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ABSTRACT. We compute the sets of degrees of maps between SU(2)-bundles over S5, i.e. between
S3×S5 and SU(3). We show that the only obstruction to the existence of a mapping degree between
those manifolds is derived by the Steenrod squares. We construct explicit maps realizing each integer
that occurs as a mapping degree between these bundles.

1. INTRODUCTION

A fundamental question in topology is whether, given two closed oriented n-dimensional mani-
folds M and N , there is a map f : M −→ N of degree deg(f) 6= 0. Recall that a continuous map
f : M −→ N has degree d if f∗([M ]) = d · [N ], where f∗ : Hn(M) −→ Hn(N) is the induced
homomorphism in homology and [M ] ∈ Hn(M) is the fundamental class of M . The dual formu-
lation in cohomology says that deg(f) = d if f ∗(ωN) = d · ωM , where f ∗ : Hn(N) −→ Hn(M)

is the induced homomorphism in cohomology and ωM ∈ Hn(M) is the cohomological (dual)
fundamental class of M .

The set of degrees of maps from M to N is defined as

D(M,N) = {d ∈ Z | ∃ f : M −→ N, deg(f) = d}.

For M = N , we write D(M) to denote the set of degrees of self-maps of M .
In general, it is a difficult question to determine whether a given integer can be realized as a

mapping degree between two manifolds. The answer is well-known in dimensions one and two.
A fairly complete answer is known for self-mapping degrees in dimension three [8], for certain
classes of product manifolds [5], and for maps between certain highly connected manifolds [2].
Obstructions to the existence of a map of non-zero degree or of a particular mapping degree have
been developed using a variety of tools of algebraic topology. One of the most classical methods
is to compare the cohomology rings of M and N . However, when

H∗(M) ∼= H∗(N),

then major obstructions such as the ranks of (co)homology groups, the injectivity of induced ho-
momorphisms in cohomology or the (sub)ring structures themselves no longer suffice to answer
this question.
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Our goal is to investigate manifolds M and N with isomorphic cohomology rings and find
possible other obstructions to the existence of a mapping degree in D(M,N) or D(N,M). In this
paper, we consider the two SU(2)-bundles over S5, namely S3 × S5 and SU(3), and prove the
following:

Theorem 1.1. The sets of degrees of maps between SU(2)-bundles over S5 are given as follows:

(a) D(S3 × S5) = Z;
(b) D(S3 × S5, SU(3)) = 2Z;
(c) D(SU(3), S3 × S5) = 2Z;
(d) D(SU(3)) = 4Z ∪ {2k + 1 : k ∈ Z}.

The bundles S3 × S5 and SU(3) indeed have isomorphic cohomology rings. However, their
Steenrod squares behave differently on degree three cohomology, since Sq2 is trivial for the prod-
uct S3 × S5, but an isomorphism for the non-trivial bundle SU(3), mapping the generator α ∈
H3(SU(3);Z2) to the generator β ∈ H5(SU(3);Z2); cf. Section 3. As we will see in the course
of the proof of Theorem 1.1, the non-triviality of the Steenrod square on SU(3) implies that odd
numbers cannot be realized as degrees of maps between SU(3) and S3×S5 (in those cases, Sq2(α)

appears once in the computation) and numbers of type 2 · (odd) cannot be realized as degrees of
self-maps of SU(3) (in that case, Sq2(α) appears twice in the computation). The complete compu-
tation of Theorem 1.1 shows that this is the only obstruction to the existence of a mapping degree
for maps between SU(2)-bundles over S5. Moreover, our computation of D(SU(3)) corrects a
mistake in a previous computation [6].

Outline. In Section 2 we discuss some known obstructions to the existence of maps of non-zero
degree for manifolds with non-isomorphic cohomology rings. In Section 3 we briefly overview the
SU(2)-bundles over S5 and in Section 4 we prove Theorem 1.1.
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gratefully acknowledges the hospitality of Peking University where part of this research was car-
ried out. J.-F. Lafont was partially supported by the NSF, under grant DMS-1510640.

2. MANIFOLDS WITH NON-ISOMORPHIC COHOMOLOGY RINGS

In this section we describe a few well-known examples of manifolds with non-isomorphic coho-
mology rings and explain in each case the obstruction to the existence of map of non-zero degree.
We refer to [3] for a survey on this type of examples.

