
COMPARING SEMI-NORMS ON HOMOLOGY

J.-F. LAFONT AND CH. PITTET

Abstract. We compare the l1-seminorm || · ||1 and the manifold
seminorm || · ||man on n-dimensional integral homology classes. We
explain how it easily follows from work of Crowley & Löh that for
any topological space X and any α ∈ Hn(X;Z), with n 6= 3, the
equality ||α||man = ||α||1 holds. We compute the simplicial volume
of the 3-dimensional Tomei manifold and apply Găıfullin’s desingu-
larization to establish the existence of a constant δ3 ≈ 0.0004809,
with the property that for any X and any α ∈ H3(X;Z), one has
the inequality

δ3||α||man ≤ ||α||1 ≤ ||α||man.

1. Introduction

Let X be a topological space and let K be either the field of rational
numbers or the field of real numbers. Let α ∈ Hn(X,K) be a class
in the n-dimensional singular homology of X with coefficients in K.
By definition there is a finite linear combination of continuous maps
σi : ∆→ X defined on the standard n-dimensional simplex, with coef-
ficients ai in K, which represents α. The l1-(semi)-norm on singular
homology is defined as

‖α‖1 = inf
{∑

|ai| :
[∑

aiσi

]
= α

}
,

see [5, 0.2].
If α ∈ Hn(X,Z) is an integral class, we may apply to it the natural

change of coefficients morphism

H∗(X,Z)→ H∗(X,R),
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and view it as a real class (which may vanish) and consider its l1-norm,
also denoted ‖α‖1. This measures the optimal “size” (in the l1-norm) of
a real representative for the integral class. When M is a closed oriented
manifold, the l1-norm of its fundamental class [M ] ∈ Hn(M ;Z) is called
the simplicial volume of M , and will be denoted by ||M ||.

Rather than looking at all chains representing the class α, one could
instead restrict to chains which satisfy some additional geometric con-
straint. To this end, let us consider the set of all closed smooth oriented
manifolds and continuous maps (M, f : M → X) such that f sends the
fundamental class of M to α. Recall that according to a celebrated
result of Thom [8, Théorème III.9], if n ≥ 7, this set may be empty,
even if X is a finite polyhedron. On integral homology, we consider the
sub-additive function

µ(α) = inf {‖M‖ : f∗[M ] = α} ,
(with the usual convention that the infimum of the empty set is +∞)
and the corresponding manifold (semi)-norm

‖α‖man = inf
m∈N

{
µ(m · α)

m

}
.

Thom has shown that the manifold norm is finite [8, Théorème III.4]
when X is a finite polyhedron. In fact it is finite for any topological
space: this follows from the work of Găıfullin (apply [3] and Proposition
2.1 below).

It is immediate from the definitions that ‖− ‖1 ≤ ‖− ‖man holds on
Hn(X,Z), for any n, and any topological space X.

Theorem 1.1. For each degree n, there exists a constant δn > 0, such
that for any topological space X and any class α ∈ Hn(X,Z), we have:

δn‖α‖man ≤ ‖α‖1 ≤ ‖α‖man.

After some preliminary material in Sections 2 and 3, we provide a
proof of Theorem 1.1 in Section 4. Section 5 is devoted to identifying
the optimal values of the δn. It is straightforward to show that the
norms are equal if n ≤ 2 (i.e. one can take δ2 = 1). It also follows
rather easily from work of Crowley and Löh [1, Proposition 4.3] that for
degree n ≥ 4, one can take δn = 1 (see our Proposition 5.1 below). So
in all cases except possibly in degree = 3, one actually has the equality
||α||1 = ||α||man. We do not know if the optimal value of δ3 is 1, even
if we restrict to the case where X is a finite polyhedron. Our method
of proof yields a value of δ3 which is approximately 0.0004809.
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2. Gluing simplexes along their faces

Our first goal is to realize an integral class β as the image of a
∆-complex [6, Section 2.1] which is a disjoint union of n-dimensional
pseudomanifolds [7, Chap. 3, Ex. C] whose number of n-simplexes is
controlled in term of β. The precise statement we need is the following.

