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For n ≥ 7, we show that if G is a torsion-free hyperbolic group whose visual boundary
∂∞G � S n−2 is an (n − 2)-dimensional Sierpinski space, then G = π1(W ) for some
aspherical n-manifold W with non-empty boundary. Concerning the converse, we con-
struct, for each n ≥ 4, examples of aspherical manifolds with boundary, whose funda-
mental group G is hyperbolic, but with visual boundary ∂∞G not homeomorphic to
S n−2. Our examples even support (metric) negative curvature, and have totally geodesic
boundary.
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1. Introduction

One of the basic invariants for a hyperbolic group is its boundary at infinity, and
a fundamental question is to determine what properties of the group are captured
by the topology of the boundary at infinity. For example, the famous Cannon
conjecture postulates that a hyperbolic group whose boundary at infinity is the
2-sphere S2 must admit a properly discontinuous, isometric, cocompact action on
hyperbolic 3-space H3.

In [20], Kapovich and Kleiner study groups whose boundary at infinity is a
Sierpinski carpet — a boundary version of the Cannon conjecture. In [4], Bartels,
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Lück, and Weinberger study groups whose boundary at infinity is a sphere Sn

of dimension n≥ 5 — a high-dimensional version of the Cannon conjecture. In
this paper, we consider groups whose boundary at infinity are high-dimensional
Sierpinski spaces, thus lying somewhere between the work of Kapovich–Kleiner
and that of Bartels–Lück–Weinberger.

The two main theorems are as follows. Let S n−2 denote an (n−2)-dimensional
Sierpinski space. See Sec. 2 for the definition.

Theorem 1. Fix n ≥ 7 and let G be a torsion-free hyperbolic group. If the visual
boundary ∂∞G is homeomorphic to S n−2, then there exists an n-dimensional
compact aspherical topological manifold W with non-empty boundary such that
π1(W ) ∼= G. Furthermore, W is unique up to homeomorphism.

Note that the fundamental group π of a closed aspherical manifold M is an
example of a Poincaré duality group. Whether or not all finitely presented Poincaré
duality groups arise in this fashion is an open problem that goes back to Wall
[28]. So the existence portion of Theorem 1 addresses a relative version of Wall
realization problem for a special class of groups. On the other hand, the uniqueness
portion of Theorem 1 verifies the Borel conjecture for this same class of groups.

Our second result shows that the converse of Theorem 1 is false even if one
imposes additional strong constraints on the geometry of the aspherical manifold.

Theorem 2. For each n ≥ 4, there exists a compact aspherical manifold Mn with
non-empty connected boundary ∂Mn = Nn−1 such that:

(1) G=π1(M) is hyperbolic, and H =π1(N) is a proper quasi-convex subgroup
in G.

(2) ∂∞(π1(N)) is homeomorphic to Sn−2, but
(3) ∂∞G ∼= ∂∞M̃ is not homeomorphic to S n−2.

Moreover, when n ≥ 5, the manifold Mn supports a locally CAT(−1) metric with
totally geodesic boundary.

Remark 3. If one just wants a simple counterexample to the converse of Theo-
rem 1, one can proceed as follows: start with a k-dimensional closed hyperbolic
manifold K with fundamental group G, where k < n. Now embed the hyperbolic
k-plane Hk isometrically inside Hn. Then the G-action on the embedded Hk extends
to an action on the r-neighborhood X of Hk. Let M = X/G, and note that M is
aspherical, diffeomorphic to K × Dn−k, with fundamental group G. Clearly ∂∞G

is homeomorphic to the (k − 1)-sphere Sk−1, and not to Sierpinski (n − 2)-space
S n−2. Of course, in this example, N = K × Sn−k−1, so the example fails to have
property (1) from Theorem 2. Note that (1) is the group-theoretic analogue of a
negatively curved manifold with totally geodesic boundary.

Another simple example is to take three copies of the torus with one boundary
component and define X as the result of gluing the three boundaries together by
homeomorphisms. A thickening M of X in R3 satisfies the conditions of Theorem 2,
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except that ∂M is not connected. In this case ∂∞
(
π1(M)

)
has local cut points, so

it cannot be S 1. It seems likely, and would be interesting to show, that ∂∞G has
no local cut points for the G constructed in Theorem 2.

Remark 4. In Theorem 2 one can construct, in dimensions n ≥ 5, manifolds
satisfying property (1), but failing to have (2). Start with a Davis–Januszkiewicz
example of a locally CAT(−1) closed (n−1)-manifold N with ∂∞Ñ not homeomor-
phic to Sn−2, chosen so that N = ∂Wn+1 for some compact manifold Wn+1. Then
take M to be the relative hyperbolization of W , relative to N (see [16]). Properties
of relative hyperbolization readily yield statement (1), while the choice of N ensures
that (2) fails. It seems likely that such manifolds M would also have property (3).
Indeed, one could visualize the boundary at infinity of M̃ to be similar to a Sier-
pinski curve, but instead of having peripheral spheres (see Sec. 2), it would have
peripheral subspaces which are Čech homology spheres instead of genuine spheres
(since (2) fails). Such a space is probably not homeomorphic to S n−2. We point
out, however, that this approach could not possibly work in dimension n = 4, as in
this case the boundary would be a closed 3-manifold, which forces (2) to hold.