2.1. Different Betti numbers. If f : M −→ N is a map of non-zero degree, then by Poincaré
duality we obtain that the induced homomorphisms f∗ : H∗(M ;Q) −→ H∗(N ;Q) are surjective.
In particular, the Betti numbers of M are greater than or equal to the Betti numbers of N . Thus,
for example, there is no map of non-zero degree from S2n to CPn for all n > 1.
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2.2. Same Betti numbers but different cohomology generator degrees. Equivalent to the sur-
jectivity in homology, the induced homomorphisms f ∗ : H∗(N ;Q) −→ H∗(M ;Q) are injective
whenever f : M −→ N has non-zero degree. Thus there is no map of non-zero degree between
S2× S4 and CP3, although these manifolds have isomorphic (co)homology groups and thus equal
Betti numbers. Indeed the cohomology rings of S2 × S4 and CP3 are given by H∗(S2 × S4) =

Λ[α, β] and H∗(CP3) = Λ[γ], where α and β have degree two and γ has degree four, which means
that neither of those rings injects into the other.

2.3. Same cohomology generator degrees but different (sub)rings. The cohomology rings of
the manifolds CP2#CP2 and CP2#CP2 are generated by two elements, both of degree two.
More precisely, H∗(CP2#CP2) = Λ[α, β], where α and β have degree two with α2 = β2, and
H∗(CP2#CP2) = Λ[α, β], where α and β have degree two with α2 = −β2. In particular, neither
of the those rings is isomorphic to a subring of the other, which implies that there are no maps of
non-zero degree between CP2#CP2 and CP2#CP2.

Note that the information encoded in the above cohomology rings reflect the intersection forms
of CP2#CP2 and CP2#CP2; cf. [2].

Remark 2.1. The examples above all focus on differences in the cohomology, either at the level of
groups, or at the level of the ring structure. Our arguments continue this trend, by focusing on the
differences in the structure of the Z2-cohomology, viewed as a module over the Steenrod algebra.

3. SU(2)-BUNDLES OVER S5

We now turn to the examples studied in this paper, of manifolds with isomorphic cohomology
rings. Recall that SU(2)-bundles over S5 are classified by π4(SU(2)) ∼= Z2, and so there exist
two such bundles: the trivial bundle S3 × S5, and the twisted bundle SU(3). For the latter bundle,
recall that

S3 ∼= SU(2) =

{(
a b

−b a

)
: a, b ∈ C, |a|2 + |b|2 = 1

}
can be embedded in SU(3) via

SU(2) ↪→ SU(3) :

(
a b

−b a

)
7→

 a b 0

−b a 0

0 0 1

 .

The Lie group SU(3) acts on the unit sphere S5 ⊂ C3, and the stabilizer of the vector (0, 0, 1) ∈ S5

is precisely the embedded SU(2) described above. Thus the quotient SU(3)/SU(2) is homeomor-
phic to S5 and a homeomorphism is given by the orbit map

SU(3)/SU(2) −→ S5 : [A] 7→ A ·

 0

0

1

 , A ∈ SU(3).
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Concretely, this means that the projection map of the bundle SU(3)
p−→ S5 is the projection to the

third column of A.
Both S3×S5 and SU(3) have cohomology rings isomorphic to Λ[α, β], with generators α and β

in cohomology of degree three and five respectively. However, SU(3) is not homotopy equivalent
to S3 × S5, because the Steenrod square is (obviously) trivial on H3(S3 × S5;Z2), whereas the
Steenrod square on SU(3) is an isomorphism from H3(SU(3);Z2) to H5(SU(3);Z2); cf. [1]. Of
course, S3 × S5 and SU(3) can be distinguished by their homotopy groups as well [4].

4. PROOF OF THEOREM 1.1

In this section we prove Theorem 1.1.

Before beginning our proof, we discuss briefly the degree of a bundle map. Given two fiber
bundles F ↪→ Ei

πi−→ Bi with orientation preserving holonomy, where F and Bi are connected
manifolds, let φ : E1 −→ E2 be a bundle map, i.e. there is a map φB : B1 −→ B2 on base spaces
such that φB ◦π1 = π2 ◦φ. From the fact that all the spaces are connected, there is also an induced
map φF from the fiber of E1 to the fiber of E2, which is well-defined up to homotopy. In particular,
one can calculate the integers deg(φB), deg(φF ). In this setting, we have the following presumably
well-known result:

Lemma 4.1. deg(φ) = deg(φF ) · deg(φB).

