COMPARING SEMI-NORMS ON HOMOLOGY

J.-F. LAFONT AND CH. PITTET

ABSTRACT. We compare the ['-seminorm || - ||; and the manifold
seminorm || ||man on n-dimensional integral homology classes. We
explain how it easily follows from work of Crowley & Loh that for
any topological space X and any o € H,(X;Z), with n # 3, the
equality ||||man = ||a|]1 holds. We compute the simplicial volume
of the 3-dimensional Tomei manifold and apply Gaifullin’s desingu-
larization to establish the existence of a constant d3 =~ 0.0004809,
with the property that for any X and any o € H3(X;Z), one has
the inequality

33l man < llallr < |la]lman-

1. INTRODUCTION

Let X be a topological space and let K be either the field of rational
numbers or the field of real numbers. Let o € H,(X, K) be a class
in the n-dimensional singular homology of X with coefficients in K.
By definition there is a finite linear combination of continuous maps
o; : A — X defined on the standard n-dimensional simplex, with coef-
ficients a; in K, which represents «. The I'-(semi)-norm on singular
homology is defined as

||a||1 = inf {Z |a;| : [Z aiaz} = a} ,
see [5, 0.2].

If « € H,(X,Z) is an integral class, we may apply to it the natural
change of coefficients morphism

H.(X,Z) - H.,(X,R),
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and view it as a real class (which may vanish) and consider its {!-norm,
also denoted ||a||;. This measures the optimal “size” (in the ['-norm) of
a real representative for the integral class. When M is a closed oriented
manifold, the /*-norm of its fundamental class [M] € H,(M;Z) is called
the simplicial volume of M, and will be denoted by ||M]|].

Rather than looking at all chains representing the class a, one could
instead restrict to chains which satisfy some additional geometric con-
straint. To this end, let us consider the set of all closed smooth oriented
manifolds and continuous maps (M, f : M — X) such that f sends the
fundamental class of M to a. Recall that according to a celebrated
result of Thom [8, Théoreme II1.9], if n > 7, this set may be empty,
even if X is a finite polyhedron. On integral homology, we consider the
sub-additive function

pla) = inf {[M]| : f.[M] = o},

(with the usual convention that the infimum of the empty set is 4+00)
and the corresponding manifold (semi)-norm

lllman = inf {M}

meN m

Thom has shown that the manifold norm is finite [8, Théoreme II1.4]
when X is a finite polyhedron. In fact it is finite for any topological
space: this follows from the work of Gaifullin (apply [3] and Proposition
2.1 below).

It is immediate from the definitions that || — ||; < || — ||man holds on
H,(X,Z), for any n, and any topological space X.

Theorem 1.1. For each degree n, there exists a constant 6,, > 0, such
that for any topological space X and any class o € H,(X,Z), we have:

Onlled[man < [lalli < [laflman-

After some preliminary material in Sections 2 and 3, we provide a
proof of Theorem 1.1 in Section 4. Section 5 is devoted to identifying
the optimal values of the ¢,. It is straightforward to show that the
norms are equal if n < 2 (i.e. one can take d, = 1). It also follows
rather easily from work of Crowley and Loh [1, Proposition 4.3] that for
degree n > 4, one can take 6, = 1 (see our Proposition 5.1 below). So
in all cases except possibly in degree = 3, one actually has the equality
llalli = ||a]|man- We do not know if the optimal value of d3 is 1, even
if we restrict to the case where X is a finite polyhedron. Our method
of proof yields a value of d3 which is approximately 0.0004809.
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2. GLUING SIMPLEXES ALONG THEIR FACES

Our first goal is to realize an integral class § as the image of a
A-complex [6, Section 2.1] which is a disjoint union of n-dimensional
pseudomanifolds [7, Chap. 3, Ex. C] whose number of n-simplexes is
controlled in term of 5. The precise statement we need is the following.

Proposition 2.1. Let X be a topological space and let € H,(X,7Z)
be a integral class on X of degree n represented by a singular cycle
>, mio;, m; € Z. Then there is a A-complex Q) and a continuous map
g : QQ — X with the following properties.