Structure of paper. In Sec. 2, we recall the definition of an n-dimensional Sierpinski
space. In Secs. 3 and 4, we prove Theorems 1 and 2, respectively. In Sec. 5, we
remark on a generalization of Theorem 1 to CAT(0) groups.

2. n-Dimensional Sierpinski Space and Hyperbolic Groups

We use Cannon’s definition of n-dimensional Sierpinski space [12] (Cannon uses the
term Sierpinski curve instead of Sierpinski space).

Definition. Fix n ≥ 0. Let D1, D2, . . . ⊂ Sn+1 be a sequence of open topological
balls such that

(i) Di ∩Dj = ∅ for i �= j,
(ii) diam(Di)→ 0 with respect to the round metric on Sn+1, and
(iii)

⋃
Di ⊂ Sn+1 is dense.

Then S n := Sn+1\⋃
Di is an n-dimensional Sierpinski space. The spheres Sn ∼=

∂(Di) ⊂ S are called peripheral spheres.

Example. A 0-dimensional Sierpinski space S 0 is a Cantor set, while the space
S 1 is the classical Sierpinski carpet. The Sierpinski space S n−2 arises as the visual
boundary of hyperbolic groups (in the sense of Gromov [18]). For example, if Wn

is a hyperbolic n-manifold with non-empty totally geodesic boundary, then π1(W )
is a hyperbolic group whose visual boundary is a Sierpinski (n − 2)-space. To see
this, observe that the universal cover W̃ can be embedded as a submanifold of
hyperbolic space W̃ ↪→ Hn. Using the disk model, the visual boundary ∂∞W̃ is
a subspace of ∂∞Hn ∼= Sn−1. The boundary components of W lift to countably
many disjoint geodesic hyperplanes Hn−1 ⊂ Hn. Each hyperplane has as boundary
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Fig. 1. A torus with one boundary component, and its universal cover inside the hyperbolic plane.

a sphere ∂∞Hn−1 ∼= Sn−2, which bounds an open ball Dn−1 ⊂ Sn−1. The visual
boundary of W̃ is obtained by removing this countable collection of open balls,
yielding a Sierpinski space S n−2.

The simplest example of this is when W is a torus with one boundary compo-
nent (see Fig. 1). More examples are furnished by the following general theorem of
Lafont [21].

Theorem 5. (Lafont) Let Mn be a compact, negatively curved Riemannian mani-
fold with non-empty totally geodesic boundary. Then ∂∞M̃ is homeomorphic to
S n−2.

We remark that the dimension restriction in the statement of [21, Theorem 1.1]
is unnecessary thanks to work of Freedman and Quinn (cf. the MathSciNet review
of [26]). As a consequence of this result, the “locally CAT(−1) metric” statement
in Theorem 2 cannot be replaced by “negatively curved Riemannian metric”.

3. Proof of Theorem 1

Proof. We first prove the existence part of the statement, proceeding in three
steps.

Step 1. (Peripheral subgroups and Poincaré duality pairs) Recall that G is a
torsion-free hyperbolic group such that ∂∞G ∼= S n−2. The stabilizer H ≤ G of
a peripheral sphere Sn−2 ⊂ S n−2 is called a peripheral subgroup. By the proof of
Kapovich–Kleiner [20, Theorem 8(1)], there are finitely many peripheral subgroups,
up to conjugacy in G. Choose representatives H1, . . . , Hp for the conjugacy classes.

In order to show that G is the fundamental group of a manifold with boundary,
we first need to establish that G has the same Poincaré duality as a manifold with
boundary. To be precise, the doubling argument of Kapovich–Kleiner [20, Corol-
lary 12] shows that (G, {Hi}) is a group PD(n) pair in the sense of Bieri–Eckmann
[7]. This has the following topological consequence (see [19, Theorem 1] and [6,
Sec. 6]): let (X, Y ) be the CW-complex pair obtained by taking Y =

∐p
i=1 BHi

and defining X to be the mapping cylinder of the map
∐

BHi → BG. Then (X, Y )
is a CW-complex PD(n) pair in the sense of Wall [30]. In particular, this means that
there are isomorphisms Hi(X ; Z) ∼= Hn−i(X, Y ; Z) and Hi−1(Y ; Z) ∼= Hn−i(Y ; Z)
induced by cap product with [X ] ∈ Hn(X) and ∂[X ] ∈ Hn−1(Y ), respectively, and
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that X is a finitely dominated CW complex (i.e. there exists a finite CW complex
L and maps X

i−→ L
r−→ X such that r ◦ i = idX).

Step 2. (Preparing for surgery) Let (X, Y ) be the pair from Step 1. We now explain
why (X, Y ) is homotopy equivalent to a pair (K, N) such that

(A) K is a finite CW complex, and
(B) N is a manifold.