Proof. We will calculate deg(φ) by taking a specific homotopy of φ, and count oriented pre-images
of a point x ∈ E2 (we use the definition of degree from differential topology). The point x projects
to a point q ∈ B2 in the base. One can then use the local product structure to view x = (p, q)

where p ∈ Fq, the fiber above q. Homotope φ, through bundle maps, so that the base map φB is
transverse to q. Then further homotope φ via fiber-preserving maps so that, for each point qi ∈ B1

satisfying φB(qi) = q, the restriction of the resulting map to the fiber Fqi ⊂ E2 is transverse to the
point p ∈ Fq. By abuse of notation, we still call the resulting map φ.

Now the pre-image of x will consist of a finite collection of points, each of the form (pj, qi) (in
suitable local product structure) where the various pj ∈ Fqi for j ∈ Ii (each indexing set Ii depends
on the corresponding i). One can take the orientation on the total spaces to be locally given by the
wedge of the fiber orientation with the base orientation – this is well-defined since the holonomy is
orientation preserving. Picking a horizontal lift of TqiB1 at each point (pj, qi), we can decompose
T(pj ,qi)E1 = TpjFqi ⊕ TqiB1. Similarly, we decompose T(p,q)E2 = TpFq ⊕ TqB2.

To compute the degree, we need to look at the sign of the determinant of dφ(pj ,qi) at each of
these pre-image points. Denote by φi the restriction of φ to the fiber φi : Fqi → Fq (and note
that φi ' φF ). From our choice of bases, we see that the matrix for dφ(pj ,qi) takes the block form(
d(φi)pj ∗

0 d(φB)qi

)
, and hence det(dφ(pj ,qi)) = det(d(φi)pj) ·det(d(φB)qi). For a matrixA, we

will denote by o(A) the sign of det(A). Then it follows that o(dφ(pj ,qi)) = o(d(φi)pj) · o(d(φB)qi).
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We now have from the definition of degree that

deg(φ) =
∑
(pj ,qi)

o(dφ(pj ,qi)) =
∑
(pj ,qi)

[
o(d(φi)pj) · o(d(φB)qi)

]
=
∑
i

[(∑
j∈Ii

o(d(φi)pj)
)
· o(d(φB)qi)

]
=
∑
i

[
deg(φi) · o(d(φB)qi)

]
= deg(φF )

∑
i

o(d(φB)qi) = deg(φF ) · deg(φB),

where we use the fact that all the maps φi are homotopic to the fiber map φF , hence have the same
degree. This concludes the proof. �

Now, we are ready to prove Theorem 1.1. Item (a) is trivial because D(Sn) = Z, and so we
deal with the rest of the computations. As mentioned in the introduction, for a closed oriented
n-manifold M , we denote by ωM ∈ Hn(M ;Z) the generator determined by the orientation of M .

Lemma 4.2. D(S3 × S5, SU(3)) = 2Z.

Proof. Let f : S5 −→ S5 be a self-map of even degree. We pull-back the bundle SU(3)
p−→ S5

along f to obtain an SU(2)-bundle f ∗(SU(3)) over S5 together with a map f̃ : f ∗(SU(3)) −→
SU(3), which has degree deg(f) by Lemma 4.1. Since SU(2)-bundles over S5 are classified
by π4(SU(2)) = Z2, and deg(f) is even, we deduce that f ∗(SU(3)) = S3 × S5. Thus 2Z ⊆
D(S3 × S5, SU(3)).

Conversely, suppose f : S3 × S5 −→ SU(3) is an arbitrary map of degree deg(f). Let α and
β be generators of H3(SU(3);Z) and H5(SU(3);Z) respectively such that α ∪ β = ωSU(3). Then
from the definition of degree, we have that f ∗(α)∪f ∗(β) = deg(f) ·ωS3×S5 . Each of the elements
f ∗(α), f ∗(β) are multiples of the generators ωS3 × 1 and 1 × ωS5 respectively. We will show that
f ∗(β) must be an even multiple of 1× ωS5 , which immediately implies that deg(f) is even.

