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1 INTRODUCTION

Hyperbolization procedures were introduced by Gromov in [21] as a way to construct aspherical
manifolds which allows for more flexibility than the classical methods coming from Lie theory.
Roughly speaking, a hyperbolization procedure is defined by the choice of a hyperbolizing cell and
of a class of combinatorial complexes to be hyperbolized, and it consists in replacing the cells
of a complex with copies of the chosen hyperbolizing cell. The resulting space is often called a
hyperbolized complex, and it is a metric space of non-positive curvature in the sense of [7]; in par-
ticular, it is aspherical. In this paper, we consider the strict hyperbolization procedure introduced
by Charney and Davis in [9], which can produce a space of strictly negative curvature.
A main feature of any hyperbolization procedure is that links of cells remain essentially

unchanged under hyperbolization. In particular, hyperbolizing a triangulation of a closed
(pseudo-)manifold results in a closed aspherical (pseudo-)manifold. This has been used to
construct examples of closed aspherical (pseudo-)manifolds that display various pathological fea-
tures; see [9, 11, 41] for a few examples. For some applications, one may want to preserve a certain
subcomplex of the original complex, that is, ensure that the hyperbolized complex contains a
certain prescribed subspace. This can be arranged via relative hyperbolization procedures, which
consist in coning off the desired subcomplex, performing a non-relative hyperbolization, and then
removing a neighborhood of the cone point. The link of the cone point is homeomorphic to the
desired subcomplex. See [1, 5, 10, 12, 31, 34, 39, 46, 50] for a few examples of this strategy.
Since the spaces obtained from hyperbolization are aspherical, a natural problem is to under-

stand what their fundamental groups look like. As one might expect, the fundamental group of a
space obtained via Charney–Davis strict hyperbolization is a hyperbolic group. In [33], the authors
showed that these hyperbolic groups are virtually special. In particular, all the closed aspherical
manifolds obtained via Charney–Davis strict hyperbolization have linear, hence residually finite,
fundamental group.
Similarly, the fundamental group of a space obtained via the relative version of Charney–Davis

strict hyperbolization is a relatively hyperbolic group, with peripheral structure given by the fun-
damental group of the desired subcomplex; see [6]. In this paper, we aim at extending the results
of [33] to the relative setting. To this end, we consider the relatively hyperbolic groups that arise
from relative strict hyperbolization and construct certain actions on CAT(0) cubical complexes.
Let us fix some objects and notations that appear in the statement of our main results.
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Let 𝐾 be a finite simplicial complex and 𝐿 a subcomplex. Assume that the complex C(𝐾, 𝐿)

obtained by coning off each component of 𝐿 is homogeneous and without boundary (i.e., each
simplex is contained in an 𝑛-simplex, and each (𝑛 − 1)-simplex is contained in at least two 𝑛-
simplices). Note that this implies in particular that 𝐿 is homogeneous of dimension 𝑛 − 1 and
without boundary. As a motivating example, consider the case in which 𝐾 is a triangulation of
a compact manifold with boundary and 𝐿 is the induced triangulation of the boundary. This is
a common setup in many contexts in which relative hyperbolization procedures are used, and
will be a standing assumption throughout this paper. Let(𝐾, 𝐿) denote the relative strict hyper-
bolization of 𝐾 with respect to 𝐿; see [6, 12] or Section 3 for details. There is a natural 𝜋1-injective
embedding of 𝐿 into (𝐾, 𝐿). Let  be a set of representatives of the conjugacy classes of the
fundamental groups of the components of 𝐿. Then, the group 𝐺 = 𝜋1((𝐾, 𝐿)) is known to be
relatively hyperbolic with respect to  . Our main result is the following.

Theorem A. The group 𝐺 = 𝜋1((𝐾, 𝐿)) acts on a CAT(0) cubical complex (𝑋Γ) by isometries
and satisfying the following properties:

(1) 𝐺

\
(𝑋Γ) is compact.

(2) Each 𝑃 ∈  acts elliptically on (𝑋Γ).
(3) For each cube 𝐶 of (𝑋Γ), Stab𝐺(𝐶) is either maximal parabolic, or else is full relatively quasi-

convex, hyperbolic, and virtually compact special.

This set up does not automatically fit in the available literature about cubulation of relatively
hyperbolic groups, such as [16, 17, 24, 45]. Indeed, the action of𝐺 on (𝑋Γ) is very far from proper,
because most vertices have infinite stabilizer. This action is not relatively geometric in the sense
of [16, 17], and not even weakly relatively geometric in the sense of [24]. The problem here does
not arise from the parabolics, but rather from points that are away from the fixed points of the
parabolics. It is the same lack of properness already encountered in [33],which required a criterion
obtained by Groves and Manning in [25] to promote an improper action of a hyperbolic group to
a proper one (on a different cubical complex). A relative analog of [25] is not available yet in full
generality. However, one can obtain the following.

Theorem B. Let 𝐺 = 𝜋1((𝐾, 𝐿)) and  be as above. Then, the following hold.

(1) If each 𝑃 ∈  is residually finite, then 𝐺 is residually finite and each 𝑃 ∈  is separable.
(2) If each 𝑃 ∈  is hyperbolic and virtually compact special, then 𝐺 is hyperbolic and virtually

compact special.

Here, (1) follows from a more general result contained in Appendix A by Groves and Man-
ning (see Theorem A.4). In particular, Theorem B shows that relative strict hyperbolization is
unlikely to provide a negative answer to [42, Problem 6.6], which is the relative analog of the
well-known question of Gromov about residual finiteness of hyperbolic groups. A result analo-
gous to Theorem B has recently been obtained by Avramidi, Okun, and Schreve for a different
relative hyperbolization procedure, obtained by combining the Davis reflection group trick with
the Charney–Davis strict hyperbolization; see [1, Theorem D].
We conclude the introduction with a brief description of some applications to the theory

of manifolds.
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4 of 30 LAFONT and RUFFONI

1.1 Aspherical manifolds with residually finite fundamental groups

In Section 5.1, we obtain examples of closed aspherical manifolds which have residually finite
fundamental group. This is based on a construction that we call hyperbolized mapping torus, and
which has already been considered for instance in [39, 46]. It consists in taking a manifold 𝑀,
hyperbolizing 𝑀 × [−1, 1] relatively to the boundary, and then gluing the two boundary compo-
nents to get a closed manifold  (𝑀). We show that certain properties of the fundamental group
of𝑀 (such as residual finiteness) are inherited by the fundamental group of  (𝑀).
By choosing the manifold𝑀 appropriately, one can thus obtain examples which are “new,” in

the sense that they are not homotopy equivalent to manifolds for which residual finiteness of the
fundamental group was previously known: see Theorem 5.3 (non-positively curved, dimension
𝑛 ⩾ 6) andRemark 5.5 (negatively curved, dimension𝑛 ⩾ 9). These examples are obtained starting
from lattices in SL(3, ℝ) and in Sp(1, 2) = Isom(ℍ2

ℍ
), respectively.

For 𝑛 ⩾ 5, we can also use this construction to obtain some closed Riemannian manifolds hav-
ing negative curvature and virtually compact special fundamental group; see Theorem 5.8. These
can be obtained starting from Gromov–Thurston manifolds or strictly hyperbolized manifolds.
On the other hand, it is worth mentioning that there are closed aspherical manifolds that do not
virtually fiber over the circle and whose fundamental group is hyperbolic and virtually compact
special; see [1, Theorem A] for odd-dimensional examples.

1.2 Cobordism of manifolds

In Section 5.2, we consider some classical applications of hyperbolization procedures to cobordism
of manifolds. In Corollary 5.9, we obtain that a cobordism between triangulable manifolds with
residually finite fundamental group can be chosen to have residually finite fundamental group.
Similarly, in Corollary 5.11 we obtain that every closed flat manifold bounds geometrically a man-
ifold of pinched negative curvature with residually finite fundamental group. In both cases, the
ambient fundamental group is relatively hyperbolic and the fundamental groups of the boundary
components are separable.

1.2.1 Aspherical manifolds that cannot be triangulated

Finally, in Section 5.3 we show that for 𝑛 ⩾ 6 there is a closed aspherical n-manifold that can-
not be triangulated and whose fundamental group is hyperbolic and virtually compact special;
see Theorem 5.12. These are the manifolds constructed in [10] by gluing together two pieces, one
obtained via strict hyperbolization and one obtained via relative strict hyperbolization. Combining
the results of [33] and of this paper, we show that these manifolds have virtually special funda-
mental group. In particular, they have a rich collection of finite covers, and it makes sense to ask
if these manifolds are virtually triangulable, that is, if they admit a finite cover that can be tri-
angulated. While we do not answer this question, we show that no cover of odd degree can be
triangulated. The situation for covers of even degree is more delicate. For instance, the Galewski–
Stern 5-manifold from [18] is non-triangulable and non-orientable, but its orientable double cover
is triangulable, since all orientable closed 5-manifolds are triangulable by [47].
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1.3 Outline

In Section 2, we collect background notation and terminology. In Section 3, we present the relative
strict hyperbolization procedure, introduce the spaces of interest in this paper, and present some
lemmas about the action of the relatively hyperbolized groups on them. In Section 4, we construct
the dual cubical complex, prove it isCAT(0), and complete the analysis of stabilizers. The proofs of
Theorems A and B appear in Section 4.3. In Section 5, we discuss some applications to the theory
of manifolds. Appendix A by Groves and Manning contains the proof that a group satisfying the
conclusion of Theorem A with respect to residually finite peripherals has separable full relatively
quasiconvex subgroups.

2 PRELIMINARIES

In this section, we fix review some standard background and terminology needed in this paper.

2.1 Cell complexes

For background on cell complexes, we refer the reader to [7]. A cell complex is a topological space
𝑋 obtained by gluing together cells along their faces, in such a way that each cell embeds in 𝑋

and the intersection of any two cells is either empty or a cell. A simplicial complex is a cell com-
plex obtained by gluing copies of the standard simplex △𝑛. A cubical complex is a cell complex
obtained by gluing copies of the standard cube □𝑛 = [0, 1]𝑛. The dimension of a cell complex is
themaximum dimension of its cells. We say that an 𝑛-dimensional cell complex is homogeneous if
every cell is contained in a cell of dimension 𝑛, and that it iswithout boundary if every (𝑛 − 1)-cell
is contained in at least two different 𝑛-cells.
A cell complex 𝑋 is piecewise spherical, Euclidean, or hyperbolic if its cells can be realized as

totally geodesic cells in a round sphere 𝕊𝑛, a Euclidean space 𝔼𝑛, or the (real) hyperbolic space
ℍ𝑛, and the gluing maps can be realized by isometries. If 𝑋 has finitely many isometry classes
of cells then the metrics defined on the cells can be glued together and 𝑋 is a complete geodesic
metric space (see [7, Theorem I.7.50]). In particular, if 𝑋 is simplicial or cubical then it carries a
standard piecewise Euclidean metric.
If 𝑋 and 𝑌 are cell complexes, a continuous function 𝑓 ∶ 𝑋 → 𝑌 is a combinatorial map if for

every cell 𝐶 of 𝑋 we have that 𝑓 is a homeomorphism from 𝐶 to a cell 𝑓(𝐶) of 𝑌. A simpli-
cial 𝑛-dimensional complex 𝑋 is foldable if it admits a combinatorial map 𝑓 ∶ 𝑋 → △𝑛 which
is injective on each simplex. Such a map will be called a folding for 𝑋. An analogous definition
can be given in the cubical case in terms of a map to □𝑛. The barycentric subdivision of any
cell complex is a foldable simplicial complex. Also, note that the cells of a foldable complex are
necessarily embedded.
The link of a point 𝑝 in a cell complex 𝑋 is defined to be the space of unit vectors at 𝑝 that

point into the cells of 𝑋 that contain 𝑝, and is denoted lk(𝑝, 𝑋). Similarly, the link of a cell 𝐶 in
a cell complex 𝑋 is defined as the space of unit vectors based at an interior point of 𝐶 which are
orthogonal to𝐶 and point into the cells that contain𝐶. It is denoted lk(𝐶, 𝑋). Observe that links of
points or cells are naturally piecewise spherical complexes, and that if 𝑋 is simplicial or cubical,
then all links are simplicial.
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6 of 30 LAFONT and RUFFONI

Finally, note that the cone C(𝑋) over a cell complex 𝑋 admits two natural topologies, namely
the cone topology (i.e., the quotient topology coming from the quotient map 𝑋 × [0, 1] → C(𝑋)

that defines the cone C(𝑋)), and the metric topology (i.e., the one coming from the fact that C(𝑋)

has a natural structure of a cell complex.) If 𝑋 is finite, then the two topologies agree, but when
𝑋 is infinite the cone topology is much finer; in particular, it is not first countable, hence not
metrizable. Similarly, if 𝑋 is a cell complex and 𝑌 is a subcomplex, then the relative cone C(𝑋,𝑌)

obtained by attaching the cone over 𝑌 to 𝑋 is endowed with the metric topology. We also say that
C(𝑋,𝑌) is obtained from 𝑋 by coning off 𝑌.