This will allow us to employ the total surgery obstruction in Step 3.
(A) Wall’s finiteness obstruction õ(X) ∈ K̃0(X) vanishes if and only if X is

homotopy equivalent to a finite CW complex [29]. Thus to show (A), it suffices to
show K̃0(X) = 0. This is a corollary of the following powerful result (see [4, Proof
of Theorem 1.2] for more information).

Theorem 6. (Bartels–Lück [2], Bartels–Lück–Reich [3]) Let G be a torsion-free
hyperbolic group G. Then

(†) the (non-connective) K-theory assembly map Hi(BG; KZ)→Ki(ZG) is an iso-
morphism for i ≤ 0 and surjective for i = 1;

(‡) the (non-connective) L-theory assembly map Hi(BG;w L
〈−∞〉
Z

)→L
〈−∞〉
i (ZG, w)

is bijective for every i ∈ Z and every orientation homomorphism w : G→ {±1}.

The conditions (†) and (‡) are called the Farrell–Jones conjectures in K- and
L-theory, respectively. Note that, since G is a torsion-free hyperbolic group, a
constructive alternative is to take X a large enough Rips complex (which is auto-
matically a finite simplicial complex). We included the non-constructive proof
above, as this “obstruction” point of view will reappear in later arguments.

(B) It remains to see that Y is homotopy equivalent to a closed manifold Nn−1.
By definition Y is homotopy equivalent to

∐p
i=1 BHi. The peripheral subgroups Hi

are all hyperbolic groups, and ∂∞Hi is identified with the sphere Sn−2 ⊂ S n−2

stabilized by Hi (see [20, Theorem 8]). The following result from [4, Theorem A]
implies that Y �∐p

i=1 BHi is homotopy equivalent to a manifold.

Theorem 7. (Bartels–Lück–Weinberger [4]) Fix n ≥ 7, and let H be a torsion-free
hyperbolic group. If ∂∞H ∼= Sn−2, then there is a closed aspherical manifold Nn−1

such that π1(N) ∼= H.

Step 3. (The total surgery obstruction) Let (K, N) be the pair from Step 2. The
structure set STOP

∂ (K) is defined as the set of equivalence classes of homotopy
equivalences f : (M, ∂M) → (K, N) where (M, ∂M) is a manifold with boundary
and f

∣∣
∂M

: ∂M → N is a homeomorphism (the equivalence relation is h-cobordism
rel ∂; see [25, Chap. 18]). Surgery theory provides computable obstructions to deter-
mine whether or not (K, N) is homotopy equivalent to a manifold with boundary,
i.e. whether or not STOP

∂ (K) �= ∅.



February 16, 2019 14:40 WSPC/243-JTA 1950010

238 J.-F. Lafont & B. Tshishiku

We will follow the algebraic approach detailed in Ranicki [25]. The total surgery
obstruction s∂(K) lives in the structure group Sn(K) and has the property that
s∂(K) = 0 if and only if (K, N) is homotopy equivalent (rel boundary) to an
n-manifold with boundary; see [24, Theorem 1]. The group Sn(K) fits into the
algebraic surgery exact sequence [25, Definition 15.19]

· · · → Hn(K; L•)
A−→ Ln(π1(K))→ Sn(K)→ Hn−1(K; L•)→ · · · ,

where A is the assembly map and L• is the 1-connective surgery spectrum whose
0th space is G/TOP and whose homotopy groups are πi(L•) = Li(Z) for i ≥ 1.

To show that STOP
∂ (K) �= ∅, we will show that Sn(K) = 0. For this, we need to

consider two other versions of the structure groups.

• The quadratic structure groups Si(Z, K) are defined in [25, Definition 14.6].
• The group Sn(K) (see [25, Chap. 25]) belongs to the 4-periodic algebraic surgery

exact sequence

· · · → Hn(K; L•)
A−→ Ln(π1(K))→ Sn(K)→ Hn−1(K; L•)→ · · · ,

where L• is the 0-connective surgery spectrum whose 0th space is L0(Z) ×
G/TOP ∼= Z×G/TOP and whose homotopy groups are πi(L•) = Li(Z) for i ≥ 0.

In order to show that Sn(K) = 0, we use the following three facts.

(a) The groups Sn(K) and Sn(Z, K) are equal. This follows directly from Ranicki
[25, Proposition 15.11(iii)–(iv)]. Here we have used that dimK ≥ 6. Note that
Lq(Z) = 0 for q = −1, and in Ranicki’s notation Sn〈0〉(Z, K) = Sn(K) (compare
with [25, p. 289]).

(b) The quadratic structure groups Si(Z, K) ∼= Si(Z, BG) are 0 for all i ∈ Z. For
the proof, see [4, Proof of Theorem 1.2]. Note that this also uses Theorem 6.

(c) There is an exact sequence

Hn(K; L0(Z))→ Sn(K)→ Sn(K).