We will use bars to denote the image of a cohomology class under the change of coefficient
morphism H∗(X;Z)→ H∗(X;Z2). Thus, we have that α, β are the generators of H3(SU(3);Z2)

and H5(SU(3);Z2) respectively. Moreover, for any element x ∈ H∗(SU(3);Z), we have f ∗(x) =

f ∗(x). Since Sq2 : H3(SU(3);Z2) −→ H5(SU(3);Z2) is an isomorphism, we have that Sq2(α) =

β. Using that Sq2 : H3(S3 × S5;Z2) −→ H5(S3 × S5;Z2) is the zero morphism, we have the
sequence of equalities

f ∗(β) = f ∗(β) = f ∗Sq2(α) = Sq2
(
f ∗(α)

)
= 0.

Thus f ∗(β) is an even multiple of the generator 1× ωS5 , completing the proof. �

Next, we prove one of the inclusions of item (c):

Lemma 4.3. D(SU(3), S3 × S5) ⊆ 2Z.

Proof. Suppose f : SU(3) −→ S3 × S5 is a map of degree deg(f). As before, let α and β be
generators of H3(SU(3);Z) and H5(SU(3);Z) respectively. We have f ∗(ωS3 × 1) = κ · α and
f ∗(1× ωS5) = λ · β, for some κ, λ ∈ Z. In particular, deg(f) = κλ. Again, because the Steenrod
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square is an isomorphism from H3(SU(3);Z2) to H5(SU(3);Z2) and trivial on H3(S3 × S5;Z2)

we obtain
κ · β = κ · Sq2(α) = Sq2f ∗(ωS3 × 1) = f ∗Sq2(ωS3 × 1) = 0.

This means that κ must be even, and so deg(f) is even. �

In order to prove the reverse inclusion of item (c), we need to construct some maps with con-
trolled degree. This is established in

Lemma 4.4. 2Z ⊆ D(SU(3), S3 × S5).

Proof. Since D(S3 × S5) = Z, it suffices to construct a single map h : SU(3) −→ S3 × S5

satisfying deg(h) = 2. We start by defining a self-map g : SU(3) −→ SU(3), and will see that g
factors through the desired map h.

So let A =

 a b u

c d v

p q w

 ∈ SU(3) and define the map g : SU(3) −→ SU(3) by the formula

g(A) =

 −u2(ab+ ab) + (uv − w)(−a2 + |b|2) u2(a2 − |b|2)− (uv − w)(ab+ ab) uw + v

−(uv + w)(ab+ ab) + v2(−a2 + |b|2) (uv + w)(a2 − |b|2)− v2(ab+ ab) vw − u

−(uw − v)(ab+ ab) + (u+ vw)(−a2 + |b|2) (uw − v)(a2 − |b|2)− (u+ vw)(ab+ ab) w2

 .

If A =

 a b 0

−b a 0

0 0 1

 ∈ SU(2) ⊆ SU(3), then it is easy to check that

g(A) =

 a2 − |b|2 ab+ ab 0

−ab− ab a2 − |b|2 0

0 0 1

 = A2.

This tells us that g(SU(2)) ⊆ SU(2), and the restriction of g to SU(2) is the squaring map of
degree deg(g|SU(2)) = 2.

Next let us verify that g is in fact a bundle map. For any A,B ∈ SU(3), we have that p(A) =

p(B) if and only if B = AU for some U ∈ SU(2) ⊆ SU(3). In that case, A and B = AU have the

same third columns, say

 u

v

w

 ∈ S5. This means that g(A) and g(AU) have also the same third

columns, namely

 uw + v

vw − u
w2

 ∈ S5. Thus there is a well-defined induced self-map f : S5 → S5

given by  u

v

w

 7→
 uw + v

vw − u
w2

 ,
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which has degree 2 (see also Theorem 2.1 of [7]) and such that p ◦ g = f ◦ p.
We pull-back the bundle SU(3)

p−→ S5 along f to obtain an SU(2)-bundle over S5

f ∗(SU(3)) = {(S, T ) ∈ S5 × SU(3) : f(S) = p(T )}.