2.2 Bounded curvature

Wewill consider the usual notions of curvature for metric spaces, see [7, §II.1, §III.H.1] for details.
A space is non-positively curved if it is locally CAT(0), and negatively curved if it is locally CAT(𝑘)

for some 𝑘 < 0. In this paper “hyperbolic” always means “Gromov hyperbolic” unless otherwise
specified. A CAT(0) space is contractible; a CAT(𝑘) space is hyperbolic as soon as 𝑘 < 0. The
action of a group on a metric space is geometric if it is cocompact, proper, and isometric. A group
is CAT(0) (resp. hyperbolic) if it admits a geometric action on a CAT(0) (resp. hyperbolic) space.
We recall the followingwell-known characterization of non-positive curvature for cubical com-

plexes, see [7, Theorems II.5.20]). Recall that links in a cubical complex are simplicial. A simplicial
complex is flag if any 𝑘 + 1 pairwise adjacent vertices span a 𝑘-simplex.

Lemma 2.1 (Gromov’s link condition). Let𝑋 be a cubical complex. Then,𝑋 is non-positively curved
if and only if the link of each vertex is flag.

Finally, let us recall some standard terminology about relative hyperbolicity; see [30] for details.
Let 𝐺 be a finitely generated group and let  be a finite collection of subgroups of 𝐺. Given a
Cayley graph Γ for 𝐺, we can construct the coned-off Cayley graph Γ̂ by adding a vertex 𝑣g𝑃 for
each coset of a subgroup 𝑃 ∈  and attaching 𝑣g𝑃 to vertices in g𝑃 with edges of length 1

2
. We say

that (𝐺,) is relatively hyperbolic if some (every) coned-off Cayley graph Γ̂ is hyperbolic and has
the bounded coset penetration property. We will also say that 𝐺 is hyperbolic relative to  ; see [30]
for details and other equivalent definitions. A subgroup 𝑃 ∈  is a peripheral subgroup and  is a
peripheral structure on 𝐺. A conjugate of a peripheral subgroup is amaximal parabolic subgroup,
and a parabolic subgroup is a subgroup of a maximal parabolic subgroup. Finally, we say that a
subgroup𝐻 ⊆ 𝐺 is relatively quasiconvex if it is quasiconvex in Γ̂, that is, if there is constant𝐾 ⩾ 0

such that every geodesic in Γ̂with endpoints in𝐻 lies at distance atmost𝐾 from𝐻. (In our setting,
this is equivalent to being quasiconvex in the relative Cayley graph, obtained by adding  to the
generating set. Indeed, these two graphs are quasi-isometric and induce the same metric on 𝐺,
seen as a subset of the vertex set in each case.)
The following criterion for relative quasiconvexity is well-known to experts and follows from a

relative version of Milnor–Švarc obtained by Charney and Crisp in [8]. We include a proof for the
convenience of the reader. Here, we say that an action is discontinuous if orbits are discrete and
an isotropy subgroup is a subgroup with non-empty fixed set.

Lemma 2.2. Let 𝑋 be a hyperbolic length space. Let 𝐺 be a finitely generated group admitting a
discontinuous, cocompact, isometric action on 𝑋. Let  be a collection of subgroups of 𝐺 consisting
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RELATIVE CUBULATION OF RELATIVE STRICT HYPERBOLIZATION 7 of 30

of exactly one representative from each conjugacy class of the maximal isotropy subgroups for this
action. Assume that 𝐺 is relatively hyperbolic with respect to  . Let 𝑌 ⊆ 𝑋 be a quasiconvex subset.
Let 𝐻 be the stabilizer of 𝑌 in 𝐺. If 𝐻 acts cocompactly on 𝑌, then 𝐻 is a relatively quasiconvex
subgroup of (𝐺,).

Proof. Fix a basepoint 𝑝 ∈ 𝑌. It follows from the proof of [8, Theorem 5.1] that the orbit map
𝐺 → 𝑋, g ↦ g .𝑝 is a quasi-isometry, when 𝐺 is equipped with the metric induced from Γ̂. Since
every point of Γ̂ is at distance at most 1

2
from 𝐺, this orbit map extends to a (𝜆, 𝜀)-quasi-isometry

𝑓 ∶ Γ̂ → 𝑋 for some constants 𝜆 ⩾ 1, 𝜀 > 0. Now, the proof proceeds as in the absolute case.
Let 𝛿 be the hyperbolicity constant of 𝑋 and 𝐾 the quasiconvexity constant of 𝑌. Now, pick

ℎ ∈ 𝐻 and a geodesic 𝛾 ∶ 𝐼 → Γ̂ from 1𝐺 to ℎ. Then, 𝑓(𝛾) is a (𝜆, 𝜀)-quasi-geodesic in 𝑋 from 𝑝

to 𝑓(ℎ) = ℎ.𝑝. Let 𝛼 be a geodesic path in 𝑋 from 𝑝 to 𝑓(ℎ) = ℎ.𝑝. By the Morse lemma (see,
for instance, [7, Theorem III.H.1.7]) we get that 𝑓(𝛾) ⊆ 𝐴(𝛼) for some constant 𝐴 = 𝐴(𝛿, 𝜆, 𝜀).
Moreover since 𝑝, ℎ.𝑝 ∈ 𝑌 and 𝑌 is 𝐾-quasiconvex, we get also that 𝛼 ⊆ 𝐾(𝑌). Finally, since𝐻

acts cocompactly on𝑌, there is some𝐹 > 0 such that𝑌 ⊆ 𝐹(𝑓(𝐻)). Combining these statements
we see that 𝑓(𝛾) ⊆ 𝐵(𝑓(𝐻)) for some 𝐵 = 𝐵(𝛿, 𝐾, 𝜆, 𝜀, 𝐹).
In particular, for each 𝑥 ∈ 𝛾 there exists some ℎ𝑥 ∈ 𝐻 such that 𝑑𝑋(𝑓(𝑥), 𝑓(ℎ𝑥)) ⩽ 𝐵. But then,

since 𝑓 is a (𝜆, 𝜀)-quasi-isometric embedding, we also get

𝑑Γ̂(𝑥, ℎ𝑥) ⩽ 𝜆(𝑑𝑋(𝑓(𝑥), 𝑓(ℎ𝑥)) + 𝜀) ⩽ 𝜆(𝐵 + 𝜀)

which shows that there exists a constant 𝐶 = 𝐶(𝛿, 𝐾, 𝜆, 𝜀, 𝐹) such that 𝛾 ⊆ 𝐶(𝐻), that is, 𝐻 is
𝐶-quasiconvex in Γ̂. □

In particular, when 𝑌 is just the fixed point of a maximal parabolic subgroup one recovers the
fact that each maximal parabolic subgroup is relatively quasiconvex.
Finally, we will need the following definitions. A subgroup 𝐻 ⊆ 𝐺 is full relatively quasicon-

vex if it is relatively quasiconvex and for any g ∈ 𝐺 and for any peripheral subgroup 𝑃 ∈  the
intersection 𝐻 ∩ g𝑃g−1 is either finite or of finite index in g𝑃g−1. For instance, since the col-
lection of maximal parabolic subgroups is almost malnormal, a maximal parabolic subgroup is
automatically a full relatively quasiconvex subgroup. A subgroup𝐻 ⊆ 𝐺 is strongly relatively qua-
siconvex if it is relatively quasiconvex and for any g ∈ 𝐺 and for any peripheral subgroup 𝑃 ∈ 

the intersection𝐻 ∩ g𝑃g−1 is finite.

3 RELATIVE STRICT HYPERBOLIZATION

Let 𝐾 be a finite connected simplicial complex, and 𝐿 a (not necessarily connected) subcomplex.
Themain example the reader should keep inmind iswhen𝐾 is a compactmanifoldwith boundary
𝐿.

3.1 The basic spaces

We consider the relative hyperbolization procedure of [12, §2], as well as its strict version, see
[6]. See Figure 1 for a picture of the main steps involved in the construction. For an exposition of
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8 of 30 LAFONT and RUFFONI

F IGURE 1 The relative strict hyperbolization procedure.

Gromov’s cylinder construction and Charney–Davis strict hyperbolization, we refer the reader to
[33], and references therein.
Let C(𝐾, 𝐿) be the simplicial complex obtained by attaching a cone 𝐶𝑖 over each connected

component 𝐿𝑖 of 𝐿. Denote by 𝑦𝑖 the cone point. We will assume that C(𝐾, 𝐿) is foldable, which
can always be achieved by taking a barycentric subdivision of C(𝐾, 𝐿).
Let 𝑋 = (C(𝐾, 𝐿)) be the cubical complex obtained by applying Gromov’s cylinder construc-

tion. Then, 𝑋 is a non-positively curved and foldable cubical complex. Cone points arising from
the cone points of C(𝐾, 𝐿) are still denoted by 𝑦𝑖 .
Let 𝑋Γ = (𝑋) = ((C(𝐾, 𝐿))) be the piecewise hyperbolic complex obtained by applying

the Charney–Davis strict hyperbolization from [9] to 𝑋 = (C(𝐾, 𝐿)). Roughly speaking, this is
obtained by replacing each cube of 𝑋 with a certain hyperbolic manifold with corners □𝑛

Γ
. We

still denote by 𝑦𝑖 the points arising from the cone points. Links are essentially preserved, in the
sense that lk(𝑦𝑖, 𝑋Γ) is isomorphic to a subdivision of lk(𝑦𝑖, C(𝐾, 𝐿)) = 𝐿𝑖 .
Let(𝐾, 𝐿) be the space obtained from 𝑋Γ by removing a small open ball around each 𝑦𝑖 . This

is the relative strict hyperbolization of 𝐾 with respect to 𝐿. Note that 𝐿 embeds (up to subdivision)
as a subcomplex of(𝐾, 𝐿). The following are the main features of this procedure, see [6, 12].

(1) (𝐾, 𝐿) is aspherical if and only if each component of 𝐿 is aspherical.
(2) If 𝐾 is a PL manifold with boundary 𝐿, then(𝐾, 𝐿) is a PL manifold with boundary 𝐿. The

same is true in the smooth category, if one works with smooth triangulations.
(3) Each component𝐿𝑖 is𝜋1-injective. If denotes a set of representatives of the conjugacy classes

of the subgroups 𝜋1(𝐿𝑖), then Belegradek proved in [6] that 𝐺 = 𝜋1((𝐾, 𝐿)) is hyperbolic
relative to  . Note that since 𝐾 is finite,  is finite and 𝑃 ∈  is finitely presented.

Remark 3.1. 𝑋Γ is negatively curved, but in general the metric induced on (𝐾, 𝐿) is not even
non-positively curved.
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RELATIVE CUBULATION OF RELATIVE STRICT HYPERBOLIZATION 9 of 30

F IGURE 2 Some covering spaces, local pictures around a cone/branch point.

Remark 3.2. If 𝐾 is compact and homogeneous, and 𝐿 = 𝜕𝐾, then 𝜋1(𝑋Γ) is hyperbolic and vir-
tually compact special by [33]. However,(𝐾, 𝐿) is not 𝜋1-injective in 𝑋Γ, so 𝐺 = 𝜋1((𝐾, 𝐿)) is
not naturally a subgroup of 𝜋1(𝑋Γ).