(1) The number of n-dimensional simplexes of Q is Y, |m;|.

(2) The second barycentric subdivision of @ defines a simplicial
complex P which is a finite disjoint union of oriented n-dimensional
pseudomanifolds without boundary.

(3) g[P] = B, that is g sends the fundamental class of the pseudo-
manifold P to the class .

Remark 2.2. If n < 2, we can choose Q) so that the pseudomanifolds
are manifolds.

All this is well-known and can be deduced from [6, Chapter 2]. We
sketch the proof for the convenience of the reader.

Proof. The statement is trivial if n = 0 hence we assume n > 1. In the
cycle >, m;o;, we consider each singular n-simplex o; whose coefficient
m,; is negative. We precompose o; with an affine automorphism of the
standard n-simplex which reverse the orientation and change the sign
of m;. This leads to a representative of the same class § with positive
coefficients m; € N. Let us define

T:Zmi,

and let U be the disjoint union of 7" standard n-simplexes. Repeating
m; times each singular simplex o;, we write our cycle

T
E 04,
=1
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and we obtain a continuous map
oc:U—-X

whose restriction to the i-th copy of the standard n-simplex is o;. Each

term of the boundary
T
(320
i=1

is the restriction of some o; to an (n— 1)-face of the i-th n-simplex of U
(times a coefficient which is either 1 or —1 because we repeat the terms).
If two such singular (n — 1)-simplexes are equal (as maps defined on
the standard (n—1)-simplex) and if their coefficients are opposite, they
form what we call a canceling pair. We choose a maximal collection of
canceling pairs and for each pair we identify the two (n — 1)-faces of
U on which the two terms of the pair coincide. The topological space
defined as the quotient of U with respect to the equivalence relation
defined by these identifications has a A-complex structure ) with 7'
n-simplexes. It has no boundary because we choose a maximal fam-
ily of canceling pairs and because Z;‘FZI o; is a cycle. One checks that
the second barycentric subdivision of () defines a simplicial complex P
whose connected components are n-dimensional oriented pseudoman-
ifolds. The map o : U — X factors through P. The quotient map
g : P — X is continuous and g,[P] = 8. This proves the proposition.
If n < 2, one checks that each link of each vertex of () is a sphere. This
proves the remark. O

3. GAIFULLIN’S DESINGULARIZATION

We will need a result of Gaifullin, which provides a constructive
desingularization of an oriented pseudo-manifold (see [3], or [4] for a
more detailed explanation). Let us briefly describe this result. Gaifullin
establishes the existence, in each dimension n, of a closed oriented n-
manifold M having the following universal property. Given any ori-
ented n-dimensional pseudo-manifold P, with K top-dimensional sim-
plices, and with a regular coloring of the vertex set by (n + 1) colors
(i.e. any adjacent vertices are of different colors), there exists:

e a finite cover 7 : M — M, of degree 1+ K -1I,|P,l, and
e amap f: M — P with the property that:
flM] =271 1L, P,| - [2) € H,(P;Z)

The degrees of the maps involve the integer I1,| P, | (which is the pro-
duct of the cardinalities of the finite sets P, ), whose precise definition
(see [3, pg. 563]) we will not need. We merely point out that the
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term II,| P, | depends solely on the combinatorics of P, and appears in
the expressions for both the degree of the covering map m, and of the
“desingularization” map f.

The universal manifolds M are explicitly described, and are the
Tomei manifolds. For the convenience of the reader, we provide some
discussion of the Tomei manifolds in the Appendix to the present pa-
per. The Appendix also establishes some specific properties of the
3-dimensional Tomei manifold which will be used in the proof of Propo-
sition 5.2.

4. PROOF OF THEOREM 1.1

Proof. Let a € H,(X,Z) and let ¢ > 0. The change of coefficients
morphism
H, (X, Z) — Ho(X,R)
factors through H, (X, Q) and the map
H,(X,Q) — H,(X,R)
is an isometric injection. Hence we can find a representative
Y

of a with r; € Q such that

(1) > il < lladls + e

Let m be the least common multiple of all the denominators of the
reduced fractions of the r;. The chain

E mr;o;
i
is an integral chain representing the class

B =mae H,(X,Z).