See Ranicki [25, Theorem 25.3(i)].

From (a) and (b), it follows that Sn(K) = 0. Then, by (c), to show Sn(K) = 0
it is suffices to show that Hn(K; L0(Z)) = Hn(K; Z) = 0. This can be seen from
the long exact sequence in homology of a pair (K, N):

Hn(N ; Z)→ Hn(K; Z)→ Hn(K, N ; Z) ∂−→ Hn−1(N ; Z).

The group Hn(N ; Z) = 0 because N is a PD(n−1) complex. Also Hn(K, N ; Z) ∼= Z

is generated by the fundamental class [K], and ∂[K] is a sum of fundamental classes
of the components of N . In particular ∂[K] �= 0, so Hn(K; Z) = 0, as desired.

This concludes the proof of existence.
Uniqueness. So far we have proven the existence of a compact aspherical mani-

fold W with π1(W ) = G. To show W is unique, we want to show that STOP
∂ (W ) is
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a singleton. By [24, Corollary 1 (rel ∂)], it suffices to show that Sn+1(W ) = 0. By
[25, Theorem 25.3(i)], there is an exact sequence

0→ Sn+1(W )→ Sn+1(W )→ Hn(W ; Z),

and as noted above, Hn(W ; Z) = 0. Thus, it suffices to show that Sn+1(W ) = 0.
This follows because Sn+1(W ) = Sn+1(Z, W ) (by the same reason as in Step 3,
Fact (a) above), and Sn+1(Z, W ) = 0 (see Step 3, Fact (b)).

4. Proof of Theorem 2

The proof of Theorem 2 is an adaptation of [15, Sec. (5a), (5c)]. We briefly explain
the relative version of [15] and the problem with extending it directly to our case.

The paper [15] uses hyperbolization to construct a closed, locally CAT(−1)
manifold Mn with the unusual property that ∂∞M̃ is not homomorphic to Sn−1.

To show this, they establish that ∂∞M̃−{γ+, γ−} is not simply connected, where
γ+, γ− are the endpoints of a geodesic γ : (−∞,∞)→ M̃ whose link is a homology
sphere H with π1(H) �= 1. In order to find nontrivial elements of π1

(
∂∞M̃ −

{γ+, γ−}
)
, [15] studies metric spheres Sp(r) centered at p = γ(0). When s > r,

there are natural geodesic contraction maps ρs
r : Sp(s) → Sp(r), which allow one

to relate the topology of small spheres to the topology of ∂∞M̃ = lim←−{Sp(r)}r>0.
The central property of the maps ρs

r that makes the comparison work is that they
are cell-like. We refer the reader to [17] for information concerning cell-like sets
and maps.

Following [15], we will construct a triangulated, locally CAT(−1) manifold M

with totally geodesic boundary ∂M whose universal cover M̃ contains a geodesic
γ : (−∞,∞)→ M̃ whose link is a homology sphere H with π1(H) �= 1. As above,
we wish to show π1(∂∞M̃ − {γ+, γ−}) �= 1 (Lemma 8 below then implies that
∂∞M̃ is not homeomorphic to S n−2). In this case M̃ is a manifold with boundary,
and the maps ρs

r : Sp(s) → Sp(r) are not surjective for s � r. This prevents us
from proceeding directly as in [15]. To bypass this issue, we “cap off” the boundary
components of M̃ to obtain a CAT(−1) manifold M̂ ⊃ M̃ to which the arguments
of [15] apply; in particular, π1(∂∞M̂ − {γ+, γ−}) �= 1. At this point it will be
clear from the capping procedure (see specifically Lemma 9 below) that π1(∂∞M̃ −
{γ+, γ−}) �=1.

For the proof of Theorem 2, we need the following elementary fact.

Lemma 8. For n ≥ 2, the n-dimensional Sierpinski space S n is simply-connected.
Moreover, if F ⊂ S n is any finite collection of points in S n, then S n\F is still
simply-connected.

Proof. Model S n as the complement, in the standard sphere Sn+1, of the interiors
of a dense collection of pairwise disjoint round disks Di whose radii ri tend to zero. If
γ is a curve in S n ⊂ Sn+1, we can find a bounding disk φ : D2 → Sn+1. Inductively
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define φk : D2 → Sn+1 to have image disjoint from the interiors of D1, . . . , Dk, as
follows. First perturb φ to be transverse to D1. Then φ−1(∂D1) is a finite collection
of curves in D2, and each of these curves maps to a curve ηj on ∂D1 � Sn. Since
n ≥ 2, we can redefine φ on the interior of these finitely many curves in D2 by
sending each of these to a bounding disk in ∂D1 for the corresponding ηj . In this
way we obtain a map φ1 : D2 → Sn+1 whose image is disjoint from int(D1). Since
the Di are disjoint, we may continue inductively, replacing φ1 by a map φ2 whose
image is disjoint from the interior of D1 ∪D2, and so on. Since the diameter of Di

shrinks to zero, the maps φk converge to a map φ∞ : D2 → Sn+1 whose boundary
coincides with γ, and whose image is disjoint from the interiors of all the Di, i.e.
the image of φ∞ lies in S n. A similar argument works even after removing finitely
many points in S n.