Proposition 2.1. Let X be a topological space and let β ∈ Hn(X,Z)
be a integral class on X of degree n represented by a singular cycle∑

imiσi, mi ∈ Z. Then there is a ∆-complex Q and a continuous map
g : Q→ X with the following properties.

(1) The number of n-dimensional simplexes of Q is
∑

i |mi|.
(2) The second barycentric subdivision of Q defines a simplicial

complex P which is a finite disjoint union of oriented n-dimensional
pseudomanifolds without boundary.

(3) g∗[P ] = β, that is g sends the fundamental class of the pseudo-
manifold P to the class β.

Remark 2.2. If n ≤ 2, we can choose Q so that the pseudomanifolds
are manifolds.

All this is well-known and can be deduced from [6, Chapter 2]. We
sketch the proof for the convenience of the reader.

Proof. The statement is trivial if n = 0 hence we assume n ≥ 1. In the
cycle

∑
imiσi, we consider each singular n-simplex σi whose coefficient

mi is negative. We precompose σi with an affine automorphism of the
standard n-simplex which reverse the orientation and change the sign
of mi. This leads to a representative of the same class β with positive
coefficients mi ∈ N. Let us define

T =
∑
i

mi,

and let U be the disjoint union of T standard n-simplexes. Repeating
mi times each singular simplex σi, we write our cycle

T∑
i=1

σi,
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and we obtain a continuous map

σ : U → X

whose restriction to the i-th copy of the standard n-simplex is σi. Each
term of the boundary

∂

(
T∑
i=1

σi

)
is the restriction of some σi to an (n−1)-face of the i-th n-simplex of U
(times a coefficient which is either 1 or−1 because we repeat the terms).
If two such singular (n − 1)-simplexes are equal (as maps defined on
the standard (n−1)-simplex) and if their coefficients are opposite, they
form what we call a canceling pair. We choose a maximal collection of
canceling pairs and for each pair we identify the two (n − 1)-faces of
U on which the two terms of the pair coincide. The topological space
defined as the quotient of U with respect to the equivalence relation
defined by these identifications has a ∆-complex structure Q with T
n-simplexes. It has no boundary because we choose a maximal fam-
ily of canceling pairs and because

∑T
i=1 σi is a cycle. One checks that

the second barycentric subdivision of Q defines a simplicial complex P
whose connected components are n-dimensional oriented pseudoman-
ifolds. The map σ : U → X factors through P . The quotient map
g : P → X is continuous and g∗[P ] = β. This proves the proposition.
If n ≤ 2, one checks that each link of each vertex of Q is a sphere. This
proves the remark. �

3. Găıfullin’s desingularization

We will need a result of Găıfullin, which provides a constructive
desingularization of an oriented pseudo-manifold (see [3], or [4] for a
more detailed explanation). Let us briefly describe this result. Găıfullin
establishes the existence, in each dimension n, of a closed oriented n-
manifold M having the following universal property. Given any ori-
ented n-dimensional pseudo-manifold P , with K top-dimensional sim-
plices, and with a regular coloring of the vertex set by (n + 1) colors
(i.e. any adjacent vertices are of different colors), there exists:

• a finite cover π : M̂ →M , of degree 1
2
·K · Πω|Pω|, and

• a map f : M̂ → P with the property that:

f∗[M̂ ] = 2n−1 · Πω|Pω| · [Z] ∈ Hn(P ;Z)

The degrees of the maps involve the integer Πω|Pω| (which is the pro-
duct of the cardinalities of the finite sets Pω), whose precise definition
(see [3, pg. 563]) we will not need. We merely point out that the
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term Πω|Pω| depends solely on the combinatorics of P , and appears in
the expressions for both the degree of the covering map π, and of the
“desingularization” map f .

