugate into one of the
Gi); in addition, there is the family G consisting of all subgroups of Γ that can be conjugated
into either G1 or G2. Now observe that we have containments of families F ⊂ G ⊂ ALL, and
F ⊂ VC ⊂ ALL. Furthermore, we have that T is a model for EG Γ. This yields the following
commutative diagram:

HΓ
∗ (EF Γ; KR–∞)

ρ
HΓ

∗ (EVC Γ; KR–∞)

∼=

HΓ
∗ (T ; KR–∞)

ρ′ HΓ
∗ (∗; KR–∞)

where all the maps are relative assembly maps corresponding to the inclusions of the various
families of subgroups. Note that the horizontal maps are precisely the ones that we are trying
to relate. Now recall that we are assuming that Γ satisfies the Farrell–Jones isomorphism
conjecture. This immediately implies that the second vertical map is an isomorphism, as
indicated in the commutative diagram. So, in order to identify the cokernels of the two
horizontal maps, we are left with showing that the first vertical map is also an isomorphism.

The first vertical map is a relative assembly map, corresponding to the inclusion of the fami-
lies F ⊂ G of subgroups of Γ. In order to show that the relative assembly map is an isomorphism,
one merely needs to establish that, for every maximal subgroup H ∈ G − F , the corresponding
relative assembly map induced by the inclusions of families F(H) ⊂ G(H) of subgroups of H
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is an isomorphism (see [15, Theorem A.10; 26, Theorem 2.3]). But observe that the maximal
subgroups in G − F are precisely the (conjugates of) the subgroups Gi � Γ. Furthermore, for
these subgroups, we have that G(Gi) = ALL(Gi), and that F(Gi) = VC(Gi). Hence the relative
assembly maps that we require to be isomorphisms are exactly those induced by EVCGi →
EALLGi

∼= ∗, that is, those that arise in the Farrell–Jones isomorphism conjecture. Since we
are assuming that the isomorphism conjecture holds for the groups G1 and G2, we conclude
that the first vertical map is indeed an isomorphism, completing the proof of the claim.

At this point, combining Claim 1 with the Fact, we have an identification:

coker(ρ) ∼= coker(ρ′) ∼= NilW∗ (RH;R[G1 − H], R[G2 − H]).

In order to complete the proof, we now focus entirely on studying the map ρ, with the goal of
showing that one can express its cokernel as a direct sum of the desired Nil-groups associated
with the virtually cyclic subgroups V ∈ V. We remind the reader that ρ is the relative assembly
map induced by the map EF Γ → EVC Γ, where F is the family of subgroups consisting of all
virtually cyclic subgroups of Γ that can be conjugated into either Gi.

In order to analyze this relative assembly map, we will need to make use of some properties
of the Γ-action on the Bass–Serre tree. Particularly, we would like to understand the behavior
of virtually cyclic subgroups V ∈ VC −F . The specific result that we will require is contained
in our following claim.

Claim 2. In the case of an acylindrical amalgamation, the stabilizer of any geodesic γ in
the Bass–Serre tree T is a virtually cyclic subgroup of Γ. Furthermore, every virtually cyclic
subgroup V � Γ satisfying V ∈ VC −F stabilizes a unique geodesic γ ⊂ T .

Proof. Let us start by recalling some basic facts concerning the action of Γ on the Bass–Serre
tree T corresponding to the amalgamation Γ = G1 ∗H G2:
• the action is without inversions, that is, if an element stabilizes an edge e, then it

automatically preserves the chosen orientation of e;
• the stabilizer of any vertex v ∈ T is isomorphic to a conjugate of G1 or G2;
• the stabilizer of any edge e ⊂ T is isomorphic to a conjugate of H;
• any finite subgroup of Γ fixes a vertex in T .

The first three statements above are built into the definition of the Bass–Serre tree (see [34]),
while the last statement is a well-known general fact about group actions on trees. We remind
the reader that a geodesic in a tree T will be a subcomplex simplicially isomorphic to R, with
the standard simplicial structure (that is, vertices at the integers, and edges between).

To show the first statement in our claim, we note that StabΓ(γ) clearly fits into a short exact
sequence:

0 −→ FixΓ(γ) −→ StabΓ(γ) −→ SimpΓ,γ(R) −→ 0,

where FixΓ(γ) is the subgroup fixing γ pointwise, and SimpΓ,γ(R) is the induced simplicial
action on R (obtained by simplicially identifying γ with R). Note that the group of simplicial
automorphisms of R is D∞, the infinite dihedral group. In particular, we see that SimpΓ,γ(R)
is virtually cyclic (in fact, it is isomorphic to either the trivial group, Z2, Z, or D∞).

