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Abstract. We compute the sets of degrees of maps between principal SU(2)-bundles over
S5, i.e., between any of the manifolds SU(2)×S5 and SU(3). We show that the Steenrod
squares provide the only obstruction to the existence of a mapping degree between these
manifolds, and construct explicit maps realizing each integer that occurs as a mapping
degree.

1. Introduction

A fundamental question in topology is whether, given two closed oriented n-
dimensional manifolds M and N , there is a map f : M → N of degree deg(f) ̸= 0.
Recall that a continuous map f : M → N has degree d if f∗([M ]) = d · [N ], where
f∗ : Hn(M) → Hn(N) is the induced homomorphism in homology and [M ] ∈
Hn(M) is the fundamental class of M . The dual formulation in cohomology says
that deg(f) = d if f∗(ωN ) = d · ωM , where f∗ : Hn(N) → Hn(M) is the induced
homomorphism in cohomology and ωM ∈ Hn(M) is the cohomological (dual)
fundamental class of M .

The set of degrees of maps from M to N is defined as

D(M,N) = {d ∈ Z | ∃ f : M → N, deg(f) = d}.

For M = N , we write D(M) to denote the set of degrees of self-maps of M .
In general, it is a difficult question to determine whether a given integer can be

realized as a mapping degree between two manifolds. The answer is well known
in dimensions one and two. A fairly complete answer is known for self-mapping
degrees in dimension three [9], for certain classes of product manifolds [6], and for
maps between certain highly connected manifolds [2]. Obstructions to the existence
of a map of non-zero degree or of a particular mapping degree have been developed
using a variety of tools of algebraic topology. One of the most classical methods
is to compare the cohomology rings of M and N . However, when

H∗(M) ∼= H∗(N),
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then major obstructions such as the ranks of (co)homology groups, the injectivity
of induced homomorphisms in cohomology or the (sub)ring structures themselves
no longer suffice to answer this question.

Our goal is to investigate manifolds M and N with isomorphic cohomology
rings and find possible other obstructions to the existence of a mapping degree in
D(M,N) or D(N,M). In this paper, we consider the two principal SU(2)-bundles
over S5, namely SU(2)× S5 ∼= S3 × S5 and SU(3), and prove the following:

Theorem 1.1. The sets of degrees of maps between principal SU(2)-bundles over
S5 are given as follows:

(a) D(S3 × S5) = Z;
(b) D(S3 × S5, SU(3)) = 2Z;
(c) D(SU(3), S3 × S5) = 2Z;
(d) D(SU(3)) = 4Z ∪ {2k + 1 : k ∈ Z}.

The bundles S3 × S5 and SU(3) indeed have isomorphic cohomology rings.
However, their Steenrod squares behave differently on degree three cohomology,
since Sq2 is trivial for the product S3 × S5, but an isomorphism for the non-
trivial bundle SU(3), mapping the generator α ∈ H3(SU(3);Z2) to the generator
β ∈ H5(SU(3);Z2); cf. Section 3. As we will see in the course of the proof of
Theorem 1.1, the non-triviality of the Steenrod square on SU(3) implies that odd
numbers cannot be realized as degrees of maps between SU(3) and S3 × S5 (in
those cases, Sq2(α) appears once in the computation) and numbers of type 2 ·(odd)
cannot be realized as degrees of self-maps of SU(3) (in that case, Sq2(α) appears
twice in the computation). The complete computation of Theorem 1.1 shows that
this is the only obstruction to the existence of a mapping degree for maps between
SU(2)-bundles over S5. Moreover, our computation of D(SU(3)) corrects a mistake
in a previous computation [7].

Outline

In Section 2 we discuss some known obstructions to the existence of maps of non-
zero degree for manifolds with non-isomorphic cohomology rings. In Section 3 we
briefly overview the SU(2)-bundles over S5 and in Section 4 we prove Theorem 1.1.

Acknowledgments. C. Neofytidis is grateful to Shicheng Wang for useful discus-
sions. He also gratefully acknowledges the hospitality of Peking University where
part of this research was carried out. J.-F. Lafont was partially supported by the
NSF, under grants DMS-1510640 and DMS-1812028.

2. Manifolds with non-isomorphic cohomology rings

In this section we describe a few well-known examples of manifolds with non-
isomorphic cohomology rings and explain in each case the obstruction to the
existence of a map of non-zero degree. We refer to [3] for a survey on this type of
example.