Remark 3.3 (A standing assumption). To use the techniques from [33] we need one additional
assumption, namely that the pair (𝐾, 𝐿) is such that C(𝐾, 𝐿) is homogeneous and without bound-
ary. This condition ensures that(C(𝐾, 𝐿)) is an admissible cubical complex in the sense of [33, §3].
We will assume this condition in this paper. In particular, 𝑋 = (C(𝐾, 𝐿)) comes with a folding
𝑓 ∶ 𝑋 → □𝑛.

Example 3.4. The motivating case is when 𝐾 is a compact manifold with boundary 𝐿. More
generally, 𝐾 could be any homogeneous complex with boundary 𝐿 = 𝜕𝐾, or we could take 𝐾 to
be homogeneous and without boundary and 𝐿 to be a homogeneous codimension-1 subcomplex
without boundary.

3.2 Some useful covering spaces

Our goal is to construct a nice action of𝐺 = 𝜋1((𝐾, 𝐿)) on a CAT(0) cubical complex. We follow
[33] and construct a cubical complex dual to a certain collection of subspaces (mirrors) defined on
a suitable cover of 𝑋Γ. Some adaptations are needed to work relatively to 𝐿. The idea is to follow
the treatment in [12, §2]; see Figure 2.
Let 𝑋Γ be the universal cover of 𝑋Γ. Note that the link of each lift of a cone point 𝑦𝑖 is naturally

identified with a subdivision of 𝐿𝑖 .
Let ◦(𝐾, 𝐿) be the lift of (𝐾, 𝐿) to 𝑋Γ. This is a covering space of (𝐾, 𝐿), but it is in gen-

eral not simply connected. Indeed, there is an injection 𝜋1(𝐿𝑖) → 𝜋1(
◦(𝐾, 𝐿)), because there is

a retraction◦(𝐾, 𝐿) → lk(𝑦𝑖, 𝑋Γ) ≅ 𝐿𝑖 for each cone point 𝑦𝑖 (see [12, Lemma 2.2]).
Let 𝑋Γ be the branched universal cover of 𝑋Γ, that is, the space obtained by puncturing 𝑋Γ at

all the cone points, taking the universal cover, and then taking the metric completion. The ideal
points in the completion are isolated points, covering the cone points, and we call them branch
points. The space𝑋Γ is a piecewise hyperbolic complex, which is locally isometric to 𝑋Γ, except at
the branch points. The link of a branch point above a cone point 𝑦𝑖 is isomorphic to a subdivision
of the universal cover 𝐿̃𝑖 of 𝐿𝑖 . Since 𝑋Γ is CAT(−1), we have that 𝐿𝑖 is CAT(1), and therefore 𝐿̃𝑖 is
CAT(1). It follows that 𝑋Γ is a CAT(−1) piecewise hyperbolic complex; see [7, §II.5] for details.
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10 of 30 LAFONT and RUFFONI

Finally, let ̃(𝐾, 𝐿) be the lift of ◦(𝐾, 𝐿) to 𝑋Γ. Note that 𝐿̃𝑖 is simply connected and each
branch point has a simply connected neighborhood. By Seifert–Van Kampen we get that ̃(𝐾, 𝐿)

is simply connected, so ̃(𝐾, 𝐿) is the universal cover of(𝐾, 𝐿).

Remark 3.5. The space 𝑋Γ is homeomorphic to the space obtained from the universal cover
̃(𝐾, 𝐿) by coning off each copy of the universal cover 𝐿̃𝑖 of 𝐿𝑖 . Moreover, there is a natural
continuous map 𝜋̂ ∶ 𝑋Γ → 𝑋Γ. This is a covering map in the complement of the branch points.

As a result of the above construction, we obtain a folding map

𝑓 ∶ 𝑋Γ

𝜋̂
→ 𝑋Γ

𝜋
→ 𝑋Γ

g𝑋
→ 𝑋

𝑓
→ □𝑛.

As in [33], we define amirror in𝑋Γ,𝑋Γ and𝑋Γ to be a connected component of the full preimage of
a codimension-1 face of□𝑛 via this folding map. The collection of mirrors induces a stratification
of 𝑋Γ, and we can define a 𝑘-cell to be the closure of a connected component of the full preimage
of an open 𝑘-face of□𝑛. In particular, a 0-cell is a vertex, a 1-cell is an edge, and an 𝑛-cell is called
a tile, and is isometric to the universal cover □̃𝑛

Γ
of □𝑛

Γ
(recall this is the hyperbolic manifold

with corners constructed in [9] to define the strict hyperbolization procedure). This provides a
stratification and a tiling of 𝑋Γ, analogous to the ones obtained for 𝑋Γ in [33].
Any mirror going through a branch point might have some non-locally finite behavior, but the

collection of mirrors itself is locally finite: at most 𝑛 = dim𝑋mirrors go through each point of𝑋Γ.

Remark 3.6 (The case of 𝐿 with simply connected components). The link of a cone point of 𝑋Γ

is homeomorphic to the corresponding component of 𝐿. In particular, if each component of 𝐿

is simply connected, then each cone point has a simply connected link and a simply connected
neighborhood (namely, the cone over the link). It follows from the Seifert–Van Kampen theorem
that puncturing𝑋Γ at the (finitelymany) cone points does not change the fundamental group, that
is, the inclusion(𝐾, 𝐿) ⊆ 𝑋Γ induces an isomorphism on fundamental groups. In particular, the
group 𝐺 = 𝜋1((𝐾, 𝐿)) = 𝜋1(𝑋Γ) is hyperbolic and virtually compact special by [33].
For a motivating example, let 𝐾 be a manifold whose boundary 𝐿 = 𝜕𝐾 has simply connected

components. In [46], this set up was considered to construct manifolds with hyperbolic funda-
mental group that do not admit any real projective or flat conformal structures, in any dimension
at least 5.

3.3 The action of 𝑮 on 𝑿𝚪

Recall from Section 3.1 that if is a set of representatives of the conjugacy classes of the subgroups
𝜋1(𝐿𝑖), where 𝐿𝑖 is a connected component of 𝐿, then the group𝐺 = 𝜋1((𝐾, 𝐿)) is hyperbolic rel-
ative to . Moreover,𝐺 naturally acts on ̃(𝐾, 𝐿) by deck transformations. As noted in Remark 3.5
this space embeds in 𝑋Γ, the complement being given by the cones over the various copies of the
universal cover 𝐿̃𝑖 of 𝐿𝑖 . Note that the action permutes these subspaces 𝐿̃𝑖 , and each maximal
parabolic subgroup stabilizes one of them.
We extend the action of 𝐺 to the entire 𝑋Γ by defining it on the cones in the obvious way. The

resulting action is cocompact and by isometries, but not proper, because each maximal parabolic
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RELATIVE CUBULATION OF RELATIVE STRICT HYPERBOLIZATION 11 of 30

fixes a branch point. To address the failure of properness, we now study the cell stabilizers for the
action of 𝐺 on 𝑋Γ.

Lemma 3.7. Let 𝜎 be a cell of 𝑋Γ.

(1) If 𝜎 is a branch point, then Stab𝐺(𝜎) is a maximal parabolic subgroup.
(2) If 𝜎 is not a branch point, then Stab𝐺(𝜎) is a hyperbolic and virtually compact special group.

Proof. Since (1) follows directly from the construction of the space𝑋Γ, we just prove (2). Following
the second part of the proof of [33, Lemma 5.13], we have that 𝑋Γ folds to □𝑛

Γ
, and cell stabiliz-

ers map isomorphically to quasiconvex subgroups of Γ𝑋 = 𝜋1(□
𝑛
Γ
). This group is hyperbolic and

virtually compact special (see [33, Lemma 5.12]), so cell stabilizers are hyperbolic and virtually
compact special too (see [33, Lemma 5.10]). □

Lemma 3.8. Let 𝜎 be an 𝑛-cell of 𝑋Γ which is not a branch point, and let 𝑦̂ be a branch point of 𝑋Γ.
Then, Stab𝐺(𝜎) ∩ Stab𝐺(𝑦̂) = 1.

Proof. Let g ∈ Stab𝐺(𝜎) ∩ Stab𝐺(𝑦̂). We distinguish two cases, but in each case we construct a
fixed point for g in 𝑋Γ which is not a branch point. Since the action of 𝐺 is free away from branch
points, this forces g = 1.
Case 1: 𝑦̂ ∉ 𝜎. Since𝜎 is closed and convex in theCAT(−1) space𝑋Γ, we can consider the nearest

point projection𝜋𝜎(𝑦̂) of 𝑦̂ to𝜎. Note that𝜋𝜎 is g-equivariant, because g ∈ Stab𝐺(𝜎). Hence, g fixes
𝜋𝜎(𝑦̂).
Case 2: 𝑦̂ ∈ 𝜎. Let 𝑝1, … , 𝑝𝑚 be the 0-cells of 𝜎 which are adjacent to 𝑦̂ and of minimal distance

from 𝑦̂ (𝑚 ⩽ 𝑛). Then, g permutes this collection of points. Let 𝑧 be their barycenter inside 𝜎.
Then, g fixes 𝑧. □

Finally, we show that stabilizers are full relatively quasiconvex subgroups of (𝐺,); see
Section 2 for definitions.

Lemma 3.9. Let 𝜎 be a cell of𝑋Γ. Then, Stab𝐺(𝜎) is a full relatively quasiconvex subgroup of (𝐺,).

Proof. By (1) in Lemma 3.7, if 𝜎 is a branch point, then Stab𝐺(𝜎) is a maximal parabolic sub-
group of (𝐺,) and the statement follows. So, let us assume that 𝜎 is not a branch point. Notice
that the action of 𝐺 on 𝑋Γ fits in the setting of Lemma 2.2. Indeed, it is an action by deck trans-
formations in the complement of the branch points. Moreover, 𝜎 is convex in 𝑋Γ, and Stab𝐺(𝜎)

acts on it cocompactly (the quotient is a face of □𝑛
Γ
, which is a compact manifold with bound-

ary). Therefore, Stab𝐺(𝜎) is a relatively quasiconvex subgroup of (𝐺,). Finally, let 𝑃 ∈  be any
peripheral subgroup and g ∈ 𝐺. Then, g𝑃g−1 = Stab𝐺(𝑦̂) for some branch point 𝑦̂, so we conclude
by Lemma 3.8. □

Remark 3.10. The above proof actually shows that if a cell stabilizer is not maximal parabolic then
it is strongly relatively quasiconvex.
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12 of 30 LAFONT and RUFFONI

F IGURE 3 The dual cubical complex (𝑋Γ) superimposed on the stratification of 𝑋Γ. Key:○, ☉, and ●

denote a vertex of height 0, 1, and 2.

4 THE DUAL CUBICAL COMPLEX

Following [33] we construct a cubical complex that is dual to the stratification induced by the
collection of mirrors. This is defined as follows; see Figure 3.

∙ vertices are 𝑘-cells in the stratification of 𝑋Γ,
∙ edges represent codimension-1 inclusions,
∙ higher-dimensional cubes are glued in whenever their 1-skeleton appears.

The resulting cubical complex is denoted by (𝑋Γ). It comes with a height function on the 0-
skeleton, recording the dimension of the dual cell. The action of 𝐺 = 𝜋1((𝐾, 𝐿)) on 𝑋Γ extends
to an action on (𝑋Γ) by cubical isometries. Since𝐾 is finite, the action is cocompact. However, it
is not proper. Note that running the same construction on𝑋Γ leads to theCAT(0) cubical complex
(𝑋Γ) studied in [33].