The universal manifolds M are explicitly described, and are the
Tomei manifolds. For the convenience of the reader, we provide some
discussion of the Tomei manifolds in the Appendix to the present pa-
per. The Appendix also establishes some specific properties of the
3-dimensional Tomei manifold which will be used in the proof of Propo-
sition 5.2.

4. Proof of Theorem 1.1

Proof. Let α ∈ Hn(X,Z) and let ε > 0. The change of coefficients
morphism

Hn(X,Z)→ Hn(X,R)

factors through Hn(X,Q) and the map

Hn(X,Q)→ Hn(X,R)

is an isometric injection. Hence we can find a representative∑
i

riσi

of α with ri ∈ Q such that

(1)
∑
i

|ri| ≤ ‖α‖1 + ε.

Let m be the least common multiple of all the denominators of the
reduced fractions of the ri. The chain∑

i

mriσi

is an integral chain representing the class

β = mα ∈ Hn(X,Z).

Now we apply our Proposition 2.1 to the integral class β. This gives us
a ∆-complex Q and a continuous map g : Q → X with the following
properties:

(i) The number of n-dimensional simplexes of Q is

m
∑
i

|ri| ≤ m(‖α‖1 + ε).

(ii) The second barycentric subdivision of Q defines a simplicial com-
plex P which is a finite disjoint union an oriented n-dimensional
pseudomanifolds without boundary.
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(iii) g maps the fundamental class of P to the class β, i.e. g∗[P ] = β.

Notice that in the case Q is a manifold (that is automatic if n = 2, as
explained at the end of the proof of Proposition 2.1), then the inequality

‖α‖man ≤ ‖α‖1

follows, since for any ε > 0 we have

‖Q‖/m ≤ ‖α‖1 + ε/m.

If Q is not a manifold - that is if at least one of the connected
component of the simplicial complex P is not a manifold but only a
pseudo-manifold - then a desingularization process is needed to produce
a manifold. We first consider the case when P is connected. The
number of n-dimensional simplices of the barycentric division of the
standard n-simplex being (n + 1)!, we observe that the number K of
top-dimensional simplices in P is

K = (n+ 1)!2m
∑
i

|ri|.

Moreover, the vertex set clearly has a regular coloring by (n + 1) col-
ors: each vertex v lies in the interior of a unique cell σv from the first
barycentric subdivision, and we can color the vertex v with the color
1 + dim(σv) ∈ {1, . . . , n + 1}. So we can now apply Găıfullin’s desin-
gularization process to the pseudo-manifold P , obtaining the following
diagram of spaces and maps:

M M̂
πoo f // P

g // X .

Moreover, we know that

(a) g∗[P ] = β = m · α ∈ Hn(X;Z),

(b) f∗[M̂ ] = 2n−1 · Πω|Pω| · [P ] ∈ Hn(P ;Z).

The map π is a covering map of degree 1
2
·K · Πω|Pω|, so we can also

compute the simplicial volume of M̂ :

||M̂ || = 1

2
·K · Πω|Pω| · ||M ||

Combining (a) and (b) above, we see that the composite map g ◦ f :

M̂ → X allows us to represent the homology class
[
m·2n−1·Πω|Pω|

]
·α ∈

Hn(X;Z) as the image of the fundamental class of the oriented manifold
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M̂ . From the definition of the manifold semi-norm, we obtain:

||α||man ≤
1

m · 2n−1 · Πω|Pω|
||M̂ ||

=
1
2
·K · Πω|Pω|

m · 2n−1 · Πω|Pω|
||M ||

=
(n+ 1)!2m

∑
i |ri|

m · 2n
||M ||

≤ ||M || ·
[(n+ 1)!2

2n

](
||α||+ ε

)
Letting ε go to zero completes the proof, with the explicit value

δn =
2n

(n+ 1)!2 · ||M ||
.

where M is the n-dimensional Tomei manifold appearing in Găıfullin’s
desingularization procedure. In the case P = tiPi has several con-
nected components Pi, let d be the least common multiple of the
Πω|(Pi)ω| and for each i, let mi = d/Πω|(Pi)ω|. Exactly the same

proof applies with M̂ = ti tmi
M̂i, f = ti tmi

fi, π = ti tmi
πi. �

5. Estimating the δn

As explained in the course of the proof of Theorem 1.1, one can take
δ2 = 1. Applying results of Crowley and Löh, we also have:

Proposition 5.1. In degrees n ≥ 4, we can take δn = 1, i.e. for any
topological space X and any class α ∈ Hn(X,Z) of degree n ≥ 4, one
has the equality

‖α‖1 = ‖α‖man.