2.1. Different Betti numbers

If f : M → N is a map of non-zero degree, then by Poincaré duality we obtain
that the induced homomorphisms f∗ : H∗(M ;Q) → H∗(N ;Q) are surjective. In
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particular, the Betti numbers of M are greater than or equal to the Betti numbers
of N . Thus, for example, there is no map of non-zero degree from S2n to CPn for
all n > 1.

2.2. Same Betti numbers but different cohomology generator degrees

Dual to the surjectivity in homology, the induced homomorphisms f∗ : H∗(N ;Q)→
H∗(M ;Q) are injective whenever f : M → N has non-zero degree. Thus there is
no map of non-zero degree between S2 × S4 and CP3, although these manifolds
have isomorphic (co)homology groups and thus equal Betti numbers. Indeed the
cohomology rings of S2 × S4 and CP3 are given by H∗(S2 × S4) = Λ[α, β] and
H∗(CP3) = Λ[γ], where α and β have degree two and γ has degree four, which
means that neither of those rings injects into the other.

2.3. Same cohomology generator degrees but different (sub)rings

The cohomology rings of the manifolds CP2#CP2 and CP2#CP2 are generated by
two elements, both of degree two. More precisely, H∗(CP2#CP2) = Λ[α, β], where

α and β have degree two with α2 = β2, and H∗(CP2#CP2) = Λ[α, β], where α
and β have degree two with α2 = −β2. In particular, neither of those rings is
isomorphic to a subring of the other, which implies that there are no maps of

non-zero degree between CP2#CP2 and CP2#CP2.
Note that the information encoded in the above cohomology rings reflects the

intersection forms of CP2#CP2 and CP2#CP2; cf. [2].

Remark 2.1. The examples above all focus on differences in the cohomology, either
at the level of groups, or at the level of the ring structure. Our arguments continue
this trend, by focusing on the differences in the structure of the Z2-cohomology,
viewed as a module over the Steenrod algebra.

3. Principal SU(2)-bundles over S5

We now turn to the examples studied in this paper, of manifolds with isomorphic
cohomology rings. Recall that principal SU(2)-bundles over S5 are classified by
π4(SU(2)) ∼= Z2, and so there exist two such bundles: the trivial bundle SU(2) ×
S3 ∼= S3 × S5, and the twisted bundle SU(3). For the latter bundle, recall that

S3 ∼= SU(2) =

{(
a b

−b a

)
: a, b ∈ C, |a|2 + |b|2 = 1

}
can be embedded in SU(3) via

SU(2) ↪→ SU(3) :

(
a b

−b a

)
7→

 a b 0

−b a 0
0 0 1

 .

The Lie group SU(3) acts on the unit sphere S5 ⊂ C3, and the stabilizer of the
vector (0, 0, 1) ∈ S5 is precisely the embedded SU(2) described above. Thus the
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quotient SU(3)/SU(2) is homeomorphic to S5 and a homeomorphism is given by
the orbit map

SU(3)/SU(2) → S5 : [A] 7→ A ·

 0
0
1

 , A ∈ SU(3).

Concretely, this means that the projection map of the bundle SU(3)
p→ S5 is the

projection to the third column of A.
Both S3 × S5 and SU(3) have cohomology rings isomorphic to Λ[α, β], with

generators α and β in cohomology of degree three and five respectively. However,
SU(3) is not homotopy equivalent to S3 × S5, because the Steenrod square is
(obviously) trivial on H3(S3 × S5;Z2), whereas the Steenrod square on SU(3) is
an isomorphism from H3(SU(3);Z2) to H

5(SU(3);Z2); cf. [1]. Of course, S3 × S5

and SU(3) can be distinguished by their homotopy groups as well [5].

4. Proof of Theorem 1.1

In this section we prove Theorem 1.1.

Before beginning our proof, we discuss briefly the degree of a bundle map.
Given two fiber bundles F ↪→ Ei

πi→ Bi with orientation preserving holonomy,
where F and Bi are connected oriented manifolds, let ϕ : E1 → E2 be a bundle
map, i.e., there is a map ϕB : B1 → B2 on base spaces such that ϕB ◦ π1 = π2 ◦ ϕ.
From the fact that all the spaces are connected, there is also an induced map ϕF
from the fiber of E1 to the fiber of E2, which is well defined up to homotopy. In
particular, one can calculate the integers deg(ϕB), deg(ϕF ). In this setting, we
have the following presumably well-known result:

Lemma 4.1. deg(ϕ) = deg(ϕF ) · deg(ϕB).