Remark 4.1 (The case of 𝐿 with simply connected components, continued). An argument anal-
ogous to the one in Remark 3.6 shows that if each component of 𝐿 is simply connected, then
puncturing 𝑋Γ at its cone points does not change the fundamental group. Therefore, 𝑋Γ = 𝑋Γ,
and it follows that (𝑋Γ) = (𝑋Γ), which is known to be CAT(0) by [33].
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RELATIVE CUBULATION OF RELATIVE STRICT HYPERBOLIZATION 13 of 30

Vertices of height at least 2 in (𝑋Γ) do not admit compact neighborhoods. The vertex dual to
a branch point will be called a branch vertex of (𝑋Γ). Branch vertices have height 0 and are the
only vertices of height less than 2 that do not have compact neighborhoods. Let  denote the
collection of branch vertices of (𝑋Γ). Analogously, let  denote the collection of cone vertices
of (𝑋Γ), that is, the vertices of (𝑋Γ) that arise from cone points of 𝑋. The branched covering
map 𝜋̂ ∶ 𝑋Γ → 𝑋Γ from Section 3.2 induces a cubical branched coveringmap (𝑋Γ) → (𝑋Γ), see
Section 4.1 for details.
We introduce certain subcomplexes on (𝑋Γ), following [33], where the analogous subcom-

plexes were defined for (𝑋Γ). For each tile 𝜏 of 𝑋Γ, we define the dual tile (𝜏) of (𝑋Γ) to be the
full subcomplex consisting of vertices dual to cells of 𝜏. Note that if 𝑣 is the vertex dual to 𝜏, then
(𝜏) is the cubical 1-neighborhood of 𝑣. Similarly, for each mirror 𝑀 of 𝑋Γ, we define the dual
mirror (𝑀) of (𝑋Γ) to be the full subcomplex consisting of vertices dual to cells of𝑀.

4.1 (𝑿𝚪) is non-positively curved

Thanks to Gromov’s link condition, it is enough to check that links of vertices of (𝑋Γ) are flag
simplicial complexes. Since the definition of adjacency in the dual cubical complex (𝑋Γ) is given
in terms of codimension-1 inclusion of cells in the stratification of𝑋Γ, the combinatorics of the link
of a cell in𝑋Γ completely determine the combinatorics of the link of the dual vertex in (𝑋Γ). Note
that the branched covering map 𝜋̂ ∶ 𝑋Γ → 𝑋Γ respects the stratifications of these spaces, in the
sense that it sends cells of𝑋Γ to cells of𝑋Γ, preserving inclusions. Hence, it induces combinatorial
maps on the dual cube complexes.
First, let 𝑣 ∈ (𝑋Γ) be a vertex that is not a branch vertex, and let 𝜎 ⊆ 𝑋Γ be its dual cell.

Note that 𝜋̂ ∶ 𝑋Γ → 𝑋Γ is a covering map in the complement of branch points. In particular, it
induces an isomorphism lk(𝜎, 𝑋Γ) → lk(𝜋̂(𝜎), 𝑋Γ), and therefore an isomorphism lk(𝑣,(𝑋Γ)) →

lk(𝑤,(𝑋Γ)), where 𝑤 is the vertex of (𝑋Γ) dual to the cell 𝜋̂(𝜎). The latter link is known to be
flag by [33, Proposition 4.10 (3)].
Let us now consider the link of a branch vertex of 𝑋Γ. Recall from Section 3.2 that the link of

a branch vertex of 𝑋Γ is isomorphic to a subdivision of 𝐿̃𝑖 for some connected component 𝐿𝑖 of 𝐿.
The argument is similar to that in [33, Proposition 4.10 (2)] (note that a branch vertex has height
0). The main difference is that the map

ĝ𝑋 ∶ 𝑋Γ

𝜋̂
→ 𝑋Γ

𝜋
→ 𝑋Γ

g𝑋
→ 𝑋

does not induce an isomorphism on links at the branch points. This is addressed by the following
lemma, which is the analog of [33, Lemma 3.17].

Lemma 4.2. Let 𝑦̂ ∈ 𝑋Γ be a branch point, and let 𝑦 = ĝ𝑋(𝑦̂) ∈ 𝑋 be the corresponding cone point.
Then, the following hold.

(1) ĝ𝑋 induces the universal covering map lk(𝑦̂, 𝑋Γ) → lk(𝑦, 𝑋).
(2) lk(𝑦̂, 𝑋Γ) is a piecewise spherical simplicial complex with vertices given by the edges containing

𝑦̂, and in which 𝑚 + 1 vertices span an 𝑚-simplex if and only if the corresponding edges are
contained in a (𝑚 + 1)-cell.

 14697750, 2025, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70093 by O

hio State U
niversity U

niversity L
ibraries, W

iley O
nline L

ibrary on [04/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



14 of 30 LAFONT and RUFFONI

Proof. Themaps 𝜋 and g𝑋 induce isomorphisms on the link of any vertex. Recall from Remark 3.5
that 𝑋Γ can be obtained from ̃(𝐾, 𝐿) by coning off each copy of the universal cover 𝐿̃𝑖 of the
components 𝐿𝑖 of 𝐿. In particular, the map 𝜋̂ induces the universal covering map on the links of
the branch points. Therefore, we obtain (1). To prove (2) just argue as in [33, Lemma 3.17 (3)] with
𝑘 = 0. □

Lemma 4.3. Let 𝑣 ∈ (𝑋Γ) be a branch vertex. Then, lk(𝑣,(𝑋Γ)) is a flag simplicial complex,
isomorphic to lk(𝑦̂, 𝑋Γ).

Proof. Let 𝑦̂ ∈ 𝑋Γ be the branch point dual to 𝑣, and let 𝑦 = ĝ𝑋(𝑦̂) ∈ 𝑋 be the corresponding cone
point. Any vertex𝑤𝑖 of lk(𝑣,(𝑋Γ)) corresponds to a vertex 𝑣𝑖 of (𝑋Γ) adjacent to 𝑣, and therefore
to an edge 𝑒𝑖 of 𝑋Γ that contains 𝑦̂. Note that if 𝑤𝑖, 𝑤𝑗 are two adjacent vertices in lk(𝑣,(𝑋Γ)),
then there is a vertex 𝑣𝑖𝑗 such that 𝑣, 𝑣𝑖, 𝑣𝑗, 𝑣𝑖𝑗 span a square in (𝑋Γ). Since 𝑣 has height 0, nec-
essarily 𝑣𝑖𝑗 has height 2, hence it is dual to a 2-cell of 𝑋Γ containing the edges 𝑒𝑖, 𝑒𝑗 dual to 𝑣𝑖, 𝑣𝑗 .
In particular, 𝑒𝑖, 𝑒𝑗 are adjacent in lk(𝑦̂, 𝑋Γ). This shows that lk(𝑣,(𝑋Γ)) and lk(𝑦̂, 𝑋Γ) have the
same 1-skeleton.
By Lemma 4.2, lk(𝑦̂, 𝑋Γ) identifies with the universal cover of lk(𝑦, 𝑋). Since𝑋 is non-positively

curved, lk(𝑦, 𝑋) is flag, so lk(𝑦̂, 𝑋Γ) is flag too. Therefore, the lemma is proved if we show that
lk(𝑣,(𝑋Γ)) is flag.
Let 𝑤0,… ,𝑤𝑝 pairwise adjacent vertices in lk(𝑣,(𝑋Γ)), and let 𝑣0, … , 𝑣𝑝 be the corresponding

vertices of (𝑋Γ). Let 𝑒0, … , 𝑒𝑝 be the edges in𝑋Γ that correspond to 𝑣0, … , 𝑣𝑝. These edges contain
𝑦̂, and are pairwise adjacent in lk(𝑦̂, 𝑋Γ). Since lk(𝑦̂, 𝑋Γ) is flag, there is a cell 𝜇 of 𝑋Γ containing
𝑒0, … , 𝑒𝑝. The collection of cells that contain 𝑦̂ and are contained in 𝜇 give rise to a cube in (𝑋Γ)

that contains 𝑣0, … , 𝑣𝑝. As a result, 𝑤0,… ,𝑤𝑝 span a simplex in lk(𝑣,(𝑋Γ)). □

We note that a completely analogous argument shows that the link of a vertex in 𝑋Γ and the
link of its dual vertex in (𝑋Γ) are isomorphic. Also note that it follows from the above discussion
that the complex (𝑋Γ) is a branched covering of the complex (𝑋Γ), branching over the set 
of branched vertices.

4.2 (𝑿𝚪) is simply-connected

In this section, we show that the dual cubical complex is simply connected. Recall that we are
working under the standing assumption in Remark 3.3. We follow the approach in [33], which
is based on the following two observations about the combinatorial geometry of the dual cubical
complex (𝑋Γ).

(DT) An edge–loop entirely contained in a dual tile is nullhomotopic.
(DM) If an edge–loop is not entirely contained in a dual tile, then it can be cut along dual mirrors

and decomposed into a product of edge–loops, each of which is contained in a dual tile.

The step (DT) carries over verbatim from [33, §4.2], because the arguments there are completely
local, in the sense that they only depend on the geometry and combinatorics of a single tile, and
tiles of 𝑋Γ are isomorphic to those of 𝑋Γ.
For the step (DM), we will check that all the arguments from [33] carry over to the current

setting, because they do not rely in any essential way on the local finiteness of the spaces involved.
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RELATIVE CUBULATION OF RELATIVE STRICT HYPERBOLIZATION 15 of 30

Indeed, each point of 𝑋Γ is contained in at most finitely many mirrors, and each finite edge–path
of (𝑋Γ) intersects only finitely many dual mirrors (each of them only finitely many times).
The following statement provides one of the main properties of mirrors. It is a direct

consequence of foldability as in [33, Proposition 3.14].

Proposition 4.4. Each mirror of 𝑋Γ is a closed connected convex subspace of 𝑋Γ.

Next, we turn to the separation properties of the collection of mirrors. Following [33, §3.6], for
each 𝑖 = 1, … , 𝑛, let ̂𝑖 be the collection of mirrors of 𝑋Γ that fold to one of the two parallel 𝑖th
faces of□𝑛 = [0, 1]𝑛, that is, {𝑥𝑖 = 0} and {𝑥𝑖 = 1}. Notice that by construction any two elements
of ̂𝑖 are disjoint, and even have disjoint 𝜀-neighborhoods for 𝜀 sufficiently small (because Γ is
cocompact). Let ̂𝑖 be the collection of connected components of 𝑋Γ ⧵ ∪𝑀∈̂𝑖

𝑀. For each mirror
𝑀 ∈ ̂𝑖 and for each component 𝐶 ∈ ̂𝑖 , consider the following equidistant space, obtained by
pushing the mirror𝑀 into the component 𝐶.

𝐸𝜀
𝑀,𝐶

= {𝑥 ∈ 𝐶 | 𝑑(𝑥,𝑀) = 𝜀}.

Note that the local geometry of a component 𝐶 ∈ ̂𝑖 in a neighborhood of a mirror 𝑀 ∈ ̂𝑖

is not sensitive to the fact that the stratification of 𝑋Γ is not locally finite around a branch point.
More precisely, if𝑖 and 𝑖 denote the analogous collections ofmirrors and complementary com-
ponents in 𝑋Γ, then we have that the map 𝜋̂ ∶ 𝑋Γ → 𝑋Γ maps each component 𝐶 ∈ ̂𝑖 locally
isometrically to a component 𝜋̂(𝐶) ∈ 𝑖 in 𝑋Γ. So, we obtain the following analog of [33, Lemma
3.27].

Lemma 4.5. For 𝜀 > 0 small enough there is 𝑘 ∈ (−1, 0) such that the metric induced on 𝐸𝜀
𝑀,𝐶

is
CAT(𝑘).

As a consequence, we obtain the following analog of [33, Proposition 3.29].

Proposition 4.6. 𝑋Γ admits the structure of a graph of spaces, with underlying graph a
connected tree.

The construction and the proof are the same as in the case of 𝑋Γ. The only difference is that in
the case of𝑋Γ the tree is not locally finite: a mirror that goes through a branch point intersects the
closure of possibly infinitely many complementary components, so the corresponding vertex has
possibly infinitely many neighbors. However, this property is not needed. The relevant property
of this tree is that it has no boundary, and this is still true in our setting, as we now explain.
The arguments from [33, §3.7] are local in nature: they deal with a cell 𝜎 on a mirror 𝑀 and a

framing for it, that is a choice of two tiles 𝜏1, 𝜏2 such that 𝜎 ⊆ 𝜏1 ∩ 𝜏2 ⊆ 𝑀. Once again, the map
𝜋̂ ∶ 𝑋Γ → 𝑋Γ preserves the structure of framings, and this can be used to obtain the following
statement, which is analogous to [33, Proposition 3.37].