Next we observe that FixΓ(γ) is finite. To see this, we recall that the amalgamation Γ =
G1 ∗H G2 was assumed to be acylindrical, which means that there exists an integer k � 1 with
the property that the stabilizer StabΓ(η) � Γ of any combinatorial path η ⊂ T of length at
least k is finite. Since γ ⊂ T is a geodesic, it contains combinatorial subpaths η of arbitrarily
long length (in particular, length at least k). The obvious containment FixΓ(γ) � StabΓ(η)
now completes the argument for the first statement in our claim.
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For the second statement, we note that Γ acts simplicially on the Bass–Serre tree, and hence
the given virtually cyclic subgroup V ∈ VC −F likewise inherits an action on T . Since V /∈ F ,
we have that the V -action on T has no globally fixed point, and hence cannot be finite. In
particular, V must be an infinite virtually cyclic subgroup, and hence contains a finite index
infinite cyclic normal subgroup V ′ � V , with V ′ generated by g ∈ V . We now claim that g
cannot fix any vertex in T .

Assume, by way of contradiction, that there exists a vertex v fixed by g (and hence by V ′).
Let T ′ ⊂ T be the subset consisting of points that are fixed by V ′. Note that T ′ is non-empty
(since v ∈ T ′), and is a subtree of T (since Γ acts simplicially on T ). Furthermore, observe that
the group F := V/V ′ inherits a simplicial action on T ′. But note that F is finite, and hence the
F -action on T ′ has a fixed vertex w ∈ T ′ ⊂ T . But this immediately implies that the original
group V fixes w; a contradiction as V /∈ F .

Now establishing that V stabilizes a geodesic is a straightforward application of standard
techniques in the geometry of group actions on trees (applied to T ). For the convenience of the
reader, we give a quick outline of the argument. For an arbitrary element g of infinite order
in V , one can look at the associated displacement function on T , which is the distance from
v to g · v. The previous paragraph established that this function is strictly positive. One then
considers the set Min(g) of points in T that minimize the displacement function, and call this
minimal value μg. It is easy to see that:
• Min(g) contains a geodesic γ (take a vertex v ∈ Min(g), and consider γ :=

⋃
i∈Z

gi · η,
where η is the geodesic segment from v to g · v; note that such a non-trivial segment exists
by the previous paragraph);

• in fact, γ = Min(g) (any point at distance r > 0 from γ will be displaced 2r + μg > μg,
and so cannot lie in Min(g));

• for any non-zero integer i, we have Min(g) = Min(gi) (any point at distance r > 0 from
γ will be displaced 2r + |i| · μg > |i| · μg, while points on γ will clearly only be displaced
|i| · μg by the element gi);

• for any two elements g and h of infinite order in V , we have Min(g) = Min(h) (two such
elements have a common power, and then apply the previous statement).

From the observations above, we see that every single element in V of infinite order stabilizes
the exact same geodesic γ ⊂ T .

Hence the only elements that we might have to worry about are elements h ∈ V of finite order.
For these, we just note that V contains V ′ � V , a finite index cyclic normal subgroup generated
by an element g of infinite order. We have a natural morphism from H = 〈h〉 to Aut(V ′) ∼= Z/2.
In particular, we have that hgh−1 = g±1 and hence, for any vertex v ∈ Min(g), we have the
obvious equalities:

d(g · hv, hv) = d(h−1gh · v, v) = d(g±1 · v, v) = μg±1 = μg.

Since hv is minimally displaced by g, it must also lie on γ = Min(g). This deals with elements
of finite order, and hence completes the verification that γ is V -invariant. Finally, from the
fact that V has a (finite index) subgroup that acts on γ via a translation, it is easy to see
that there are no other V -invariant geodesics in T , yielding its uniqueness. This finishes the
argument for our Claim 2.