Proof of Theorem 2. We proceed in several steps.

Step 1. (Construction) We construct M using the strict hyperbolization construc-
tion of Charney–Davis [13]. For simplicity we will focus primarily on the case n ≥ 5.
The case n = 4 will be explained at the end of Step 2.

The case n ≥ 5 is modeled on [15, Sec. (5c)]. Fix a smooth n-manifold X

with non-empty connected boundary Y , equipped with a PL-triangulation. Choose
a smooth homology sphere Hn−2 with nontrivial fundamental group, take a PL-
triangulation of H , and consider the double suspension Σ2H ∼= Sn, with the obvious
induced (no longer PL) triangulation. Take the triangulated connect sum X�Σ2H ,
obtained by using the interior of a pair of n-simplices in the triangulated X , Σ2H to
take the connect sum (and chosen so that simplex in X does not intersect the bound-
ary of X). Note that, topologically X�Σ2H is homeomorphic to X , but now has a tri-
angulation that fails to be PL — there is precisely one 4-cycle in the 1-skeleton of the
triangulation whose link is H (instead of Sn−2). Finally, we let Mn = h(X�Σ2H),
an n-manifold with boundary Nn−1 = h(Y ), and set G = π1(M).

Properties of hyperbolization implies statement (1) in our theorem, while
statement (2) follows from the fact that the triangulation of Y is PL (applying
Davis–Januszkiewicz [15, Theorem (3b.2)]). The rest of our proof thus focuses on
establishing statement (3) in the theorem — that ∂∞G is not homeomorphic to
S n−2.

Step 2. (Capping procedure) To show that ∂∞G �= S n−2, first identify ∂∞G ∼=
∂∞M̃ . We use Lemma 8 and show that π1(∂∞M̃\F ) �=1, where F = {γ+, γ−} con-
sists of two points.

M̃ is a non-compact CAT(−1) manifold with non-empty boundary, each compo-
nent of which is isometric to h̃(Y ). To understand ∂∞M̃ , we first define an isometric
embedding M̃ ↪→ M̂ into a CAT(−1) space without boundary. It will be easier to
analyze M̂ , which is obtained from M̃ by gluing a certain space Z to each compo-
nent of ∂M̃ . Next we define Z and describe its key features.
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Let DX be the double of X across Y , with the induced triangulation. We apply
a strict hyperbolization of Charney–Davis [13] to obtain a closed n-manifold h(DX)

equipped with a locally CAT(−1) metric. The universal cover h̃(DX) has boundary
at infinity homeomorphic to Sn−1 (see [15, Theorem (3b.2)]). Take any lift h̃(Y ) of
the separating codimension one submanifold h(Y ) ⊂ h(DX). Then h̃(Y ) separates

h̃(DX) into two (isometric) convex subsets. Denote by Z the closure of one of these
convex subsets. Then Z is a non-compact locally CAT(−1) n-manifold with totally
geodesic boundary h̃(Y ).

Lemma 9. The boundary at infinity ∂∞Z of Z is homeomorphic to Dn−1. The
inclusion h̃(Y ) = ∂Z induces, at the boundary at infinity, an identification ∂∞h̃(Y )
= Sn−2 = ∂(Dn−1).

Let us momentarily assume Lemma 9 and finish the proof. Form the CAT(−1)
space M̂ by gluing a copy of Z to each component of ∂M̃ , by isometrically identify-

ing the copy of h̃(Y ) inside Z with the boundary component. We have an isometric
embedding M̃ ↪→ M̂ , inducing an embedding ∂∞M̃ ↪→ ∂∞M̂ . Let γ be a lift, in
M̃ ⊂ M̂ of the singular geodesic in M , i.e. the geodesic whose link is the homology
sphere H . The argument in [15, Proof of Theorem 5c.1(iv), p. 385] applies verbatim
to show that ∂∞M̂ − {γ+, γ−} is not simply-connected. If η denotes a homotopi-
cally nontrivial loop in ∂∞M̂ − {γ+, γ−}, then Lemma 9 allows us to use the same
argument as in Lemma 8 to homotope η into the subset ∂∞M̃ = ∂∞G. We conclude
that ∂∞G − {γ+, γ−} fails to be simply connected. From Lemma 8, we conclude
that ∂∞G is not homeomorphic to S n−2.