Proposition 4.7. Each 𝑀 ∈ ̂𝑖 separates 𝑋Γ. More precisely, let 𝑀 ∈ ̂𝑖 be a mirror, let 𝜎 ⊆ 𝑀

be a 𝑘-cell, and let {𝜏1, 𝜏2} be a framing for 𝜎. Then, 𝜏1, 𝜏2 are contained in the closure of two distinct
connected components of 𝑋Γ ⧵ 𝑀.
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16 of 30 LAFONT and RUFFONI

F IGURE 4 Aminimal bridge 𝑝 supported by𝑀, and its projection to (𝑀).

Arguing as in [33, §4.3] it follows that each dualmirror (𝑀) separates the dual complex (𝑋Γ).
When an edge–loop is not entirely contained in a tile, we want to decompose it into subpaths
by cutting it along dual mirrors. The following definitions are taken from [33, §4.3.2]. Let 𝑝 =

(𝑣0, … , 𝑣𝑠) be an edge–path in (𝑋Γ), and let 𝜎0, … , 𝜎𝑠 be the cells of 𝑋Γ dual to its vertices. We
say that 𝑝 is a bridge if there exists a mirror 𝑀 of 𝑋Γ such that 𝑣0, 𝑣𝑠 ∈ (𝑀), but 𝑝 ⊈ (𝑀). In
other words, 𝜎0, 𝜎𝑠 ⊆ 𝑀 but some of the other cells 𝜎1, … , 𝜎𝑠−1 are not contained in 𝑀. In this
case, we say that 𝑝 is supported by𝑀. We say that 𝑝 is aminimal bridge if none of its subpaths is a
bridge.
The arguments in [33, §4.3–4] do not use the local finiteness of 𝑋Γ, so they carry over to 𝑋Γ.

Indeed, they just rely on the orthogonality properties of the collection of mirrors and tiles, such
as the fact that either twomirrors are disjoint, or they intersect orthogonally and the projection of
one to the other is contained in their intersection; see Lemma [33, Lemma 4.22]. This is enough to
turn the nearest point projection 𝜋𝑀 ∶ 𝑋Γ → 𝑀 to a mirror𝑀 into a length-decreasing projection
froma certain neighborhood of(𝑀) in(𝑋Γ) onto(𝑀), see [33, Lemma4.24] and the discussion
after it. This neighborhood is the one consisting of all the dual tiles that intersect (𝑀). Moreover,
if a minimal bridge 𝑝 is supported by 𝑀, then 𝑝 remains inside this neighborhood of (𝑀); see
Lemma4.25 in [33]. It follows thatwe can project𝑝 to(𝑀) and obtain a shorter path; see Figure 4.
This is stated in the following lemma, which is the core of the step (DM), and is the analog of [33,
Lemma 4.26].

Lemma 4.8. Let 𝑝 be a minimal bridge supported on a mirror𝑀. Then, there exists an edge–path
𝑝𝑀 ⊆ (𝑀), such that 𝑝𝑀 has the same endpoints as 𝑝 and 𝓁(𝑝𝑀) ⩽ 𝓁(𝑝) − 2.

We are now ready to prove the main result of this section.

Theorem 4.9. The complex (𝑋Γ) is a connected CAT(0) cubical complex.

Proof. By construction, the complex (𝑋Γ) is a path-connected cubical complex. Moreover, the
link of any vertex is a flag simplicial complex (see Lemma 4.3 for the link of a branch vertex,
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RELATIVE CUBULATION OF RELATIVE STRICT HYPERBOLIZATION 17 of 30

and [33, Proposition 4.10] for the other ones). So, (𝑋Γ) is non-positively curved by Gromov’s
link condition.
To conclude, we need to show that (𝑋Γ) is simply connected. As in the proof of [33, Theo-

rem 4.29], we argue that edge–loops are nullhomotopic by induction on their length. Let 𝑝 be an
edge–loop in (𝑋Γ). If 𝑝 does not cross any mirror, then 𝑝 stays in a tile and is therefore nullho-
motopic. So let us assume that 𝑝 crosses a mirror. Then, it must cross it an even number of time.
Each pair of crossings determines a decomposition of 𝑝 into two bridges. Make a choice of a min-
imal bridge, and use the projection from Lemma 4.8 to introduce a shortcut along the supporting
mirror, which allows us to write 𝑝 as the product of two shorter edge–loops. Iterating this process
decomposes 𝑝 into a product of loops that are entirely contained in a dual tile and are therefore
nullhomotopic. □

4.3 The action of 𝑮 on (𝑿𝚪)

We now turn to the study of cube stabilizers. The idea is to follow the approach in [33], and relate
the cube stabilizers for the action of𝐺 = 𝜋1((𝐾, 𝐿)) on (𝑋Γ) to the cell stabilizers for the action
of 𝐺 on 𝑋Γ. Recall that the action of 𝐺 on ̃(𝐾, 𝐿) by deck transformations extends to an action
on 𝑋Γ in which each maximal parabolic subgroup identifies with the stabilizer of a branch point.
The following is the leading observation, which follows directly from the definition of the action
of 𝐺 on (𝑋Γ).

Lemma 4.10. The stabilizer of a vertex in (𝑋Γ) coincides with the stabilizer of its dual cell in 𝑋Γ.
In particular, the stabilizer of a branch vertex is a maximal parabolic subgroup.

To deal with higher dimensional cubes of (𝑋Γ), we observe the following. By invariance of
the height function, the stabilizer of a cube 𝐶 is always contained in the stabilizer of its vertex
of minimal height. If this minimal vertex is not a branch vertex, then they are actually equal, as
established by the following result. It is obtained as in [33, Lemma 5.4], where there are no branch
vertices.

Lemma 4.11. Let 𝐶 be a cube in (𝑋Γ). If the vertex of minimal height 𝑣 of 𝐶 is not a branch vertex,
then Stab𝐺(𝐶) = Stab𝐺(𝑣).

Wenow consider the case inwhich𝐶 contains a branch vertex. (Note that if𝐶 contains a branch
vertex 𝑣, then 𝑣 is necessarily the vertex of minimal height.)

Lemma 4.12. Let 𝐶 be a cube in (𝑋Γ) such that the vertex of minimal height 𝑣 of 𝐶 is a branch
vertex.

(1) If 𝐶 = 𝑣, then Stab𝐺(𝐶) is a maximal parabolic subgroup.
(2) If 𝐶 ≠ 𝑣, then Stab𝐺(𝐶) = 1.

Proof. The proof of (1) just follows from Lemma 4.10 and (1) in Lemma 3.7. So, let us prove (2).
Let g ∈ Stab𝐺(𝐶). Since the height function is invariant, g must fix 𝑣, by uniqueness of the vertex
of minimal height. So, g ∈ Stab𝐺(𝑣) too. If 𝜎 is the cell dual to 𝐶 and 𝑦̂ is the branch point dual to
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18 of 30 LAFONT and RUFFONI

𝑣, then it follows from Lemma 4.10 that g ∈ Stab𝐺(𝐶) ∩ Stab𝐺(𝑣) = Stab𝐺(𝜎) ∩ Stab𝐺(𝑦̂). But this
intersection is trivial by Lemma 3.8. □

We are now ready to collect the ideas, and prove that the action of 𝐺 on (𝑋Γ) looks like a
relatively geometric action in the sense of [17, Definition 1.1] or [24, Definition 1.9], but with some
larger stabilizers “away from the parabolics”. Recall fromSection 3 that is a set of representatives
of the conjugacy classes of the subgroups 𝜋1(𝐿𝑖), where 𝐿𝑖 is a connected component of 𝐿.

Theorem A. The action of the relatively hyperbolic group 𝐺 = 𝜋1((𝐾, 𝐿)) on the CAT(0) cubical
complex (𝑋Γ) satisfies the following properties.

(1) 𝐺

\
(𝑋Γ) is compact.

(2) Each 𝑃 ∈  acts elliptically on (𝑋Γ).
(3) For each cube 𝐶 of (𝑋Γ), Stab𝐺(𝐶) is either maximal parabolic, or else is full relatively quasi-

convex, hyperbolic, and virtually compact special.

Proof. First of all, (𝑋Γ) is CAT(0) by Theorem 4.9. The action of 𝐺 on it is cocompact because
𝐾 is finite. Each 𝑃 ∈  fixes a branch point in 𝑋Γ, and therefore it fixes the dual vertex in (𝑋Γ).
This proves the first two statements, so let us prove the third one. Let 𝐶 ⊆ (𝑋Γ) be a cube. There
are three cases to consider (recall that if a cube contains a branch vertex, then that vertex is the
vertex of minimal height).
First, if 𝐶 is a branch vertex, then Stab𝐺(𝐶) is a maximal parabolic subgroup of 𝐺 by (1) in

Lemma 4.12. Next, consider the case that 𝐶 is not a branch vertex but its vertex of minimal height
𝑣 is a branch vertex. By (2) in Lemma 4.12 we have that Stab𝐺(𝐶) = 1. Finally, suppose that𝐶 is not
a branch vertex and its vertex of minimal height 𝑣 is not a branch vertex. In this case, Stab𝐺(𝐶) =

Stab𝐺(𝑣) by Lemma 4.11. Moreover, by Lemma 4.10 this also equals Stab𝐺(𝜎), where 𝜎 is the cell of
𝑋Γ dual to 𝑣. By (2) in Lemma 3.7 we know that this is a hyperbolic and virtually compact special
group. Moreover, by Lemma 3.9 we also know that it is a full relatively quasiconvex subgroup of
(𝐺,). This concludes the proof. □

Remark 4.13. It follows from Remark 3.10 that if a cube stabilizer is not a maximal parabolic
subgroup then it is strongly relatively quasiconvex.

Theorem B. Let 𝐺 = 𝜋1((𝐾, 𝐿)) and  be as above. Then, the following hold.

(1) If each 𝑃 ∈  is residually finite, then 𝐺 is residually finite and each 𝑃 ∈  is separable.
(2) If each 𝑃 ∈  is hyperbolic and virtually compact special, then 𝐺 is hyperbolic and virtually

compact special.

Proof. By Theorem A, the pair (𝐺,) satisfies the conditions in Theorem A.4 from the Appendix.
Since the trivial subgroup and the peripheral subgroups are full relatively quasiconvex in (𝐺,),
the statement in (1) follows.
To prove (2), we argue as follows. First of all, if a group is hyperbolic relative to a hyperbolic sub-

group then it is itself hyperbolic, see [42, Corollary 2.41]. So, we have that𝐺 is hyperbolic. Consider
the action of𝐺 on theCAT(0) cubical complex (𝑋Γ) and let𝐻 be a non-trivial cube stabilizer. We
claim that 𝐻 is quasiconvex in 𝐺 and virtually compact special. Indeed, by Theorem A we have
two cases. If 𝐻 is a maximal parabolic, then it is quasiconvex by [30, Corollary 8.2], and virtually
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RELATIVE CUBULATION OF RELATIVE STRICT HYPERBOLIZATION 19 of 30

F IGURE 5 The construction of the hyperbolized mapping torus  (𝑀).

compact special by assumption. Otherwise,𝐻 is virtually compact special, and strongly relatively
quasiconvex in (𝐺,); see Remark 4.13. By [42, Theorem 1.9]𝐻 is quasi-isometrically embedded in
𝐺, hence𝐻 is quasiconvex, since 𝐺 is hyperbolic. It follows that the action of 𝐺 on (𝑋Γ) satisfies
the conditions in [25, Theorem D], so 𝐺 is virtually compact special. □

5 APPLICATIONS TOMANIFOLDS

We collect some applications to the study of aspherical manifolds in Section 5.1, cobordism of
manifolds in Section 5.2, and (non-)triangulability of manifolds in Section 5.3.