Now we apply our Proposition 2.1 to the integral class 8. This gives us
a A-complex ) and a continuous map ¢ : Q — X with the following
properties:

(i) The number of n-dimensional simplexes of @ is
mz ri| < m([lafli +¢).

(ii) The second barycentric subdivision of @) defines a simplicial com-
plex P which is a finite disjoint union an oriented n-dimensional
pseudomanifolds without boundary.
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(iii) g maps the fundamental class of P to the class 3, i.e. g.[P] = p.

Notice that in the case ) is a manifold (that is automatic if n = 2, as
explained at the end of the proof of Proposition 2.1), then the inequality

Ha”man < ||a||1

follows, since for any € > 0 we have
1QNl/m < lally +€/m.

If @ is not a manifold - that is if at least one of the connected
component of the simplicial complex P is not a manifold but only a
pseudo-manifold - then a desingularization process is needed to produce
a manifold. We first consider the case when P is connected. The
number of n-dimensional simplices of the barycentric division of the
standard n-simplex being (n + 1)!, we observe that the number K of
top-dimensional simplices in P is

K=(n+ 1)!2mz 7]

Moreover, the vertex set clearly has a regular coloring by (n + 1) col-
ors: each vertex v lies in the interior of a unique cell o, from the first
barycentric subdivision, and we can color the vertex v with the color
1+ dim(oy,) € {1,...,n+ 1}. So we can now apply Gaifullin’s desin-
gularization process to the pseudo-manifold P, obtaining the following
diagram of spaces and maps:

M <" M P X .

Moreover, we know that

(a) g:[P] =B =m o€ H\(X;Z),
(b) fulM]=2""1TL,|R,| - [P] € Ho(P; Z).

The map 7 is a covering map of degree % - K -T1,|P,|, so we can also

compute the simplicial volume of M:
~ 1
1M =5 - K- 1L R, - [[M]]
Combining (a) and (b) above, we see that the composite map go f :

M — X allows us to represent the homology class [m-?”fl-HW|Pw|] ‘o €
H,(X;Z) as the image of the fundamental class of the oriented manifold
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M. From the definition of the manifold semi-norm, we obtain:
1

mang M
||a|| m2n,1Hw|Pw||| ||
LK TP
_ 2 wldfw M
m - 2n~1 -Hw|Pw||| I
_ (n+1)PmY, |Tl|||M||
m - 2"

12
< faall- [ D5 (o + o
Letting € go to zero completes the proof, with the explicit value
on

(n+ 1)1 |[M]]"

where M is the n-dimensional Tomei manifold appearing in Gaifullin’s
desingularization procedure. In the case P = U;P; has several con-
nected components P;, let d be the least common multiple of the
I,[(P;).| and for each i, let m; = d/II,|(P;)s|. Exactly the same
proof applies with M= U L, Mi, f=UiUp, fi, m=U; Up, 7. ]

op =

5. ESTIMATING THE 0,

As explained in the course of the proof of Theorem 1.1, one can take
05 = 1. Applying results of Crowley and Loh, we also have:

Proposition 5.1. In degrees n > 4, we can take 9, = 1, i.e. for any
topological space X and any class o € H,(X,Z) of degree n > 4, one
has the equality

||Oé||1 = ||a||man-

Proof. The inequality ||a|l; < ||a/man is immediate from the defini-
tions, so let us focus on the converse. Proceeding as in the proof of
Theorem 1.1, given any ¢ > 0, we can find a corresponding integral

chain
E mr;o;
7

f=mae H,(X,Z).
and where the rational numbers r; satisfy

(2) Z il < ey +€/2.