Proof. We will calculate deg(ϕ) by taking a specific homotopy of ϕ, and count
oriented pre-images of a point x ∈ E2 (we use the definition of degree from
differential topology). The point x projects to a point q ∈ B2 in the base. One
can then use the local product structure to view x = (p, q) where p ∈ Fq, the
fiber above q. Homotope ϕ, through bundle maps, so that the base map ϕB is
transverse to q. Then further homotope ϕ via fiber-preserving maps so that, for
each point qi ∈ B1 satisfying ϕB(qi) = q, the restriction of the resulting map to
the fiber Fqi ⊂ E2 is transverse to the point p ∈ Fq. By abuse of notation, we still
call the resulting map ϕ.

Now the pre-image of x will consist of a finite collection of points, each of
the form (pj , qi) (in suitable local product structure) where the various pj ∈ Fqi

for j ∈ Ii (each indexing set Ii depends on the corresponding i). One can take
the orientation on the total spaces to be locally given by the wedge of the fiber
orientation with the base orientation – this is well defined since the holonomy
is orientation preserving. Picking a horizontal lift TqiB1 of TqiB1 at each point
(pj , qi), we can decompose T(pj ,qi)E1 = Tpj

Fqi ⊕ TqiB1. Similarly, we decompose

T(p,q)E2 = TpFq ⊕ TqB2.
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To compute the degree, we need to look at the sign of the determinant of dϕ(pj ,qi)

at each of these pre-image points. Denote by ϕi the restriction of ϕ to the fiber
ϕi : Fqi → Fq (and note that ϕi ≃ ϕF ). From our choice of bases, we see that the
matrix for dϕ(pj ,qi) takes the block form(

d(ϕi)pj ∗
0 d(ϕB)qi

)
,

and hence det(dϕ(pj ,qi)) = det(d(ϕi)pj ) · det(d(ϕB)qi). For a matrix A, we will
denote by o(A) the sign of det(A). Then it follows that o(dϕ(pj ,qi)) = o(d(ϕi)pj ) ·
o(d(ϕB)qi). We now have from the definition of degree that

deg(ϕ) =
∑

(pj ,qi)

o(dϕ(pj ,qi)) =
∑

(pj ,qi)

[
o(d(ϕi)pj

) · o(d(ϕB)qi)
]

=
∑
i

[(∑
j∈Ii

o(d(ϕi)pj )
)
· o(d(ϕB)qi)

]
=

∑
i

[
deg(ϕi) · o(d(ϕB)qi)

]
= deg(ϕF )

∑
i

o(d(ϕB)qi) = deg(ϕF ) · deg(ϕB),

where we use the fact that all the maps ϕi are homotopic to the fiber map ϕF ,
hence have the same degree. This concludes the proof. �

Now, we are ready to prove Theorem 1.1. Item (a) is trivial because D(Sn) = Z,
and so we deal with the rest of the computations. As mentioned in the introduction,
for a closed oriented n-dimensional manifold M , we denote by ωM ∈ Hn(M ;Z)
the generator determined by the orientation of M .

Lemma 4.2. D(S3 × S5, SU(3)) = 2Z.

Proof. Let f : S5 → S5 be a self-map of even degree. We pull-back the bundle

SU(3)
p→ S5 along f to obtain an SU(2)-bundle f∗(SU(3)) over S5 together with

a map f̃ : f∗(SU(3)) → SU(3), which has degree deg(f ) by Lemma 4.1. Since
SU(2)-bundles over S5 are classified by π4(SU(2)) = Z2, and deg(f) is even, we
deduce that f∗(SU(3)) = S3 × S5. Thus 2Z ⊆ D(S3 × S5, SU(3)).

Conversely, suppose f : S3 × S5 → SU(3) is an arbitrary map of degree deg(f ).
Let α and β be generators ofH3(SU(3);Z) andH5(SU(3);Z) respectively such that
α∪ β = ωSU(3). Then from the definition of degree, we have that f∗(α)∪ f∗(β) =
deg(f) ·ωS3×S5 . Each of the elements f∗(α), f∗(β) are multiples of the generators
ωS3×1 and 1×ωS5 respectively. We will show that f∗(β) must be an even multiple
of 1× ωS5 , which immediately implies that deg(f ) is even.