5.1 Aspherical manifolds with residually finite fundamental groups

The purpose of this section is to obtain examples of closed aspherical manifolds whose fundamen-
tal groups have interesting algebraic properties. In Theorem 5.3, we construct closed aspherical
manifolds in each dimension 𝑛 ⩾ 6, whose fundamental group is residually finite. These exam-
ples can be chosen to be Riemannian and non-positively curved, and even negatively curved for
𝑛 ⩾ 9; see Remark 5.5. These examples are new, in the sense that they are not homotopy equiva-
lent to manifolds for which residual finiteness of the fundamental group was previously known
by other methods. Finally, in Theorem 5.8 we construct negatively curved Riemannian manifolds
of dimension 𝑛 ⩾ 5, which are not locally symmetric and whose fundamental groups are virtually
compact special.
All of the examples constructed in this section are based on a procedure that associates to a

closed triangulable manifold𝑀 another closed triangulable manifold  (𝑀), which contains𝑀 as
a codimension-1 submanifold. We call  (𝑀) the hyperbolized mapping torus of𝑀. The construc-
tion of  (𝑀) is as follows, see Figure 5. Let𝐾0 be a triangulation of𝑀. Extend𝐾0 to a triangulation
𝐾1 of 𝑀 × [0, 1]. Glue two copies of 𝐾1 via the identity on 𝑀 × {0} to obtain a triangulation 𝐾 of
𝑀 × [−1, 1]. Denote by 𝐿 the boundary of 𝐾; it consists of two components, each homeomor-
phic to𝑀. Notice that 𝑗 ∶ 𝐾 → 𝐾, (𝑚, 𝑡) ↦ (𝑚,−𝑡) is a simplicial involution exchanging the two
components of 𝐿. Now, apply relative strict hyperbolization to the pair (𝐾, 𝐿) to obtain a com-
pact manifold with boundary (𝐾, 𝐿) whose boundary 𝜕(𝐾, 𝐿) is homeomorphic to 𝑀 × {±1}.
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20 of 30 LAFONT and RUFFONI

(Alternatively, one could apply strict hyperbolization to the simplicial suspension of𝐾0, and then
remove sufficiently small open neighborhoods of the cone points.) Finally, let  (𝑀) be the closed
manifold obtained by gluing the two boundary components of(𝐾, 𝐿) together. By construction,
 (𝑀) contains a 𝜋1-injective codimension-1 submanifold homeomorphic to 𝑀 arising from the
two boundary components of (𝐾, 𝐿) that have been glued together. We keep referring to this
submanifold as𝑀.

Lemma 5.1. If 𝜋1(𝑀) is residually finite, then 𝜋1( (𝑀)) is residually finite.

Proof. First of all, note that 𝜋1( (𝑀)) splits as a nice HNN extension. Indeed, the involution
𝑗 ∶ 𝐾 → 𝐾 defined above induces an automorphism 𝑗∗ of 𝐺 = 𝜋1((𝐾, 𝐿)) that exchanges the
subgroups 𝐻1,𝐻2 corresponding to the two boundary components of(𝐾, 𝐿). So, 𝜋1( (𝑀)) can
be presented as the HNN extension

⟨𝑡, 𝐺 ∣ 𝑡ℎ𝑡−1 = 𝑗∗(ℎ), ℎ ∈ 𝐻1⟩.
The problem of residual finiteness for HNN extensions of this type was considered by Baumslag–
Tretkoff in [3, Lemma 4.4]. More precisely, they proved that an HNN extension induced by an
automorphism of 𝐺 as above is residually finite as soon as 𝐺 and 𝐻1 satisfy the following two
properties: (1) 𝐺 is finitely generated and residually finite; (2) for any 𝑥1, … , 𝑥𝑛 ∈ 𝐺 ⧵ 𝐻1 there is
a normal subgroup𝑁 of finite index in 𝐺 such that 𝑥𝑖𝐻1 ∩ 𝑁 = ∅ for all 𝑖 = 1, … , 𝑛. We will now
verify that these two properties are satisfied in our case.
To check (1), we argue as follows.We know that𝐺 is finitely generated and hyperbolic relative to

 = {𝐻1,𝐻2}. Notice that𝐻1,𝐻2 are both isomorphic to 𝜋1(𝑀), which is assumed to be residually
finite. So, by Theorem B we have that 𝐺 is residually finite.
Next, note that (2) is satisfied as soon as𝐻1 is separable in𝐺. To see this, let 𝑥1, … , 𝑥𝑛 ∈ 𝐺 ⧵ 𝐻1.

If 𝐻1 is separable in 𝐺, then for each 𝑖 = 1, … , 𝑛 we can find a normal subgroup of finite index
𝑁𝑖 ⩽ 𝐺 such that 𝐻1 ⩽ 𝑁𝑖 and 𝑥𝑖 ∉ 𝑁𝑖 . Let 𝑁 = ∩𝑁𝑖 . Then, 𝑁 is still normal and of finite index
in 𝐺. Moreover, 𝐻1 ⩽ 𝑁, and thus 𝑥𝑖𝐻1 ⊆ 𝑥𝑖𝑁. Since 𝑥𝑖 ∉ 𝑁, it follows that 𝑥𝑖𝑁 ∩ 𝑁 = ∅, hence
𝑥𝑖𝐻1 ∩ 𝑁 = ∅ for all 𝑖 = 1, … , 𝑛, as desired. To conclude, note that our 𝐻1 is indeed separable in
𝐺 thanks to Theorem B and the assumption that 𝜋1(𝑀) is residually finite. □

Remark 5.2 (Smoothness). When𝑀 is smooth, one can ensure that  (𝑀) is smooth too, by apply-
ing strict hyperbolization with a sufficiently large hyperbolizing cell to a smooth triangulation 𝐾

of𝑀 × [−1, 1] as in [41]. Moreover, if𝑀 admits a non-positively (resp. negatively) curved Rieman-
nian metric, then  (𝑀) admits a Riemannian metric of non-positive (resp. negative) curvature in
which 𝑀 embeds totally geodesically; see [39] for details. The sectional curvatures of  (𝑀) can
be pinched arbitrarily close to −1 along planes that are sufficiently far away from the tangent
bundle to 𝑀. While smoothness is not essential in the following discussion, we will work in this
Riemannian setting for convenience.

We now use the above construction to obtain the desired examples. Let Λ be a torsion-free
uniform lattice in SL(3, ℝ) and let 𝑀 = Λ

\
SL(3, ℝ)

/
SO(3, ℝ) be the corresponding locally sym-

metric space. Then, 𝑀 is a closed non-positively curved Riemannian manifold of dimension 5,
whose fundamental group 𝜋1(𝑀) = Λ is residually finite and has property (T). Let 𝑁5 = 𝑀 and
recursively define 𝑁𝑛 =  (𝑁𝑛−1).
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RELATIVE CUBULATION OF RELATIVE STRICT HYPERBOLIZATION 21 of 30

Theorem 5.3. For all 𝑛 ⩾ 6,𝑁𝑛 is a closed Riemannian 𝑛-manifold of non-positive curvature with
residually finite fundamental group and not homotopy equivalent to any of the following:

(1) a locally symmetric space,
(2) a Gromov–Thurston manifold,
(3) a strictly hyperbolized manifold,
(4) a closed Kähler manifold.

Here, a Gromov–Thurston manifold is one of the examples constructed in [22], and a
strictly hyperbolized manifold is the result of applying Charney–Davis strict hyperbolization or
Ontaneda’s Riemannian hyperbolization to any closed triangulable manifold. Moreover, recall
that all the examples of negatively curved manifolds constructed by Mostow–Siu in [38], Deraux
in [15], or Stover–Toledo in [48, 49] are Kähler manifolds.

Proof. First of all, by construction 𝑁𝑛 is a closed non-positively curved Riemannian manifold of
dimension 𝑛 that contains𝑁𝑛−1 as a totally geodesic codimension-1 submanifold; see Remark 5.2.
In particular, since𝑁5 = 𝑀, we have that 𝜋1(𝑁𝑛) contains a subgroup isomorphic to Λ = 𝜋1(𝑀).
Moreover, 𝜋1(𝑁𝑛) is residually finite by Lemma 5.1.
By construction 𝜋1(𝑁𝑛) splits as an HNN extension, hence it acts on the associated Bass–Serre

tree without a global fixed point. In particular, it does not have property (FA), hence it does not
have property (T), see [51]. It follows that 𝜋1(𝑁𝑛) cannot be a lattice in a Lie group of higher
rank, nor in the isometry group of a quaternionic hyperbolic space or the Cayley hyperbolic plane,
because all of these Lie groups have property (T). To prove (1) we need to deal with the possibility
that 𝜋1(𝑁𝑛) is a lattice in the isometry group of a real or complex hyperbolic space. If this were
the case, we would obtain a free isometric action of Λ ⊆ 𝜋1(𝑁𝑛) on a real or complex hyperbolic
space. But this would be impossible: since Λ has property (T), any isometric action on a real or
complex hyperbolic space must have a fix point by Corollary 23 in [13]. This proves (1).
To prove (2) and (3) we argue as follows. Suppose by contradiction that𝑁𝑛 is homotopy equiv-

alent to a Gromov–Thurston manifold or a strictly hyperbolized manifold. Then, 𝜋1(𝑁𝑛) acts
geometrically on a finite-dimensionalCAT(0) cubical complex by [20] or [33], respectively. In par-
ticular, we obtain a proper cubical action of Λ on a CAT(0) cube complex. Since Λ has property
(T), this is in contradiction with Theorem B in [40].
Finally, we prove (4). Suppose by contradiction that 𝑁𝑛 is homotopy equivalent to a closed

Kähler manifold 𝑋. Since 𝑁𝑛 is non-positively curved, 𝑁𝑛 and 𝑋 are actually homeomorphic by
[2]. Then,𝑁𝑛 ⧵ 𝑁𝑛−1 is homeomorphic to an open subset of𝑋. But by definition of𝑁𝑛 as  (𝑁𝑛−1),
we have that𝑁𝑛 ⧵ 𝑁𝑛−1 is the interior of a manifold obtained by relative strict hyperbolization on
𝑁𝑛−1 × [−1, 1], so we reached a contradiction with [6, Theorem 10.5]. □

Remark 5.4. The crucial property of 𝑀 that we have used above is that 𝑀 is a closed aspherical
manifold whose fundamental group is residually finite and contains a subgroup Λ with property
(T). Notably, these properties are preserved when passing from 𝑀 to its hyperbolized mapping
torus  (𝑀). So, given any such 𝑀 one can recursively define a sequence of manifolds as in
Theorem 5.3 and certain other prescribed features, as in Remark 5.5.

Remark 5.5 (Negatively curved examples). Let Λ′ be a torsion-free uniform lattice in the isome-
try group of the quaternionic hyperbolic plane Isom(ℍ2

ℍ
) = Sp(1, 2) and let 𝑀′ = ℍ2

ℍ
∕Λ′ be the

associated eight-dimensional manifold. Now, let 𝑁′
8
= 𝑀′ and recursively define 𝑁′

𝑛 =  (𝑁′
𝑛−1

).
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22 of 30 LAFONT and RUFFONI

Then for all 𝑛 ⩾ 9, themanifold𝑁′
𝑛 satisfies the conclusion of Theorem 5.3, with the added feature

of negative curvature; see Remark 5.2. In particular, 𝜋1(𝑁
′
𝑛) is a residually finite hyperbolic group.

Remark 5.6 (Property (T) vs. Haagerup property). Note that the above constructions provide exam-
ples of one-ended CAT(0) and hyperbolic groups that do not have property (T), as they split as
HNN extensions, and do not have the Haagerup property, as they contain an infinite subgroup
with (T). On the other hand, all these groups have relative property (T) with respect to that
subgroup; see [4, §1.4].

The negatively curved examples from Remark 5.5 do not have cubulated fundamental group,
because they are constructed starting with a manifold𝑀 whose fundamental group has property
(T). On the other hand, if one starts with a manifold 𝑀 whose fundamental group is cubulated
(e.g., a real hyperbolic manifold defined by a uniform real hyperbolic lattice of simple type; see
[28]), then one can obtain negatively curved examples whose fundamental groups are cubulated
too. This is based on the following lemma, which is the analog of Lemma 5.1.