Proof. The inequality ‖α‖1 ≤ ‖α‖man is immediate from the defini-
tions, so let us focus on the converse. Proceeding as in the proof of
Theorem 1.1, given any ε > 0, we can find a corresponding integral
chain ∑

i

mriσi

representing a class
β = mα ∈ Hn(X,Z).

and where the rational numbers ri satisfy

(2)
∑
i

|ri| ≤ ‖α‖1 + ε/2.

Now apply Proposition 2.1 to the integral class β, obtaining a ∆-
complex Q and a continuous map g : Q → X such that g∗[Q] = β.
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As Q itself is a finite CW -complex of dimension n ≥ 4, a result of
Crowley & Löh [1, Prop. 4.3] implies that ||[Q]||1 = ||[Q]||man. Since
we have a realization of Q as a ∆-complex with exactly m

∑
i |ri| top-

dimensional simplices, we obtain:

||[Q]||man = ||[Q]||1 ≤ m
∑
i

|ri|

Consider the positive real number mε/2 > 0. From the definition of
the manifold norm, we can find a closed oriented manifold N , and
a continuous map h : N → Q of degree d, with the property that
h∗[N ] = d · [Q], and satisfying:

(3)
||N ||
d
≤ ||Q||man +mε/2 ≤ m

∑
i

|ri|+mε/2

The composite map g ◦ h : N → X sends the fundamental class [N ] to
d · β = d ·mα. Using this map to estimate the manifold norm of α, we
obtain:

||α||man ≤
||N ||
d ·m

≤ 1

m

(
m
∑
i

|ri|+mε/2
)

≤
∑
i

|ri|+ ε/2

≤ ||α||1 + ε

where the second inequality was deduced from equation (3), and the
last inequality from equation (2). Finally, letting ε > 0 go to zero, we
obtain ||α||man ≤ ||α||1, completing the proof. �

It is tempting to guess that the optimal value of δ3 is also = 1.
Our method of proof gives a substantially lower value of δ3, which is
explicitly given by:

Proposition 5.2. The optimal value of δ3 is ≥ V3
576V8

≈ 0.0004809,
where V3 and V8 are the volumes of the 3-dimensional regular ideal
hyperbolic tetrahedron and octahedron, respectively.

Proof. The proof of our Theorem 1.1 yields the general value

δn =
2n

(n+ 1)!2 · ||M ||
,
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where M is the n-dimensional Tomei manifold. Specializing to dimen-
sion n = 3, and using the fact that ||M3|| = 8V8/V3 (see Lemma 6.2 in
the Appendix), we obtain the claim. �

6. Appendix: Tomei manifolds

The universal manifolds M used in Găıfullin’s desingularization are
the Tomei manifolds. For the convenience of the reader, we provide in
this Appendix a brief description of these manifolds. We also establish
some results concerning the 3-dimensional Tomei manifold that are
used in estimating the constant δ3 arising in our proof of Theorem 1.1
(see Proposition 5.2).

A matrix A = [aij] is tridiagonal if aij = 0 for all indices satisfying
|i− j| > 1. The n-dimensional Tomei manifold consists of all (n+ 1)×
(n+1) real symmetric tridiagonal matrices, with fixed simple spectrum
λ0 < λ1 < · · · < λn (the manifold is independent of the choice of
simple spectrum). These manifolds were introduced by Tomei [10],
and further studied by Davis [2]. An important result of Tomei is that
these manifolds support a very natural cellular decomposition, which
we now describe.