Having established some basic properties of the Γ-action on T , we now return to the main
argument. Recall that, by combining our Claim 1 with the Fact, we have reduced the proof of
the Main Theorem to understanding the cokernel of the relative assembly map

ρ : HΓ
n (EF Γ; KR–∞) −→ HΓ

n (EVC Γ; KR–∞),

where F is the family of subgroups consisting of all virtually cyclic subgroups of Γ that can be
conjugated into either Gi.
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Now recall that in [23] the authors introduced the notion of a collection of subgroups to be
adapted to a nested family of subgroups, and, in the presence of an adapted family, showed how
a model for the classifying space with isotropy in the smaller family could be ‘promoted’ to a
model for the classifying space with isotropy in the larger family. In a subsequent paper [24],
the authors used some recent work of Lück and Weiermann [27] to give an alternative model
for this classifying space, which had the additional advantage of providing explicit splittings
for the cokernel of the relative assembly maps. Let us briefly recall the relevant definitions.

Given a nested pair of families F ⊂ F̃ of subgroups of Γ, we say that a collection {Hα}α∈I

of subgroups of Γ is adapted to the pair (F , F̃) provided that the following hold.
(1) For all H1,H2 ∈ {Hα}α∈I , either H1 = H2, or H1 ∩ H2 ∈ F .
(2) The collection {Hα}α∈I is conjugacy closed, that is, if H ∈ {Hα}α∈I then gHg−1 ∈

{Hα}α∈I for all g ∈ Γ.
(3) Every H ∈ {Hα}α∈I is self-normalizing, that is, NΓ(H) = H.
(4) For all G ∈ F̃ \F , there exists H ∈ {Hα}α∈I such that G � H.

In [24], we applied this result to the nested family FIN ⊂ VC for relatively hyperbolic groups
(for which an adapted collection of subgroups is easy to find).

In our present context, we would like to find a collection of subgroups adapted to the nested
pair of families F ⊂ VC. Recall that F consists of all virtually cyclic subgroups that can be
conjugated into either Gi, and VC consists of all virtually cyclic subgroups of Γ.

Claim 3. The collection {Hα} of subgroups of Γ consisting of all maximal virtually cyclic
subgroups in VC −F is adapted to the pair (F ,VC).

Proof. To verify this, we first note that properties (2) and (4) in the definition of an adapted
family are immediate. Property (3) follows easily from Claim 2. We let V ∈ {Hα} be given,
and consider NΓ(V ). We know that V leaves invariant a unique geodesic γ ⊂ T . Furthermore,
for every g ∈ Γ, we see that gV g−1 leaves g · γ invariant. The uniqueness of the V -invariant
geodesic γ now implies that γ is actually NΓ(V )-invariant. In particular, we have containments
V � NΓ(V ) � StabΓ(γ). But from Claim 2 we know that StabΓ(γ) is virtually cyclic, and
the maximality of V now forces all of the containments to be equalities, and, in particular,
V = NΓ(V ), as required by property (3).

For property (1), let V1, V2 ∈ {Hα}. We want to establish that either V1 = V2, or that V1 ∩
V2 ∈ F . So let us assume that V1 �= V2. We know from Claim 2 that each Vi stabilizes a unique
geodesic γi, and, from the maximality of the groups Vi, we actually have Vi = StabΓ(γi). Since
V1 �= V2, we have that γ1 �= γ2. There are now two possibilities: (i) either γ1 ∩ γ2 = ∅, or (ii)
γ1 ∩ γ2 is a path in T . We claim that in both cases the intersection H = V1 ∩ V2 � Vi has the
property that the H-action on the corresponding γi fixes a point.

To see this, let us first consider possibility (i). Since γ1 ∩ γ2 = ∅, one can consider the (unique)
minimal length geodesic segment η joining γ1 to γ2. We observe that, since H stabilizes both
γi, it must leave the segment η invariant. In particular, H must fix the vertex vi = η ∩ γi ∈ γi,
as desired. Next consider possibility (ii). If γ1 ∩ γ2 �= ∅, then the intersection will be a subpath
η ⊂ γi. Note that η is either a geodesic segment, or is a geodesic ray, and in both cases will
be invariant under the group H. If η is a geodesic ray (that is, homeomorphic to [0,∞)), then
there is a (topologically) distinguished point inside η that will have to be fixed by H. If η is
a geodesic segment, then each element in H either fixes η, or reverses η (note that the latter
can only occur if η has even length, as Γ acts on T without inversions). In particular, we see
that, if η has odd length, then every point in η is fixed by H, while, if η has even length, then
the (combinatorial) midpoint is fixed.