The n = 4 case proceeds similarly, but is modeled instead on [15, Sec. (5a)].
Briefly, one lets X be a 4-dimensional simplicial complex whose geometric realiza-
tion is a homology manifold with non-empty boundary Y , and which contains a
singular point in the interior of X (whose link is, for example, the Poincaré homol-
ogy 3-sphere H). One then looks at the universal cover of the hyperbolization
W = h(X). We can “cap off” the boundary components of W̃ as in the last para-
graph to obtain Ŵ . Then the arguments in [15, Sec. 3d] show that the fundamental
group at infinity π∞

1 (Ŵ ) is nontrivial. It follows that π1(∂∞Ŵ ) is also nontrivial
by [14, Theorem 4.1]. Again, using Lemma 9, we can push a homotopically non-
trivial loop in ∂∞Ŵ into the subset ∂∞W̃ = ∂∞G. From Lemma 8, we conclude
that ∂∞G is not homeomorphic to S 2. Finally, even though W is not a manifold,
it is homotopy equivalent to a manifold: just remove a small neighborhood of the
singular cone point, and replace it by a contractible manifold which bounds H . The
resulting 4-manifold M has the desired properties.

Step 3. (Reducing Lemma 9) To complete the proof of the theorem, we are left
with verifying Lemma 9. This is again a minor adaptation of the arguments in
[15, Secs. 3b, 3c]. Choose a basepoint x ∈ ∂Z, and consider the closed metric
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r-balls BZ(r), B∂Z(r) in the spaces Z, ∂Z, centered at x, as well as the metric
r-spheres SZ(r) and S∂Z(r). The proof of Lemma 9 will rely on the following.

Claim 1. For all r, the metric spheres SZ(r) are manifolds with boundary S∂Z(r).

Claim 2. For points p ∈ S∂Z(r), the complement Lk(p)\BLk(p)(v; π) of the metric
ball of radius π, centered at v ∈ ∂(Lk(p)) in the link of p, is a cell-like set.

It is easy to conclude from these two claim. If one takes a small enough r, then
clearly SZ(r) is homeomorphic to a disk Dn−1. In view of Claim 2 and the discussion
in [15, p. 372], there is an ε > 0 such that each of the geodesic contraction maps
ρs

r : SZ(s) → SZ(r) is a cell-like map when r < s < r + ε. So by Claim 1, the
maps ρs

r are cell-like maps between manifolds with boundaries. From the work of
Siebenmann [27], Quinn [23], and Armentrout [1] it follows that each ρs

r is a near-
homeomorphism (i.e. can be approximated arbitrarily closely by homeomorphisms),
and hence, that all the SZ(r) are homeomorphic to a disk Dn−1, with boundary
∂SZ(r) = S∂Z(r).

Since we can identify ∂∞Z with the inverse limit lim←−{SZ(r)}r>0, where the
bonding maps are given by the near-homeomorphisms ρs

r (where 0 < r < s), the
main result of Brown [10] implies that ∂∞Z is also homeomorphic to the closed disk
Dn−1. This confirms the first statement in Lemma 9. For the second statement, we
note that h̃(Y ) = ∂Z is a totally geodesic subspace of Z, and hence we have an
embedding Sn−2 = ∂∞h̃(Y ) ↪→ ∂∞Z = Dn−1. Since ∂Z fails to (coarsely) separate
Z, an elementary argument gives that the image of ∂∞(∂Z) = Sn−1 also fails to
separate ∂∞Z = Dn−1, and hence coincides with the set ∂Dn−1. This gives the
second statement in Lemma 9. We have thus reduced the proof of Lemma 9 (and
hence also of the theorem) to checking Claims 1 and 2 — which are the last two
steps of the proof.

Step 4. (Proof of Claim 1) We first argue that the ball BZ(r) of radius r is a
manifold with boundary. It is clear that points p ∈ Int(M̃) at distance < r from the
basepoint have manifold neighborhoods. It is also immediate that points p ∈ ∂M̃ at
distance < r from the basepoint have neighborhoods homeomorphic to Rn−1×R+.
Points at distance = r from the basepoint are either in Int(M̃) or on ∂M̃ .

For points p in Int(M̃), the argument in [15, p. 372] shows that p has a neigh-
borhood homeomorphic to Rn−1 ×R+. So the only possible points to worry about
are points at distance = r, and lying on the subset ∂M̃ . But for such a point p, a
similar argument works as well. Let v be the point in Lk(p) pointing from p to the
basepoint x, and consider the closed ball BLk(p)(v; π/2) in the link of p, centered
at v, of radius π/2. For any vector w ∈ BLk(p)(v; π/2), one can look at the geodesic
γw emanating from p, in the direction w (γw is well-defined close to p). If the direc-
tion w is at distance < π/2 from v, then for a small interval of time [0, s(w)], the
geodesic γw lies entirely in BZ(r), with γw(s(w)) ∈ SZ(r) ∪ B∂Z(r). Note that s

varies continuously and s(w) → 0 as w → SLk(p)(v; π/2). It follows that p has a
neighborhood homeomorphic to the set X̂ constructed as follows: take the product



February 16, 2019 14:40 WSPC/243-JTA 1950010

Hyperbolic groups with boundary an n-dimensional Sierpinski space 243

v

BL(v; π/2)

SL(v; π/2)

{0} × D
n−1

{1} × D
n−1 U

Fig. 2. Left: The link L = Lk(p). Right: The space I × BLk(p)(v; π/2), which is identified with a

neighborhood X̂ of p after quotienting by the gray region.