First, recall the definition of the n-dimensional permutahedron Πn.
The permutahedron is an n-dimensional, simple, convex polytope, ob-
tained as the convex hull of a specific configuration of points in Rn+1.
If the symmetric group Sn+1 acts on Rn+1 by permuting the coordi-
nates, then the permutahedron Πn is defined to be the convex hull of
the Sn+1-orbit of the point (1, 2, . . . , n + 1) ∈ Rn+1. The facets (codi-
mension one faces) of the permutahedron Πn are parametrized by the
2n+1 − 2 non-empty proper subsets ω ( {1, . . . , n + 1}: the facet Fω
corresponding to the subset ω is defined to be

Fω := {~x ∈ ∂Πn | ∀i ∈ ω,∀j 6∈ ω, xi < xj}

From this, it easily follows that two distinct facets Fω1 , Fω2 intersect if
and only if ω1 ( ω2 or ω2 ( ω1. One also has that any codimension k
face of Πn, being of the form Fω1 ∩ . . . Fωk

for some choice of distinct
facets, corresponds (after possibly re-indexing) to a unique length k
chain ω1 ( ω2 ( · · · ( ωk of non-empty proper subsets of {1, . . . , n+1}.

Tomei [10] showed that the n-dimensional Tomei manifold M has a
particularly simple tiling by 2n copies of the n-dimensional permuta-
hedron Πn. Let e1, . . . , en be the standard generators for Zn2 . Then the
n-dimensional Tomei manifold can be identified with (Zn2 × Πn)/ ∼,
where the equivalence relation is given by (g, x) ∼ (e|ω|g, x) whenever
x ∈ Fω.
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Figure 1. The 3-dimensional permutahedron Π3.

Example: For a concrete example, when n = 3, the permutahedron
Π3 is the truncated octahedron (see Figure 1 above). It has 6 square
facets (parametrized by subsets ω ( {1, 2, 3, 4} with |ω| = 2) and 8
hexagonal facets (parametrized by the ω with |ω| = 1, 3). Figure 2
includes some vertex coordinates, and labels some of the facets with
the corresponding subset of {1, 2, 3, 4}.

In the corresponding Tomei manifold M3, tessellated by eight copies
of Π3, one can easily see that each edge of the tessellation lies on
exactly four copies of Π3. Now consider the 24 squares appearing in
the tessellation of M . The union of all these squares form a collection
of six tori embedded in M , each tessellated by 4 squares. Note that,
from the definition of the gluings, each square bounds two copies of Π3,
whose indices in Z3 differ in the middle coordinate (corresponding to
the generator e2). This implies that the collection of six tori separate
M3 into two copies of a manifold N . Each of the two copies of N is
tessellated by four copies of Π3, and there is a Z2-involution on M3

which fixes the collection of tori, and interchanges the two copies of
N . The involution can be easily described in terms of the description
M = (Z3

2 × Π3)/ ∼: it sends each element (g, x) to (e2 · g, x).

A nice consequence of Găıfullin’s work is the following elementary:

Lemma 6.1. If M is a Tomei manifold, then ||M || > 0.

Proof. Let N be a closed hyperbolic manifold of the same dimension
as M . It follows from work of Gromov and Thurston that ||N || > 0
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Figure 2. A portion of Π3. Vertices are labelled by
their coordinates in R4 (parentheses and commas omitted
to avoid cluttering the picture). Facets are labelled with
the corresponding subset ω ⊂ {1, 2, 3, 4}.