Finally, we observe that H � Vi acts on γi, and fixes a point. This immediately implies that
H contains a subgroup of index at most two that acts trivially on γi, that is, H ′ � FixΓ(γi).
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But recall that the latter group is finite (see the proof of Claim 2), completing the proof of
property (1). We conclude that the collection {Hα} is an adapted collection of subgroups for
the nested families (F ,VC), as desired.

Finally, we exploit the adapted family that we have just constructed to establish the
following.

Claim 4. We have an identification:

coker(ρ) ∼=
⊕
V ∈V

HV
∗ (EFINV −→ ∗; KR–∞),

where the groups HV
∗ (EFINV → ∗; KR–∞) are the cokernels of the relative assembly maps

associated with the virtually cyclic groups V ∈ V.

Proof. The argument for this is virtually identical to the one given in [24, Corollary 3.2];
we reproduce the argument here for the convenience of the reader. From Claim 3, we have an
adapted family for the pair (F ,VC), consisting of all maximal subgroups in VC −F . From this
adapted collection of subgroups, [24, Proposition 3.1] establishes (using [27, Theorem 2.3])
a method for constructing an EVC Γ; namely, if V is a complete set of representatives of the
conjugacy classes within the adapted collection of subgroups {Hα}, then we form the following
cellular Γ-pushout. ∐

V ∈V
Γ×V EFV

α

β
EF Γ

∐
V ∈V

Γ×V EVCV X

Then the resulting space X is a model for EVCΓ (we refer the reader to [24, Proposition 3.1]
for a more precise discussion of this result, including a description of the maps α and β in the
above cellular Γ-pushout). Note that the map ρ whose cokernel we are trying to understand
is precisely the map on (equivariant) homology induced by the second vertical arrow in the
above cellular Γ-pushout.

Since X is the double-mapping cylinder of the maps α and β in the above diagram, one
has a natural Γ-equivariant decomposition of X by taking A and B to be the [0, 2/3) and
(1/3, 1], respectively, portions of the double-mapping cylinder. Applying the homology functor
HΓ

∗ (−; KR–∞) (and omitting the coefficients to shorten notation), we have the Mayer–Vietoris
sequence

· · · −→ HΓ
∗ (A ∩ B) −→ HΓ

∗ (A) ⊕ HΓ
∗ (B) −→ HΓ

∗ (X) −→ HΓ
∗−1(A ∩ B) −→ · · · .

But now observe that we have obvious Γ-equivariant homotopy equivalences between:
(i) A �Γ

∐
V ∈V Γ×V EVCV ;

(ii) B �Γ EF Γ;
(iii) A ∩ B �Γ

∐
V ∈V Γ×V EFV .

Furthermore, the homology theory that we have takes disjoint unions into direct sums.
Combining this with the induction structure, we obtain the following isomorphisms:

HΓ
∗ (A) ∼=

⊕
V ∈V

HΓ
∗ (Γ×V EVCV ) ∼=

⊕
V ∈V

HV
∗ (EVCV ),

HΓ
∗ (A ∩ B) ∼=

⊕
V ∈V

HΓ
∗ (Γ×V EFV ) ∼=

⊕
V ∈V

HV
∗ (EFV ).
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Now observing that the groups V ∈ V are all virtually cyclic, we have that each EVCV can be
taken to be a point. Furthermore, for the groups V ∈ V, we have that the restriction of the
family F to V coincides with the family of finite subgroups of V , that is, EFV = EFINV .
Substituting all of this in the above Mayer–Vietoris sequence, we get the long exact sequence

· · · −→
⊕
V ∈V

HV
∗ (EFINV ) −→ HΓ

∗ (EF Γ) ⊕
⊕
V ∈V

HV
∗ (∗) −→ HΓ

∗ (EVC Γ) −→ · · · .

Now observe that the each of the maps HV
∗ (EFINV ) → HV

∗ (∗) are split injective (from Bartels’
result [4]). Since the map ρ : HΓ

∗ (EF Γ) → HΓ
∗ (EVC Γ) is also split injective (from Claim 1), we

now have an identification:

coker(ρ) ∼=
⊕
V ∈V

coker (HV
∗ (EFINV ) −→ HV

∗ (∗))

completing the proof of Claim 4.

Finally, combining the Fact with Claim 1 and Claim 4, we see that we have the desired
splitting:

NilW∗ (RH;R[G1 − H], R[G2 − H]) ∼=
⊕
V ∈V

HV
∗ (EFINV −→ ∗; KR–∞),

where the groups HV
∗ (EFINV → ∗; KR–∞) denote the cokernels appearing in Claim 4. This

completes the proof of the Main Theorem.