I ×BLk(p)(v; π/2), collapse the fibers over the subset SLk(p)(v; π/2) to 0, and then
collapse the subset {0}×BLk(p)(v; π/2) to a single point (which is identified with p),
see Fig. 2. By an inductive argument (note that dim(Lk(p)) = dim(M̃) − 1) one
can assume that BLk(p)(v; π/2) is homeomorphic to a disk Dn−1, with the subset
SLk(p)(v; π/2) corresponding to an embedded Dn−2 inside ∂Dn−1 ∼= Sn−2. Following
the construction of X̂ given above, we see that X̂ is homeomorphic to Dn, with the
point corresponding to p lying on ∂Dn. This shows that BZ(r) is indeed a manifold
with boundary, and that the boundary of BZ(r) naturally decomposes as the union
of SZ(r) ∪B∂Z(r), where the union is over the common subset S∂Z(r).

Finally, we check that SZ(r) is an (n − 1)-manifold with boundary. For points
p ∈ SZ(r) lying in Int(M̃), it follows easily from [15, p. 372] that these points have
neighborhoods homeomorphic to Dn−1 with p lying as an interior point. In the
case where p ∈ SZ(r) lies on ∂M̃ , we look at the neighborhood X̂ of p con-
structed above. Within X̂, the subset corresponding to SZ(r) consists of (the
image of) a small neighborhood U of {1} × SLk(p)(v; π/2) ∼= Dn−2 inside the slice
{1} × BLk(p)(v; π/2) ∼= Dn−1. Note that the (n− 2)-disk SLk(p)(v; π/2) lies in the
boundary sphere of the (n− 1)-disk BLk(p)(v; π/2) (by induction). The image of U

thus gives a copy of Dn−1, with p lying in the boundary of Dn−1. Moreover, the
subset of U corresponding to S∂Z(r) is just a neighborhood of p inside the bound-
ary sphere of Dn−1, i.e. is homeomorphic to Dn−2. This completes the argument
for Claim 1.

Step 5. (Proof of Claim 2) We want to show that the complement Lk(p)\
BLk(p)(v; π) is cell-like. The set Lk(p) is homeomorphic to a disk Dn−1, so we can
think of the set we are interested in as lying within the double D(Lk(p)) ∼= Sn−1.

v

BL(v; r)
L \ BL(v; π)

B∂L(v; r)

BL(v; r)

∂ B∂L(v; r)

DL\L

Fig. 3. The link L = Lk(p) and its double DL.
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Given an r ∈ (0, π), consider the subset Ur ⊂ D(Lk(p)) ∼= Sn−1 defined to be the
union of D(Lk(p))\Lk(p) and the set BLk(p)(v; r). See Fig. 3. We will show each
such Ur is homeomorphic to Rn−1. Then by a result of Brown [11] it follows that
the union U∞ :=

⋃
r∈(0,π) Ur ⊂ D(Lk(p)) ∼= Sn−1 is also homeomorphic to Rn−1.

But if a subset of Sn−1 is homeomorphic to Rn−1, its complement is automatically
cell-like [17, p. 114]. Since the complement of U∞ coincides with Lk(p)\BLk(p)(v; π),
this would establish Claim 2.

To see that each Ur is homeomorphic to Rn−1, we consider their closures U r.
We have that Ur = Int(U r), and that Ur can be written as the union of a copy
of Lk(p) along with BLk(p)(v; r), where the union is taken over the common subset
B∂Lk(p)(v; r). Let us analyze the two pieces in this decomposition.

On one of the sides, the subset Lk(p) is homeomorphic to Dn−1, and the common
subset B∂Lk(p)(v; r) is homeomorphic to an embedded (n− 2)-disk Dn−2 inside the
boundary sphere ∂Lk(p) ∼= Sn−2. Note that, by varying the parameter r, we see that

Sn−3 � ∂B∂Lk(p)(v; r) ⊂ ∂Lk(p) � Sn−2

is bicollared. On the other side, the subset BLk(p)(v; r) is also homeomorphic to
Dn−1, and the gluing disk Dn−2 ∼= B∂Lk(p)(v; r) inside the boundary sphere Sn−2 ∼=
∂BLk(p)(v; r) also has as complement a disk (by the argument in Claim 1). Thus, we
see that U r is obtained by gluing together two closed (n − 1)-disks, by identifying
together two copies of an (n − 2)-disk, where each copy is nicely embedded in the
respective boundary spheres Sn−2 ∼= Dn−1. It follows that U r is also homeomorphic
to Dn−1. This completes the proof of Claim 2 and the proof of the theorem.