We will use bars to denote the image of a cohomology class under the change
of coefficient morphism H∗(X;Z) → H∗(X;Z2). Thus, we have that α, β are the
generators of H3(SU(3);Z2) and H5(SU(3);Z2) respectively. Moreover, for any
element x ∈ H∗(SU(3);Z), we have f∗(x) = f∗(x). Since Sq2 : H3(SU(3);Z2) →
H5(SU(3);Z2) is an isomorphism, we have that Sq2(α) = β. Using that the map
Sq2 : H3(S3 × S5;Z2) → H5(S3 × S5;Z2) is the zero morphism, we have the
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sequence of equalities

f∗(β) = f∗(β) = f∗Sq2(α) = Sq2
(
f∗(α)

)
= 0.

Thus f∗(β) is an even multiple of the generator 1 × ωS5 , completing the proof.
�

Next, we prove one of the inclusions of item (c):

Lemma 4.3. D(SU(3), S3 × S5) ⊆ 2Z.

Proof. Suppose f : SU(3) → S3 × S5 is a map of degree deg(f). As before, let
α and β be generators of H3(SU(3);Z) and H5(SU(3);Z) respectively. We have
f∗(ωS3×1) = κ·α and f∗(1×ωS5) = λ·β, for some κ, λ ∈ Z. In particular, deg(f ) =
κλ. Again, because the Steenrod square is an isomorphism from H3(SU(3);Z2) to
H5(SU(3);Z2) and trivial on H3(S3 × S5;Z2) we obtain

κ · β = κ · Sq2(α) = Sq2f∗(ωS3 × 1) = f∗Sq2(ωS3 × 1) = 0.

This means that κ must be even, and so deg(f) is even. �
In order to prove the reverse inclusion of item (c), we need to construct some

maps with controlled degree. This is established in

Lemma 4.4. 2Z ⊆ D(SU(3), S3 × S5).

Proof. Since D(S3 × S5) = Z, it suffices to construct a single map h : SU(3) →
S3×S5 satisfying deg(h) = 2. We start by defining a self-map g : SU(3) → SU(3),
and will see that g factors through the desired map h.

So let A =

 a b u
c d v
p q w

 ∈ SU(3) and define the map g : SU(3) → SU(3) by

letting g(A) =

m11 m12 uw + v
m21 m22 vw − u
m31 m32 w2

 be the matrix with entries

m11 = −u2(ab+ ab) + (uv − w)(−a2 + |b|2),
m12 = u2(a2 − |b|2)− (uv − w)(ab+ ab),

m21 = −(uv + w)(ab+ ab) + v2(−a2 + |b|2),
m22 = (uv + w)(a2 − |b|2)− v2(ab+ ab),

m31 = −(uw − v)(ab+ ab) + (u+ vw)(−a2 + |b|2),
m32 = (uw − v)(a2 − |b|2)− (u+ vw)(ab+ ab).

If A =

 a b 0

−b a 0
0 0 1

 ∈ SU(2) ⊆ SU(3), then it is easy to check that

g(A) =

 a2 − |b|2 ab+ ab 0

−ab− ab a2 − |b|2 0
0 0 1

 = A2.
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This tells us that g(SU(2)) ⊆ SU(2), and the restriction of g to SU(2) is the
squaring map of degree deg(g|SU(2)) = 2.

Next let us verify that g is in fact a bundle map. For any A,B ∈ SU(3), we have
that p(A) = p(B) if and only if B = AU for some U ∈ SU(2) ⊆ SU(3). In that

case, A and B = AU have the same third columns, say

 u
v
w

 ∈ S5. This means

that g(A) and g(AU) have also the same third columns, namely

uw + v
vw − u
w2

 ∈ S5.

Thus there is a well-defined induced self-map f : S5 → S5 given by u
v
w

 7→

uw + v
vw − u
w2

 ,

which has degree 2 (see also Theorem 2.1 of [8]) and such that p ◦ g = f ◦ p.
We pull-back the bundle SU(3)

p→ S5 along f to obtain an SU(2)-bundle over S5

f∗(SU(3)) = {(S, T ) ∈ S5 × SU(3) : f(S) = p(T )}.