Remark 5. One of the key ingredients in our proof was the Fact, established by Davis in
[11, Lemma 7]. Prior to learning of Davis’s preprint, the authors had an alternative argument
for the Fact. For the sake of the interested reader, we briefly outline our alternative approach.

Anderson and Munkholm [3, Section 7] defined a functor Kcc
∗ , continuously controlled K-

theory, from the category of diagrams of holink type to the category of spectra. Munkholm and
Prassidis [28, Theorem 2.1] showed that the Waldhausen Nil-group that we are interested in
can be identified with the cokernel of a natural split injective map K̃cc

∗+1(ξ
+) → K∗(Z Γ), where

ξ+ is a suitably defined diagram of holink type associated to the splitting Γ = G1 ∗H G2 (see [3,
Section 9]). Furthermore, Anderson and Munkholm [3, Theorem 9.1] have shown that there is
a natural isomorphism K̃cc

∗+1(ξ
+) ∼= K̃bc

∗+1(ξ
+), where the latter is the boundedly controlled K-

theory defined by Anderson and Munkholm [2]. Finally, there are Atiyah–Hirzebruch spectral
sequences computing both the groups K̃bc

∗+1(ξ
+) (see [2, Theorem 4.1]) and HΓ

∗ (T ; KZ
–∞) (see

[30, Section 8]). It is easy to verify that the two spectral sequences are canonically identical:
they have the same E2-terms and the same differentials. Combining these results, and keeping
track of the various maps appearing in the sequence of isomorphisms, one can give an alternative
proof of the Fact.

Remark 6. We also point out that, from the Γ-action on the Bass–Serre tree T , it is easy
to obtain constraints on the isomorphism type of groups inside the collection V. Indeed, any
such group must be the stabilizer of a bi-infinite geodesic γ ⊂ T (see Claim 2), and must act
cocompactly on γ. Recall that infinite virtually cyclic subgroups are of two types: those that
surject onto the infinite dihedral group D∞, and those that do not.

The groups that surject onto D∞ always split as an amalgamation A ∗C B, with all three
groups A,B, and C being finite, and C of index two in both A and B. Observe that, if V ∈ V is
of this type, then, under the action of V on γ ⊂ T , the groups A and B can be identified with
the stabilizers of a pair of vertices v and w, and C can be identified with the stabilizer of the
segment joining v to w. In particular, C must be a subgroup of an edge stabilizer, and hence
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is conjugate (within Γ) to a finite subgroup of H. Furthermore, since A and B both stabilize
a pair of vertices, they must be conjugate (within Γ) to a finite subgroup of either G1 or G2.

The groups that do not surject onto D∞ are of the form F �α Z, where F is a finite group,
and α ∈ Aut(F ) is an automorphism. If V ∈ V is of this form, then, for the action of V on
γ ⊂ T , one has that F can be identified with the subset of V that pointwise fixes γ, while the
Z component acts on γ via a translation. In particular, F is again conjugate (within Γ) to a
finite subgroup of H.

In particular, if we are given an explicit amalgamation Γ = G1 ∗H G2, and we have knowledge
of the finite subgroups inside the groups H,G1 and G2, then we can readily identify up
to isomorphism the possible groups arising in the collection V. If one has knowledge of
the Nil-groups associated with these various groups, our Main Theorem can be used to get
corresponding information about the Waldhausen Nil-group associated to Γ.

Remark 7. The attentive reader will notice that the hypothesis of ‘acylindricity’ was used
only in the proof of Claim 2, where it was used to show that, for every geodesic γ ⊂ T , the
subgroup FixΓ(γ) � Γ consisting of elements that fix γ pointwise is, in fact, finite. In particular,
the conclusion of the Main Theorem holds in a slightly more general setting; namely, rather
than requiring amalgamations Γ = G1 ∗H G2 to be acylindrical, it is sufficient to require them
to have the property that, for the action of Γ on the associated Bass–Serre tree, every geodesic
γ ⊂ T satisfies |FixΓ(γ)| < ∞. The authors do not know of any way to ensure this a priori
more general condition, other than by showing that the amalgamation is acylindrical.