Remark 10. Let us make a small comment on approximating cell-like maps by
homeomorphisms, in the case of manifolds with boundary. The attentive reader will
probably notice that, in Siebenmann’s work [27], there are two cases that require
special care. In the 5-dimensional case, he requires the restriction of the map to the
boundary to be a homeomorphism (rather than just a cell-like map). This is due to
the fact that, at the time [27] was written, it was unclear whether or not cell-like
maps of (closed) 4-manifolds could be approximated by homeomorphisms — hence
the need of a stronger hypothesis on the boundary map. In view of Quinn’s sub-
sequent proof of the 4-dimensional case [23], this stronger hypothesis is no longer
needed in the 5-dimensional boundary case. Note that, in our context, the bonding
maps, when restricted to the boundary, are always cell-like (but are not homeomor-
phisms).

The other special case has to do with 3-dimensions. Here there is an added
hypothesis that every point pre-image has a neighborhood N which isn’t just con-
tractible, but in addition is prime (i.e. if N = M1#M2, then one of the Mi is a
standard 3-sphere). The only way this could fail is if one of the Mi were instead
a homotopy 3-sphere — but by Perelman’s resolution of the Poincaré Conjecture,
such a manifold is automatically S3. So again, in the 3-dimensional case, this addi-
tional hypothesis is now unnecessary.
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5. Remarks on CAT(0) Groups

In this section we remark on generalizing the main result from hyperbolic groups
to CAT(0) groups. A proper geodesic space X is called CAT(0) if geodesic triangles
in X are at least as thin as triangles in Euclidean space [8]. A group G is called
CAT(0) if there exists a CAT(0) space X on which G acts geometrically (that is,
isometrically, properly, and compactly).

A CAT(0) space X has a visual boundary ∂∞X , and if G acts geometrically
on X , then G acts on ∂∞X by homeomorphisms. In this case ∂∞X is called a

boundary of G. With this terminology we have the following theorem.

Theorem 11. Let G be a CAT(0) group for which Sn−1 is a boundary. If n ≥ 6,

then there exists a closed n-dimensional aspherical manifold W such that π1

(W ) � G.

The proof is almost identical to the proof of Theorem 7 in [4]. We give a short
explanation for how to extend that argument to the CAT(0) case.

Proof of Theorem 11. By assumption G acts geometrically on an X with ∂∞X =
Sn−1. Denote X = X ∪ ∂∞X . We proceed in three steps.

Step 1. BG is homotopy equivalent to a closed aspherical homology n-manifold
W such that W has the disjoint disk property. To show this, it suffices to show
that G is a PD(n) group and to note that CAT(0) groups satisfy the Farrell–Jones
conjectures in K- and L-theory. For then we may use [4, Theorem 1.2], which says
that for such a group, BG is homotopy equivalent to a closed aspherical homology
n-manifold M with the disjoint disk property.

We explain why G is PD(n) group. First, we know G is of type FP once we know
that there exists a finite CW complex K � BG (for then the cellular chain complex
of the universal cover K̃ is a finite length resolution of Z by finitely generated free
G modules). A finite CW complex K � BG for a group G that acts geometrically
on a proper CAT(0) space is shown to exist by Lück [22]. Now G is a PD(n) group
because

Hi(G; ZG) ∼= Hi
c(X) ∼= H̃i−1(∂∞X) = H̃i−1(Sn−1) =

{
Z if i = n,

0 else.

The first two isomorphisms are described by Bestvina [5]. That this implies G is a
PD(n) group is explained in [9, VIII.10.1].

Step 2. The universal cover W̃ can be compactified N = W̃ ∪ ∂∞X such that N

is a homology manifold with boundary. To show that N is a homology manifold
with boundary, it suffices to show that N is a finite-dimensional locally compact
ANR and ∂∞X is a Z-set in N (see [4, Proposition 2.5]). The pair (X, ∂∞X) is a
Z-structure on G by Bestvina [5, Example 1.2(ii)]. Furthermore, by [5, Lemma 1.4]
for any other finite model K for BG, there is a natural Z-structure on (K, ∂∞X),
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where K = K ∪ ∂∞X . Thus (N, ∂∞X) admits a Z-set structure; in particular, N

is a Euclidean retract, finite dimensional, and Sn−1 is a Z-set inside N .

Step 3. W̃ (and hence also W ) is a manifold. This part of the argument is identical
to that given in [4, Theorem A]. Quinn’s invariant allows one to recognize manifolds
among homology manifolds with the disjoint disk property. By the local nature of
Quinn’s invariant, if (B, ∂B) is a homology manifold with boundary and ∂B is a
manifold, then int(B) is a manifold.

In light of this result and Theorem 1 above, it is natural to ask the following
question.

Question. Let G be a CAT(0) group which admits S n−2 as a boundary. Is G the
fundamental group of an n-dimensional aspherical manifold withboundary?

Examples of G satisfying the hypothesis of this question are given by Ruane
[26]: every nonuniform lattice Γ ≤ SO(n, 1) is an example. For these examples, an
aspherical manifold with boundary can be obtained by “truncating the cusps” of
Hn/Γ.

There are some basic problems with answering this question with the techniques
of this paper. For example, it is not obvious that peripheral subgroups of a CAT(0)
group with Sierpinski space boundary are CAT(0), or that the double of a CAT(0)
group along peripheral subgroups is CAT(0).
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