Since deg(f) = 2, this pull-back bundle f∗(SU(3)) is in fact the trivial bundle – we
denote by f̃ the bundle map f̃ : f∗(SU(3)) → SU(3) (projection onto the second
factor). Since g is a bundle map, it factors through the pull-back bundle f∗(SU(3)).
Thus we have that g = f̃ ◦ h, where h : SU(3) → f∗(SU(3)) is the map given by
h(A) := (p(A), g(A)). To complete the proof, we just need to check that deg(h) =
2. From the multiplicativity of the degree, it suffices to check that deg(f̃) = 2 and
deg(g) = 4. But Lemma 4.1 implies that deg(f̃) = deg(f̃SU(2)) ·deg(f̃S5) = 2 ·1 = 2
(see also Lemma 4.2) and deg(g) = deg(gSU(2)) ·deg(gS5) = deg(g|SU(2)) ·deg(f) =
2 ·2 = 4 (since g covers f and on fiber above the point (0, 0, 1) ∈ S5 is the squaring
map on SU(2)). This finishes the proof. �

Lemma 4.4 together with Lemma 4.3 complete the proof for item (c) of Theo-
rem 1.1. Finally, we prove item (d).

Lemma 4.5. D(SU(3)) = 4Z ∪ {2k + 1 : k ∈ Z}.

Proof. Items (b) and (c) give 4Z ⊆ D(SU(3)). Now let α and β be generators
of H3(SU(3);Z) and H5(SU(3);Z) respectively such that α ∪ β = ωSU(3). For
any self-map g : SU(3) → SU(3), we have deg(g) · ωSU(3) = g∗(α) ∪ g∗(β). If
g∗(α) = n·α, then since the Steenrod square Sq2 : H3(SU(3);Z2) → H5(SU(3);Z2)
is an isomorphism, we deduce that

g∗(β) = g∗Sq2(α) = Sq2g∗(α) = n · Sq2(α) = n · β. (1)

This means that g∗(α) is an even multiple of α if and only if g∗(β) is an even
multiple of β. We deduce that 2m /∈ D(SU(3)) for m odd.

Finally, it remains to show that every odd integer is realized as a mapping
degree of a self-map of SU(3). Let fm : S5 → S5 be a map of any odd degree m.
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As before, we pull-back the bundle SU(3)
p→ S5 along fm to obtain an SU(2)-

bundle f∗m(SU(3)) over S5 together with a map f̃m : f∗m(SU(3)) → SU(3) of the
same degreem. We know by item (b) of Theorem 1.1 that D(S3×S5, SU(3)) = 2Z,
which means that f∗m(SU(3)) cannot be the trivial bundle. Thus f̃m is a self-map
of SU(3). �

This completes the proof of Theorem 1.1.

5. Concluding remarks

We finish our discussion with a few remarks on our main result and its proof.

Remark 5.1. Item (d) of Theorem 1.1 fixes a mistake in [7], where it was claimed
that D(SU(3)) = {4m · (2k + 1) : m, k ∈ Z}. The proof of Lemma 5.4 in [7] is not
correct. More precisely, the proof of that lemma shows only that, whenever the
degree of a self-map of SU(3) is even, then it must be divisible by 4 (and not a
power of 4 as claimed in [7]). In fact, the argument given in [7] is identical to the
one we have seen in equation (1) in the proof of Lemma 4.5.

Remark 5.2. One of the main results in [7] is the construction, for each odd m, of
maps ψm : SU(3) → SU(3) of degree m. These maps come as a consequence of the
study of cohomogeneity one manifolds. In Lemma 4.5, we constructed self-maps
f̃m : SU(3) → SU(3) of any odd degree m in a rather simple way, by pulling back

the bundle SU(3)
p→ S5 along self-maps fm : S5 → S5 of degree m. For m ̸= 1, the

maps f̃m are not homotopic to ψm. To see this, let α and β be the generators of
H3(SU(3);Z) and H5(SU(3);Z) respectively such that α∪ β = ωSU(3). The Gysin
sequence for SU(3) gives

0 = H1(S5) → H5(S5)
p∗

→ H5(SU(3)) → H2(S5) = 0,

that is β = p∗(ωS5), and so we obtain

f̃∗m(β) = f̃∗mp
∗(ωS5) = p∗f∗m(ωS5) = deg(fm) · p∗(ωS5) = m · β.

However, ψ∗
m(β) = β by Lemma 5.5 of [7].

Remark 5.3. As explained in the introduction, Theorem 1.1 and its proof show
that, in all cases, the Steenrod squares provide the only obstruction to the existence
of a map of non-zero degree between principal SU(2)-bundles over S5. Once
this obstruction does not apply for an integer d, then d is realized as a mapping
degree. More generally, it would be interesting to find other classes of manifolds
where the only obstructions to mapping degrees arise from the structure of the
mod p cohomology rings as modules over the corresponding Steenrod algebras.
Some partial results on this question can be found in the recent thesis of Chris
Kennedy [4].
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