Remark 8. We remark that there is also a version of the Waldhausen Nil-groups associated
to HNN extensions. The proof of our Main Theorem should extend to provide a similar splitting
for HNN extensions, under an identical hypothesis on the action of Γ on the Bass–Serre tree
associated to the HNN extension (that is, acylindricity, or, more generally, finiteness of the
subgroups fixing geodesics in the Bass–Serre tree). The key missing step in the HNN case is
the analog of the Fact, which the authors have not verified, but believe to be true. Modulo this
result, the rest of our argument extends verbatim to the HNN setting.

It is also perhaps worth mentioning that, unlike the amalgamation case, in the HNN case
there are easy examples of extensions satisfying the more general condition discussed in Remark
7. For example, if we consider the classical Baumslag–Solitar groups BS(1, n) := {a, b | aba−1 =
bn}, then these come with a natural realization as an HNN extension, with the vertex group
generated by the subgroup 〈b〉, the edge group isomorphic to Z = 〈c〉, and the two edge to
vertex inclusions given by c �→ b and c �→ bn. In the associated Bass–Serre tree, we note that
there is a single distinguished end that is fixed by the entire BS(1, n), while all of the other
ends of the Bass–Serre tree are only left invariant by the trivial element. In particular, since
every geodesic η ⊂ T has two distinct ends, one of the two has a trivial stabilizer, and hence
the fixed group of η must likewise be trivial. This implies that the HNN extension satisfies
the property discussed in our Remark 7. On the other hand, every finite subtree of T has an
infinite stabilizer (isomorphic to Z), and hence the amalgamation is not acylindrical. We thank
M. Forester for bringing this simple example to our attention.

3. Applications

Having completed the proof of our Main Theorem, we now proceed to isolate a few interesting
corollaries. As mentioned earlier, from the viewpoint of topological applications, the most
interesting situation is the case where R = Z, that is, integral group rings.



SPLITTING FORMULAS FOR CERTAIN WALDHAUSEN NIL-GROUPS 319

Corollary 1. Let Γ = G1 ∗H G2 be an amalgamation, and assume that the Farrell–
Jones isomorphism conjecture holds for the groups Γ, G1, and G2, and that H is finite. Then
the associated Waldhausen Nil-group NilW∗ (ZH; Z[G1 − H], Z[G2 − H]) is either trivial, or an
infinitely generated torsion group.

Proof. Note that, since H is finite, the amalgamation is acylindrical, and our Main Theorem
applies. So the Waldhausen group we are interested in splits as a direct sum of Nil-groups
associated to a particular collection V of virtually cyclic subgroups. It is well known that the
Nil-groups associated to virtually cyclic groups are either trivial or infinitely generated (see
[14, 17, 31]). Furthermore, these groups are known to be purely torsion (see [10, 18, 22, 37]),
giving us the second statement.

A special case of the above corollary is worth mentioning.

Corollary 2. Let Γ = G1 ∗H G2 be an amalgamation, and assume that G1, G2, and H
are all finite. Then the associated Waldhausen Nil-group NilW∗ (ZH; Z[G1 − H], Z[G2 − H]) is
either trivial, or an infinitely generated torsion group.

Proof. The two groups G1 and G2 trivially satisfy the Farrell–Jones isomorphism conjec-
ture, as they are finite. Furthermore, the group Γ is δ-hyperbolic, and hence, by a recent result
of Bartels, Lück, and Reich [5], also satisfies the isomorphism conjecture. Hence the hypotheses
of our previous corollary are satisfied.

As was kindly pointed out to the authors by J. Grunewald, the ‘torsion group’ conclusion in
our Corollary 2 has also been independently obtained, via different methods, by Bartels, Lück,
and Reich [6, Theorem 0.15].

Finally, we observe that the Bartels, Lück, and Reich [5] result establishes the isomorphism
conjecture when Γ is a δ-hyperbolic group, in all dimensions, and for arbitrary coefficient rings
R. In particular, the hypotheses of our Main Theorem hold for arbitrary amalgamations of
finite groups, giving the following corollary.

Corollary 3. Let Γ = G1 ∗H G2 be an amalgamation, where G1, G2, and H are all finite.
Then, for arbitrary rings with unity R, we have the following isomorphisms:

NilW∗ (RH;R[G1 − H], R[G2 − H]) ∼=
⊕
V ∈V

HV
∗ (EFINV −→ ∗; KR–∞),

where HV
∗ (EFINV → ∗; KR–∞) are the cokernels of the relative assembly maps associated to

the virtually cyclic subgroups V ∈ V, and the collection V is as in the statement of our Main
Theorem.