(see [9, Chapter 6]). Take an arbitrary triangulation of N , pass to
the barycentric subdivision, and apply Găıfullin’s desingularization.
This gives us a finite cover M̂ → M with a map f : M̂ → N , of
degree d 6= 0. Since ||N || > 0, the obvious inequality ||M̂ ||/d ≥ ||N ||
immediately forces ||M̂ || > 0. But the simplicial volume scales under
covering maps, so we conclude that ||M || > 0, as desired. �

In general, the computation of the exact value of the simplicial vol-
ume is an extremely difficult problem. For the 3-dimensional Tomei
manifold, we can, however, give an exact computation. Let V8 denote
the volume of a regular ideal hyperbolic octahedron, and V3 denote the
volume of a regular ideal hyperbolic tetrahedron. These volumes can
be expressed in terms of the Lobachevsky function

Λ(θ) := −
∫ θ

0

log |2 sin(t)| dt
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and are exactly equal to V8 = 8Λ(π/4) and V3 = 2Λ(π/6) (see Thurston
[9, Section 7.2]). Up to five decimal places, V8 ≈ 3.66386 and V3 ≈
1.01494.

Lemma 6.2. The 3-dimensional Tomei manifold M3 has simplicial
volume ||M || = 8V8/V3, (which is ≈ 28.8794).

Proof. Closed 3-manifolds are one of the few classes of manifolds for
which the simplicial volume is known. Recall that for hyperbolic 3-
manifolds, the simplicial volume is proportional to the hyperbolic vol-
ume, with constant of proportionality 1/V3. For Seifert fibered 3-
manifolds, the existence of an S1-action immediately implies that the
simplicial volume is zero. For a general closed, orientable, 3-manifold,
the validity of Thurston’s geometrization conjecture (recently estab-
lished by Perelman) implies that there is a decomposition into geomet-
ric pieces. Since simplicial volume is additive under connected sums (in
dimensions ≥ 3), and under gluings along tori (see [5, Section 3.5]), this
implies that the simplicial volume of any closed, orientable 3-manifold
is proportional (with constant 1/V3) to the sum of the (hyperbolic)
volumes of the hyperbolic pieces in its geometric decomposition.

Let us apply this procedure to the Tomei manifold M . Recall that
M is the double of a 3-manifold N with ∂N consisting of four tori.
From the gluing formula we deduce that ||M || = 2||N ||. To compute
||N ||, recall that N is tessellated by four copies of the 3-dimensional
permutahedron Π3, with the collection of square faces of all the Π3

forming the boundary tori of N . This implies that the interior of N
is tessellated by copies of Π3 with the square boundary faces removed.
Next we claim that Int(N) supports a finite volume hyperbolic metric.

Under this tessellation, each interior edge of N lies on exactly four
of the Π3. Let O ⊂ H3 denote the regular ideal hyperbolic octahedron.
This octahedron has all six vertices on the boundary at infinity of H3,
and has all incident pairs of faces forming angles of π/2. A copy of
the permutahedron Π3 can be obtained by removing small horoball
neighborhoods of each of the ideal vertices. Each hexagonal face of Π3

corresponds to a triangular face ofO. So one can form a manifoldN◦ by
gluing together four copies of O, using the same gluing pattern as in the
formation of N . Using isometries to glue together the sides of O, one
obtains a metric on N◦ which is hyperbolic, except possibly along the 1-
skeleton of N◦. To check whether or not one has a singularity along the
edges of N◦, one just needs to calculate the total angle transverse to the
edge. But recall that along each edge in N◦, one has four copies of O
coming together. Since each edge in O has an internal angle of π/2, the
total angle transverse to each edge of N◦ is equal to 2π. We conclude
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that N◦ supports a complete hyperbolic metric, with hyperbolic volume
= 4V8.
N is obtained from N◦ by removing a neighborhood of the ideal

vertices in each O in the tessellation of N◦. This means that N is
obtained from the non-compact, finite volume, hyperbolic manifold N◦

by “truncating the cusps”. It follows that Int(N) is diffeomorphic to
N◦. Since cutting M open along the collection of tori results in two
copies of Int(N) = N◦, a manifold supporting a hyperbolic metric, we
have that this is exactly the geometric decomposition of M predicted
by Thurston’s geometrization conjecture (compare with [2, pg. 105,
Footnote 2]). Our discussion above implies that

||M || = 2V ol(N◦)

V3
=

8V8
V3

completing the proof of the Lemma. �
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