Lemma 5.7. If 𝑀 be a negatively curved Riemannian manifold and 𝜋1(𝑀) is virtually com-
pact special, then  (𝑀) is a negatively curved Riemannian manifold and 𝜋1( (𝑀)) is virtually
compact special.

Proof. As in the proof of Lemma 5.1, 𝐺 = 𝜋1((𝐾, 𝐿)) is hyperbolic relative to  = {𝐻1,𝐻2} and
𝜋1( (𝑀)) can be represented as theHNN extension of𝐺with respect to𝐻1. Note that𝐻𝑖 ≅ 𝜋1(𝑀)

is hyperbolic and virtually compact special, so by Theorem B we have that 𝐺 is hyperbolic and
virtually compact special. By Remark 5.2 we know that  (𝑀) admits a negatively curved Rie-
mannian metric in which𝑀 embeds as a totally geodesic submanifold. In particular, 𝜋1( (𝑀)) is
hyperbolic and𝐻1 is quasiconvex. Then by [52, Theorem 13.1] we have that 𝜋1( (𝑀)) is virtually
compact special. □

This can be used to construct examples of Riemannian manifolds of negative curvature with
cubulated fundamental group which are not real hyperbolic. Note that manifolds with the same
properties can also be obtained directly via strict hyperbolization (see [33, 41]). We suspect that
suchmanifolds are different from the examples in Theorem 5.8, but we are not aware of invariants
that can distinguish the two classes.

Theorem 5.8. The hyperbolized mapping torus construction𝑀 ↦  (𝑀) can provide for all 𝑛 ⩾ 5

a closed Riemannian 𝑛-manifold𝑁′′
𝑛 such that:

(1) 𝑁′′
𝑛 has negative sectional curvature.

(2) 𝜋1(𝑁
′′
𝑛 ) is virtually compact special.

(3) 𝑁′′
𝑛 is not homotopy equivalent to a locally symmetric space or Kähler manifold.

Proof. Let 𝑀 be a negatively curved Riemannian 4-manifold with virtually compact special fun-
damental group that is not a real hyperbolic manifold, such as a Gromov–Thurston manifold or a
strictly hyperbolized manifold. These are known to have virtually special fundamental group by
[20] and [33], respectively. Let 𝑁′′

4
= 𝑀 and for 𝑛 ⩾ 5 let 𝑁′′

𝑛 =  (𝑁𝑛−1). By Lemma 5.7, we have
that𝑁′′

𝑛 is a negatively curved Riemannianmanifold and that𝜋1(𝑁
′′
𝑛 ) is virtually compact special,

which proves (1) and (2).
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RELATIVE CUBULATION OF RELATIVE STRICT HYPERBOLIZATION 23 of 30

To prove (3)we argue as follows. As in Theorem 5.3, we have that𝜋1(𝑁
′′
𝑛 ) does not have property

(T) and𝑁′′
𝑛 is not Kähler. So, we only need to check that𝑁

′′
𝑛 cannot be a real hyperbolic manifold.

By contradiction, suppose that 𝜋1(𝑁
′′
𝑛 ) is isomorphic to a real hyperbolic lattice Γ ⊆ Isom(ℍ𝑛).

Since 𝑁′′
𝑛−1

is a totally geodesic submanifold of 𝑁′′
𝑛 , its fundamental group identifies with a

quasiconvex subgroup𝐻 ⊆ Γ.
By construction, 𝑁′′

𝑛 admits an involution that fixes 𝑁′′
𝑛−1

pointwise. This provides an outer
automorphism 𝜙 of Γ that preserves 𝐻. By Mostow rigidity, 𝜙 is realized by an involution g ∈

Isom(ℍ𝑛). Since g fixes a totally geodesic ℍ𝑘 ⊆ ℍ𝑛 for some 𝑘 ⩽ 𝑛 − 1, the fixed set Fix∞(g) for
the induced action of g on 𝜕∞ℍ𝑛 is a round sphere 𝑆𝑘−1 = 𝜕∞ℍ𝑘. The Gromov boundary of 𝐻 =

𝜋1(𝑁
′′
𝑛−1

) is 𝑆𝑛−2 because 𝑁′′
𝑛−1

is a negatively curved Riemannian (𝑛 − 1)-manifold.
The limit set Λ(𝐻) = 𝑆𝑛−2 of 𝐻 in 𝜕∞ℍ𝑛 is a priori just a topologically embedded sphere (not

necessarily a round one). However, since 𝜙 preserves𝐻, we haveΛ(𝐻) = 𝑆𝑛−2 ⊆ Fix∞(g) = 𝑆𝑘−1.
Therefore, wemust haveΛ(𝐻) = Fix∞(g) = 𝑆𝑛−2. This implies that 𝜋1(𝑁

′′
𝑛−1

) = 𝐻 acts geometri-
cally on the totally geodesicℍ𝑛−1 stabilized by g , and therefore that𝑁′′

𝑛−1
admits a real hyperbolic

structure too. One can repeat this argument all the way down to 𝑀 and obtain a real hyperbolic
structure on𝑀, which provides a contradiction. □

5.2 Cobordism of manifolds

Some of the most classical applications of hyperbolization procedures are to cobordism of man-
ifolds. For instance, any closed triangulable manifold 𝑀 is cobordant to (𝑀), which is a
closed aspherical manifold with negative curvature and virtually compact special fundamental
group; see [9, 33]. Moreover, if 𝑀 is smooth, then (𝑀) can be chosen to be smooth and have
pinched negative sectional curvatures; see [41]. The following statements provide more proper-
ties about the fundamental group of the cobordism. It applies in particular when𝑀1 is any closed
triangulable manifold and𝑀2 = (𝑀1) is its strict hyperbolization.

Corollary 5.9. Let 𝑀1,𝑀2 be two closed triangulable manifolds with residually finite fundamen-
tal group. Suppose there is a triangulable cobordism between them. Then, there exists a compact
Riemannian manifold with boundary𝑊 such that

(1) 𝑊 is a cobordism between𝑀1 and𝑀2

(2) 𝜋1(𝑊) is relatively hyperbolic relative to {𝜋1(𝑀1), 𝜋1(𝑀2)}

(3) 𝜋1(𝑊) is residually finite and 𝜋1(𝑀𝑖) is separable.

Proof. Let 𝑊0 be a triangulable cobordism between 𝑀1 and 𝑀2, and let 𝑊 = (𝑊0,𝑀1 ∪ 𝑀2).
By construction 𝜕𝑊 ≅ 𝑀1 ∪ 𝑀2 and its fundamental group is relatively hyperbolic with respect
to the fundamental groups of the boundary components; see [6]. The statement follows from (1)
in Theorem B. □

Remark 5.10 (Variations). If 𝑀1 and 𝑀2 are smooth and smoothly cobordant, then 𝑊 can be
taken to be smooth by [41]. If 𝜋1(𝑀𝑖) is hyperbolic and virtually compact special, then by (2) in
Theorem B we have that 𝜋1(𝑊) is also hyperbolic and virtually compact special.

We also propose the following more geometric application. Let 𝑁 be a non-compact com-
plete Riemannian manifold 𝑁 of finite volume. A closed Riemannian manifold 𝑀 bounds 𝑁
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24 of 30 LAFONT and RUFFONI

geometrically if there is a bounded set 𝐵 ⊂ 𝑁 such that𝑁 ⧵ 𝐵 is diffeomorphic to𝑀 × [0,+∞). As
shown by Long and Reid in [35], there are closed flat manifolds that do not bound geometrically
a real hyperbolic manifold. On the other hand, Ontaneda proved that every closed flat manifold
bounds geometrically a manifold of pinched negative curvature in [41]. The following statement
provides information about its fundamental group.

Corollary 5.11. Let 𝜀 > 0 and let 𝑀 be a closed flat manifold. Then, there exists a complete
Riemannian manifold of finite volume𝑁 such that

(1) 𝑁 has sectional curvatures in [−1 − 𝜀, −1].
(2) 𝑀 bounds𝑁 geometrically.
(3) 𝜋1(𝑁) is relatively hyperbolic relative to 𝜋1(𝑀).
(4) 𝜋1(𝑁) is residually finite and 𝜋1(𝑀) is separable.

Proof. The first two statement are due toOntaneda, see [41, Corollary 7]. They are based on the fact
that a closed flat manifold bounds smoothly a smooth compact manifold (see [29]), so that hyper-
bolization can be applied. The third one is due to Belegradek; see [6]. For the last statement, note
that a flat manifold is virtually a torus by Bieberbach’s theorem. In particular, 𝜋1(𝑀) is virtually
abelian hence residually finite. Then, we conclude again by (1) in Theorem B. □

As in [41], one can get a similar statement for an almost flat manifold. In this case, one
needs to additionally assume that the manifold bounds smoothly and has residually finite
fundamental group.

5.3 Aspherical manifolds that cannot be triangulated

Manolescu showed in [36] that for each 𝑛 ⩾ 5 there is a closed topological 𝑛-manifold that cannot
be triangulated, that is, is not homeomorphic to a simplicial complex. Davis et al. showed in [10]
that for 𝑛 ⩾ 6 one can take such a manifold to be aspherical and to have hyperbolic fundamental
group. We now show that the fundamental groups of these manifolds are cubulated.

Theorem 5.12. For each 𝑛 ⩾ 6, there is a closed aspherical 𝑛-manifold 𝑁𝑛 that cannot be
triangulated and whose fundamental group is hyperbolic and virtually compact special.

Proof. Themanifolds are the ones constructed in [§3, pp. 800–801] [10], by applying suitable strict
hyperbolization procedures to a construction by Galewski and Stern in [18]. We consider the case
𝑛 = 6. Higher dimensional examples are obtained in a similar way by taking product with tori of
the initial building pieces. The manifold 𝑁6 is a closed aspherical 6-manifold obtained by gluing
two suitable manifolds with boundary 𝑃1 and 𝑃2 along their boundary, so 𝜋1(𝑁

6) splits as the
associated amalgamated free product.
Themanifold with boundary 𝑃1 is obtained via strict hyperbolization (i.e., 𝑃1 = (𝑃′) for a cer-

tain triangulable manifold with boundary 𝑃′) and 𝑃2 is obtained via relative strict hyperbolization
(i.e., 𝑃2 = (𝑊, 𝜕𝑃1) for a certain triangulable manifold 𝑊 with boundary 𝜕𝑊 = 𝜕𝑃1). A priori,
the former has hyperbolic fundamental group and the latter has relatively hyperbolic fundamen-
tal group. However, since 𝜕𝑃1 = 𝜕(𝑃′) = (𝜕𝑃′) is a closed manifold, we have that 𝜋1(𝜕𝑃1) is
a hyperbolic group. As observed in [10], it follows that 𝜋1(𝑁

6) is hyperbolic. Moreover, we also
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have that 𝜋1(𝜕𝑃1) is quasiconvex in 𝜋1(𝑁
6), since it is quasiconvex in both factors; see [32, 44].

Thanks to [52, Theorem 13.1], we are left to show that 𝜋1(𝑃1) and 𝜋1(𝑃2) are virtually compact
special.
Since 𝜕𝑃1 = (𝜕𝑃′) is the strict hyperbolization of a closed manifold, it follows from [33] that

𝜋1(𝜕𝑃1) is virtually compact special. Then, 𝜋1(𝑃2) is virtually compact special by (2) in Theo-
rem B. Finally, let us consider the manifold 𝑃′′ obtained by doubling 𝑃′ along its boundary. The
fundamental group of its strict hyperbolization (𝑃′′) is hyperbolic, and also virtually compact
special by [33]. Since 𝑃′ is a subcomplex of 𝑃′′ (with respect to any triangulation), the inclu-
sion 𝑃1 = (𝑃′) ↪ (𝑃′′) is a local isometry. It follows that 𝜋1(𝑃1) is a quasiconvex subgroup
of 𝜋1((𝑃′′)), and therefore it is virtually compact special too. □

Remark 5.13 (Virtual triangulability). For a topological manifold 𝑀 of dimension at least 5 the
Kirby–Siebenmann class Δ(𝑀) ∈ 𝐻4(𝑀,ℤ2) is an obstruction to the existence of a PL-structure
on 𝑀, in the sense that 𝑀 admits a PL-structure if and only if Δ(𝑀) = 0, see [19, Theorem 5].
Similarly, in dimension at least 6 there is a class 𝛿(Δ(𝑀)) ∈ 𝐻5(𝑀, ker(𝜇)) such that 𝑀 admits
a triangulation if and only if 𝛿(Δ(𝑀)) = 0. Here, 𝜇 ∶ Θ3 → ℤ2 is the Rokhlin homomorphism
for the homology cobordism group Θ3, and 𝛿 ∶ 𝐻4(𝑀,ℤ2) → 𝐻5(𝑀, ker(𝜇)) is the connecting
homomorphism associated with the short exact sequence

0 → ker(𝜇) → Θ3
𝜇
→ ℤ2 → 0.