We point out that the special case of the modular group Γ = PSL2(Z) = Z2 ∗ Z3 has also
been independently studied by Davis, Khan, and Ranicki [12, Section 3.3].

Remark 9. As was mentioned in Remark 1, another convenient class of acylindrical
amalgamations are those of the form Γ = G1 ∗H G2, where H has the property that |gHg−1 ∩
H| < ∞ for every g ∈ G1 − H (we call this property conjugacy FIN -separability). In the case
where both Gi are δ-hyperbolic, and H is also assumed to be quasi-convex in both Gi, then the
resulting amalgamation Γ is known to be δ-hyperbolic (see [7, 8; 21, Theorem 2]). Combining
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these two comments, we see that, in the situation where H � G is a quasi-convex, conjugacy
FIN -separable subgroup of a δ-hyperbolic group G, the resulting amalgamation Γ = G ∗H G
is an acylindrical amalgamation, with both vertex groups G and the amalgamated group Γ
satisfying the Farrell–Jones isomorphism conjecture (by the recent work of Bartels, Lück, and
Reich [5]). In particular, this would give rise to examples of amalgamations satisfying all of
the hypotheses of our Main Theorem.

In the case where G is torsion-free, the property of conjugacy FIN -separability reduces to
the more familiar notion of malnormality. Examples of quasi-convex malnormal subgroups in
torsion-free δ-hyperbolic groups are plentiful. For example, in the situation where G is non-
elementary, any maximal virtually cyclic subgroup H < G is automatically quasi-convex and
malnormal. As another example of how common such subgroups are, we mention a result
of Kapovich [20]: every non-elementary subgroup K of a torsion-free δ-hyperbolic group G
contains a further subgroup F2

∼= H < K, isomorphic to a free group on two generators, that is
malnormal and quasi-convex in the ambient G. Of course, these results do not yield interesting
examples, since the lack of torsion elements implies that all of the groups involved will have
vanishing K-theory (by [5]), and hence both sides of the isomorphism in our Main Theorem
would trivially vanish.

It would perhaps be of some interest to see whether, in a non-elementary δ-hyperbolic group
G with non-trivial torsion, one can find examples of quasi-convex subgroups H < G that are
conjugacy FIN -separable. By the discussion above, such a pair would give rise, by doubling
along the subgroup H, to a group Γ = G ∗H G satisfying the hypotheses of our Main Theorem,
and for which the algebraic K-theory could potentially be non-trivial. The authors suspect that
such subgroups should exist, and, in view of the results mentioned in the previous paragraph
for the torsion-free case, we expect such examples to be plentiful.

To give a concrete example that fits into the general context discussed in our Remark 9
above, we establish our final corollary.

Corollary 4. Let Gi � O+(3, 1) = Isom(H3) be a pair of uniform lattices in the isometry
group of hyperbolic 3-space. Assume that Hi � Gi are a pair of maximal infinite virtually cyclic
subgroups that are abstractly isomorphic to a group H. Consider the amalgamated group
Γ = G1 ∗H G2, where H is identified with the subgroups Hi. Then, for ∗ � 1, the associated
Waldhausen Nil-group satisfies

NilW∗ (ZH; Z[G1 − H1], Z[G2 − H2]) = 0.

Proof. Since the groups Gi are uniform lattices in the semi-simple Lie group O+(3, 1), they
both satisfy the Farrell–Jones isomorphism conjecture (see [15]). Next we observe that, since
the Hi are maximal in the respective Gi, they are automatically malnormal, and hence the
amalgamation Γ is acylindrical. Finally, since we are amalgamating δ-hyperbolic groups along
malnormal infinite virtually cyclic subgroups, the resulting group Γ is also δ-hyperbolic (see
[7, 8, 21]), and so also satisfies the Farrell–Jones isomorphism conjecture ([5]). This completes
the verification of the hypotheses of our Main Theorem, which allows us to conclude that there
is a splitting:

NilW∗ (ZH; Z[G1 − H1], Z[G2 − H2]) ∼=
⊕
V ∈V

HV
∗ (EFINV −→ ∗; KZ

–∞).

We are now left with two goals: to identify the infinite virtually cyclic groups in the collection
V, and to show that the cokernels appearing on the left-hand side of the above expression
all vanish.
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Next we recall that, in the proof of our Main Theorem, we were able to identify groups
in V with infinite stabilizers of geodesics γ in the Bass–Serre tree associated to the splitting
Γ = G1 ∗H G2 (see our Claim 2). Returning to the notation of our Claim 2, we now proceed
to exploit the short exact sequence

0 −→ FixΓ(γ) −→ StabΓ(γ) −→ SimpΓ,γ(R) −→ 0.