Since deg(f) = 2, this pull-back bundle f ∗(SU(3)) is in fact the trivial bundle – we denote by f̃
the bundle map f̃ : f ∗(SU(3)) −→ SU(3) (projection onto the second factor). Since g is a bundle
map, it factors through the pull-back bundle f ∗(SU(3)). Thus we have that g = f̃ ◦ h, where
h : SU(3) −→ f ∗(SU(3)) is the map given by h(A) := (p(A), g(A)). To complete the proof, we
just need to check that deg(h) = 2. From the multiplicativity of the degree, it suffices to check that
deg(f̃) = 2 and deg(g) = 4. But Lemma 4.1 implies that deg(f̃) = deg(f̃SU(2))·deg(f̃S5) = 1·2 =

2 (see also Lemma 4.2) and deg(g) = deg(gSU(2)) · deg(gS5) = deg(g|SU(2)) · deg(f) = 2 · 2 = 4

(since g covers f and on fiber above the point (0, 0, 1) ∈ S5 is the squaring map on SU(2)). This
finishes the proof. �

Lemma 4.4 together with Lemma 4.3 complete the proof for item (c) of Theorem 1.1. Finally,
we prove item (d).

Lemma 4.5. D(SU(3)) = 4Z ∪ {2k + 1 : k ∈ Z}.

Proof. Items (b) and (c) give 4Z ⊆ D(SU(3)). Now let α and β be generators of H3(SU(3);Z)

and H5(SU(3);Z) respectively such that α∪β = ωSU(3). For any self-map g : SU(3) −→ SU(3),
we have deg(g) · ωSU(3) = g∗(α) ∪ g∗(β). If g∗(α) = n · α, then since the Steenrod square
Sq2 : H3(SU(3);Z2) −→ H5(SU(3);Z2) is an isomorphism, we deduce that

(1) g∗(β) = g∗Sq2(α) = Sq2g∗(α) = n · Sq2(α) = n · β.

This means that g∗(α) is an even multiple of α if and only if g∗(β) is an even multiple of β. We
deduce that 2m /∈ D(SU(3)) for m odd.

Finally, it remains to show that every odd integer is realized as a mapping degree of a self-map
of SU(3). Let fm : S5 −→ S5 be a map of any odd degree m. As before, we pull-back the bundle
SU(3)

p−→ S5 along fm to obtain an SU(2)-bundle f ∗m(SU(3)) over S5 together with a map
f̃m : f ∗m(SU(3)) −→ SU(3) of the same degree m. We know by item (b) of Theorem 1.1 that
D(S3 × S5, SU(3)) = 2Z, which means that f ∗m(SU(3)) cannot be the trivial bundle. Thus f̃m is
a self-map of SU(3). �

This completes the proof of Theorem 1.1.

5. CONCLUDING REMARKS

We finish our discussion with a few remarks on our main result and its proof.

Remark 5.1. Item (d) of Theorem 1.1 fixes a mistake in [6], where it was claimed thatD(SU(3)) =

{4m · (2k + 1) : m, k ∈ Z}. The proof of Lemma 5.4 in [6] is not correct. More precisely, the
proof of that lemma shows only that, whenever the degree of a self-map of SU(3) is even, then it
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must be divisible by 4 (and not a power of 4 as claimed in [6]). In fact, the argument given in [6]
is identical to the one we have seen in equation (1) in the proof of Lemma 4.5.

Remark 5.2. One of the main results in [6] is the construction of self-maps ψm : SU(3) −→ SU(3)

of any odd degree m. These maps come as a consequence of the study of cohomogeneity one
manifolds. In Lemma 4.5, we constructed self-maps f̃m : SU(3) −→ SU(3) of any odd degree m
in a rather simple way, by pulling back the bundle SU(3)

p−→ S5 along self-maps fm : S5 −→ S5

of degree m. For m 6= 1, the maps f̃m are not homotopic to ψm. To see this, let α and β be the
generators of H3(SU(3);Z) and H5(SU(3);Z) respectively such that α ∪ β = ωSU(3). The Gysin
sequence for SU(3) gives

0 = H1(S5) −→ H5(S5)
p∗−→ H5(SU(3)) −→ H2(S5) = 0,

that is β = p∗(ωS5), and so we obtain

(2) f̃ ∗m(β) = f̃ ∗mp
∗(ωS5) = p∗f ∗m(ωS5) = deg(fm) · p∗(ωS5) = m · β.

However, ψ∗m(β) = β by Lemma 5.5 of [6].

Remark 5.3. As explained in the introduction, Theorem 1.1 and its proof show that, in all cases,
the Steenrod squares provide the only obstruction to the existence of a map of non-zero degree
between SU(2)-bundles over S5. Once this obstruction does not apply for an integer d, then d
is realized as a mapping degree. More generally, it would be interesting to find other classes of
manifolds where the only obstruction to mapping degrees arise from the structure of the mod p
cohomology rings as modules over the corresponding Steenrod algebras.
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