It turns out that if 𝑆𝑞1(Δ(𝑀)) ≠ 0 then 𝛿(Δ(𝑀)) ≠ 0, where 𝑆𝑞1 ∶ 𝐻4(𝑀,ℤ2) → 𝐻4(𝑀,ℤ2) is the
first Steenrod square.
The manifold 𝑁𝑛 from Theorem 5.12 has residually finite fundamental group, hence it admits

a lot of finite covers. While 𝑁𝑛 is not triangulable, one can ask if it is virtually triangulable, that
is, if it admits a finite cover that is triangulable. We note that a triangulable cover must have even
degree. Indeed, if 𝜋 ∶ 𝑁̂𝑛

𝑑
→ 𝑁𝑛 is a cover of odd degree 𝑑, then the induced map on cohomology

𝜋∗ ∶ 𝐻𝑘(𝑁𝑛, ℤ2) → 𝐻𝑘(𝑁̂𝑛
𝑑
, ℤ2) is injective. It is shown in [10] that 𝑆𝑞1(Δ(𝑁𝑛)) ≠ 0. By naturality

of the Kirby–Siebenmann class and the Steenrod square, it follows that 𝑆𝑞1(Δ(𝑁̂𝑛
𝑑
)) ≠ 0, so 𝑁̂𝑛

𝑑
does not admit a triangulation.
On the other hand, for a cover 𝜋 ∶ 𝑁̂𝑛

𝑑
→ 𝑁𝑛 of even degree 𝑑, the map 𝜋∗ can have non-trivial

kernel, so it is not clearwhether eitherΔ(𝑁̂𝑛
𝑑
) or 𝛿(Δ(𝑁̂𝑛

𝑑
)) vanishes. The existence of a triangulable

cover would provide an example of an action of a finite group of even order 𝑑 that cannot bemade
simplicial even up to changing the triangulation. Notice that in dimension 5 this happens already
for 𝑑 = 2: the Galewski–Stern 5-manifold from [18] is non-triangulable and non-orientable, but
all orientable closed 5-manifolds are triangulable; see [47].
This problem about virtual vanishing of certainℤ2-cohomology classes is reminiscent of the fol-

lowing question about vector bundles: given a flat vector bundle (i.e., a vector bundlewith discrete
structure group) over a compact polyhedron 𝐵, is there a finite cover of 𝐵 on which the bundle
becomes trivial? Triviality of a bundle over 𝐵 with discrete structure group contained in SL(𝑛, ℝ)

is obstructed by a class in𝐻2(𝜋1(𝐵), ℤ2), when 𝑛 ⩾ 3. Millson constructed in [37] examples of flat
real bundles for which this class remains non-trivial in all finite covers, that is, flat real bundles
that are not virtually trivial. The analogous problem in the complex case is different: Deligne and
Sullivan showed in [14] that all flat complex vector bundles are virtually trivial.
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APPENDIX A: A CRITERION FOR RESIDUAL FINITENESS BY DANIEL GROVES AND
JASONMANNING
In this Appendix, we explain why groups satisfying the conclusions of Theorem A are residually
finite whenever the peripheral subgroups are. In fact, we prove the somewhat stronger statement
that such groups are separable on full quasi-convex subgroups. Our proof relies on various group
theoretic Dehn filling results so we begin by recalling the relevant definitions.
DefinitionA.1. Let (𝐺,) be relatively hyperbolic. ADehn filling of (𝐺,) is a quotient𝐺 of𝐺 so
that ker(𝐺 → 𝐺) is generated by the union of a collection = {𝑁𝑃 ∣ 𝑃 ∈ }where each𝑁𝑃 < 𝑃.
We may also write 𝐺 as 𝐺( ) if we want to keep track of the kernel. The filling is peripherally
finite if [𝑃 ∶ 𝑁𝑃] < ∞ for all 𝑃 ∈  . If  is a family of subgroups of 𝐺, and we have 𝑁𝑃 < 𝐻g

whenever𝐻g ∩ 𝑃 is infinite, then the filling is called an–filling.

Most Dehn filling results require the assumption that the filling is “sufficiently long.” To be
precise, we have the following.

Definition A.2. A statement 𝖥 holds for sufficiently long fillings of (𝐺,) if there is a finite set
𝑆 ⊂ 𝐺 ⧵ {1} so that the statement 𝖥 holds for 𝐺( ) whenever satisfies

⋃
 ∩ 𝑆 = ∅.

If𝖦 is a property of fillings, we say that 𝖥 holds for sufficiently long𝖦 fillings if “𝖥 or not𝖦” holds
for sufficiently long fillings. For example 𝖦 could be the property of being peripherally finite, or
of being an–filling (or both).

Notice that a conjunction of finitely many statements which hold for sufficiently long fillings
also holds for sufficiently long fillings.
Recall that a relatively quasiconvex subgroup 𝐻 ⊆ 𝐺 is full if for every g ∈ 𝐺 and 𝑃 ∈  the

intersection𝐻g ∩ 𝑃 is either finite or of finite index in𝑃.Wewill also need the following definition
of Osin in the course of the proof.

DefinitionA.3 ([42, Definition 1.8]). A relatively quasi-convex subgroup 𝐻 ⩽ 𝐺 is strongly
relatively quasi-convex if for every g ∈ 𝐺 and 𝑃 ∈  the intersection𝐻g ∩ 𝑃 is finite.

TheoremA.4. Suppose that (𝐺,) is a relatively hyperbolic pair with each element of  residually
finite. Suppose also that 𝐺 admits an isometric and cubical action on a CAT(0) cube complex 𝑋 so
that

(1) 𝐺
\

𝑋 is compact;
(2) Each 𝑃 ∈  acts elliptically on 𝑋; and
(3) For each cube 𝜎 ∈ 𝑋, Stab𝐺(𝜎) is either conjugate to an element of  , or else is full relatively

quasi-convex, hyperbolic, and virtually compact special.
Then, every full relatively quasi-convex subgroup of 𝐺 is separable. In particular, 𝐺 is

residually finite.

Proof. We first argue that it is enough to prove the theorem replacing (3) with the stronger
hypothesis:

(3’) Every cube stabilizer is either maximal parabolic or strongly quasi-convex and virtually
compact special.
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RELATIVE CUBULATION OF RELATIVE STRICT HYPERBOLIZATION 27 of 30

Let  ′ ⊆  be obtained by omitting those elements of  which are both hyperbolic and virtually
compact special. Every full relatively quasi-convex subgroup of (𝐺, ′) is full relatively quasi-
convex in (𝐺,), so if we prove the theorem for (𝐺, ′) we will have proved it also for (𝐺,).
Replacing  by  ′ does not change hypotheses (1) or (2). Suppose 𝐻 is a cube stabilizer which is
not maximal parabolic. With respect to  it is therefore full relatively quasi-convex, hyperbolic,
and virtually compact special. By [30, Theorem 9.1], 𝐻 is hyperbolic relative to a collection 𝐻

of finite index subgroups of conjugates of some parabolics 𝐻 ⊂  (which may occur with multi-
plicity). Each of these subgroups is undistorted in𝐻 [42, Lemma 5.4]. In particular, each 𝐷 ∈ 𝐻

is hyperbolic and (using [26]) virtually special. It follows that each 𝑃 ∈ 𝐻 is hyperbolic and vir-
tually special, so 𝐻 ⊂  ⧵  ′. In particular, 𝐻 is strongly relatively quasi-convex with respect to
 ′. Since 𝐻 was an arbitrary non-maximal-parabolic cube stabilizer the action of (𝐺, ′) on 𝑋

satisfies the stronger condition (3’).
We therefore suppose all cube stabilizers are maximal parabolic or strongly quasi-convex and

virtually compact special. Let be a collection of conjugacy representatives of stabilizers of cubes
in 𝑋 which are not maximal parabolic.
Let 𝐿 be a full relatively quasi-convex subgroup of (𝐺,), and suppose that g ∈ 𝐺 ⧵ 𝐿.
Let 𝜎1, … , 𝜎𝑘 be representatives of 𝐺-orbits of cubes in 𝑋. For each 𝑖, let 𝑄𝑖 be the finite-index

subgroup of Stab(𝜎𝑖)which fixes 𝜎𝑖 pointwise, and let = {𝑄1, …𝑄𝑘}, and′ =  ∪ {𝐿}. Note that
each element of ′ is full relatively quasi-convex.

Claim. A sufficiently long peripherally-finite′-filling𝜋∶ 𝐺 → 𝐺 = 𝐺∕𝐾will have the following
properties:

(1) 𝐺 is hyperbolic;
(2) 𝐾

\
𝑋 is a CAT(0) cube complex;

(3) For each𝐻 ∈  the map 𝜋|𝐻 is injective on𝐻, and the image𝐻 is quasi-convex in 𝐺;
(4) 𝜋(g) ∉ 𝜋(𝐿). □

Proof of Claim. The fundamental theorem of relatively hyperbolic Dehn filling [43] says that for
sufficiently long fillings 𝐺 is hyperbolic relative to the images of the elements of  . When these
images are finite, this implies that 𝐺 is hyperbolic.
The second item follows from [25, Corollary 6.6].
The third item follows from [23, Propositions 4.5 and 4.6] (the induced filling of each 𝐻 has

trivial filling kernels, because𝐻 is strongly quasi-convex, so does not intersectmaximal parabolics
except in finite groups, which can be avoided for sufficiently long fillings).
The fourth item follows from [23, Proposition 4.7].

That there exist fillings of the sort in the claim follows from the assumption that elements
of  are residually finite. Indeed, for each 𝑃 ∈  there are finitely many infinite intersections
𝑃 ∩ 𝑄g for 𝑄 ∈ , g ∈ 𝐺; each such 𝑃 ∩ 𝑄g is finite index in 𝑃. Let 𝑃̇ be the normal core of the
intersection of these 𝑃 ∩ 𝑄g . For any collection of finite index {𝑁′

𝑃
< 𝑃}, the collection {𝑁𝑃 = 𝑁′

𝑃
∩

𝑃̇} determines a peripherally finite ′-filling. Since each 𝑃 is residually finite, we may choose the
𝑁′

𝑃
to avoid any given finite set 𝑆.
Now, 𝐺 acts cocompactly on𝑋 = 𝐾

\
𝑋, with stabilizers which are either finite or quasi-convex

and virtually special, and hence by [25, Theorem D] 𝐺 is virtually special. The image 𝜋(𝐿) of 𝐿
in 𝐺 is quasi-convex, and 𝜋(g) ∉ 𝜋(𝐿), so since quasi-convex subgroups of hyperbolic virtually
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28 of 30 LAFONT and RUFFONI

compact special groups are separable by [27, Theorem 1.3], 𝜋(g) can be separated from 𝜋(𝐿) in a
finite quotient of 𝐺. This is a finite quotient of 𝐺 separating g from 𝐿.
Since 𝐿 and g ∈ 𝐺 ⧵ 𝐿 were arbitrary, all full relatively quasi-convex subgroups of 𝐺 are

separable. Since {1} is a full relatively quasi-convex subgroup of 𝐺, 𝐺 is residually finite. □

Remark A.5. By using versions of the Malnormal special quotient theorem on the non-parabolic
cell stabilizers, one can weaken Hypothesis (3) on these subgroups to, for example, be relatively
hyperbolic with respect to the peripheral structure induced from (𝐺,), and admitting a (weakly)
relatively geometric action on a CAT(0) cube complex.
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