Recall that FixΓ(γ) is the subgroup fixing γ pointwise, and SimpΓ,γ(R) is the induced simplicial
action on R (and, in the present situation, it is isomorphic to either Z, or D∞). We now claim
that, under our hypotheses, we also have control of the group FixΓ(γ).

Indeed, taking any two consecutive edges e1 and e2 along the geodesic g, and letting v be
the common vertex, we note that FixΓ(γ) can be identified with a subgroup F of StabΓ(v).
The latter is conjugate to one of the two groups Gi, a subgroup of the isometry group of H

3.
Now recall that the two subgroups StabΓ(ei) � StabΓ(v) ∼= Gi can be identified geometrically
as follows: if we think of StabΓ(v) acting isometrically on H

3 (via the identification with the
appropriate Gi), then each of the two groups StabΓ(e1) ∼= H ∼= StabΓ(e2) correspond to the
stabilizers of two distinct geodesics γ1, γ2 ⊂ H

3. Now, since FixΓ(γ) also fixes the two incident
edges e1 and e2, the corresponding subgroup F � StabΓ(v) acting on H

3 is also a subgroup in
both StabΓ(ei), that is, it must leave both of the geodesics γ1 and γ2 invariant. But, given two
distinct geodesics in H

3, the subgroup of Isom(H3) leaving both geodesics invariant is either
trivial or isomorphic to Z2. This implies that the group FixΓ(γ) is either trivial or Z2. It is not
too hard from the geometry (a slight modification of the argument in [23, Proposition 3.6]) to
see that the short exact sequence must split as a direct product, forcing the groups that we
are interested in to each be abstractly isomorphic to one of the four groups Z,D∞, Z2 × Z, or
Z2 × D∞. Finally, when V is any of the four virtually cyclic groups listed above, the cokernels
of the relative assembly map HV

∗ (EFINV → ∗; KZ
–∞) are known to vanish for ∗ � 1 (see [16]

for Z and D∞, and [29] for Z2 × Z and Z2 × D∞). We conclude that every term in the direct
sum splitting for the Waldhausen Nil-group vanishes, completing the proof of our corollary.

Acknowledgements. We would like to thank J. Davis, F. T. Farrell, J. Grunewald, and
the anonymous referee for pointing out some inaccuracies in a preliminary draft of this paper.
Thanks are also due to M. Forester for pointing out to the authors the simple example included
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Mathematics 196 (Birkhäuser, Boston, MA, 2001) 307–321.

29. K. Pearson, ‘Algebraic K-theory of two dimensional crystallographic groups’, K-Theory 14 (1998)
265–280.

30. F. Quinn, ‘Ends of maps II’, Invent. Math. 68 (1982) 353–424.
31. R. Ramos, ‘Non-finiteness of twisted Nils’, Bol. Soc. Mat. Mexicana 3 (2007) 13.
32. P. Scott and T. Wall, ‘Topological methods in group theory’, Homological group theory (ed. C. T. C.

Wall), London Mathematical Society Lecture Note Series 36 (Cambridge University Press, Cambridge,
1979) 137–203.

33. Z. Sela, ‘Acylindrical accessibility for groups’, Invent. Math. 129 (1997) 527–565.
34. J.-P. Serre, Trees (Springer, Berlin 1980).
35. F. Waldhausen, ‘Algebraic K-theory of generalized free products. I, II.’, Ann. Math. (2), 108 (1978)

135–204.
36. F. Waldhausen, ‘Algebraic K-theory of generalized free products. III, IV’, Ann. Math. (2), 108 (1978)

205–256.
37. C. A. Weibel, ‘Mayer–Vietoris sequences and module structures on NK∗’, Algebraic K-theory (eds

E. M. Friedlander and M. R. Stein), Lecture Notes in Mathematics 854 (Springer, Berlin, 1981) 466–493.

Jean-François Lafont
Department of Mathematics
Ohio State University
Columbus, OH 43210
USA

jlafont@math·ohio-state·edu

Ivonne J. Ortiz
Department of Mathematics and Statistics
Miami University
Oxford, OH 45056
USA

ortizi@muohio·edu


	1. Introduction
	2. Proof of Main Theorem
	3. Applications
	References