representing a class

Now apply Proposition 2.1 to the integral class [, obtaining a A-
complex ) and a continuous map ¢ : @ — X such that ¢.[Q] = B.
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As @ itself is a finite C'W-complex of dimension n > 4, a result of
Crowley & Loh [1, Prop. 4.3] implies that ||[Q]|[1 = ||[@]||man. Since
we have a realization of () as a A-complex with exactly m ). |r;| top-
dimensional simplices, we obtain:

@ lman = [1[@]Ih < mZ\m

Consider the positive real number me/2 > 0. From the definition of
the manifold norm, we can find a closed oriented manifold N, and
a continuous map h : N — @ of degree d, with the property that
h[N] = d-[Q], and satisfying:

[V

(3) — < ||Q!|man+m6/2§mZ]ri|+me/2

The composite map goh : N — X sends the fundamental class [N] to
d- 3 = d-ma. Using this map to estimate the manifold norm of «, we
obtain:

where the second inequality was deduced from equation (3), and the
last inequality from equation (2). Finally, letting € > 0 go to zero, we
obtain ||al|man < ||||1, completing the proof. O

It is tempting to guess that the optimal value of 43 is also = 1.
Our method of proof gives a substantially lower value of d3, which is
explicitly given by:

Proposition 5.2. The optimal value of 03 is > 57‘(/54‘/8 ~ 0.0004809,
where V3 and Vi are the volumes of the 3-dimensional reqular ideal
hyperbolic tetrahedron and octahedron, respectively.

Proof. The proof of our Theorem 1.1 yields the general value
(DR IM]
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where M is the n-dimensional Tomei manifold. Specializing to dimen-
sion n = 3, and using the fact that ||M3|| = 8V5/V3 (see Lemma 6.2 in
the Appendix), we obtain the claim. O

6. APPENDIX: TOMEI MANIFOLDS

The universal manifolds M used in Gaifullin’s desingularization are
the Tomei manifolds. For the convenience of the reader, we provide in
this Appendix a brief description of these manifolds. We also establish
some results concerning the 3-dimensional Tomei manifold that are
used in estimating the constant d3 arising in our proof of Theorem 1.1
(see Proposition 5.2).

A matrix A = [ay;] is tridiagonal if a;; = 0 for all indices satisfying
|i — j| > 1. The n-dimensional Tomei manifold consists of all (n+ 1) x
(n+1) real symmetric tridiagonal matrices, with fixed simple spectrum
Ao < A1 < -+ < A, (the manifold is independent of the choice of
simple spectrum). These manifolds were introduced by Tomei [10],
and further studied by Davis [2]. An important result of Tomei is that
these manifolds support a very natural cellular decomposition, which
we now describe.

First, recall the definition of the n-dimensional permutahedron II™.
The permutahedron is an n-dimensional, simple, convex polytope, ob-
tained as the convex hull of a specific configuration of points in R™*1,
If the symmetric group S,,; acts on R"™ by permuting the coordi-
nates, then the permutahedron II" is defined to be the convex hull of
the S, 1-orbit of the point (1,2,...,n+ 1) € R**. The facets (codi-
mension one faces) of the permutahedron II" are parametrized by the
2"+l — 2 non-empty proper subsets w C {1,...,n + 1}: the facet F,
corresponding to the subset w is defined to be

F,={fe€dll"|View, V) €w, z; <z}

From this, it easily follows that two distinct facets F,,, I, intersect if
and only if w; C ws or wy € wy. One also has that any codimension k
face of II", being of the form F, N...F,, for some choice of distinct
facets, corresponds (after possibly re-indexing) to a unique length &
chain wy; C wy € - -+ C wy of non-empty proper subsets of {1,...,n+1}.

Tomei [10] showed that the n-dimensional Tomei manifold M has a
particularly simple tiling by 2" copies of the n-dimensional permuta-
hedron I1". Let eq,...,e, be the standard generators for Z3. Then the
n-dimensional Tomei manifold can be identified with (Z5 x II")/ ~,
where the equivalence relation is given by (g, ) ~ (ej,g, ) whenever
r € F,.
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FIGURE 1. The 3-dimensional permutahedron II3.

Example: For a concrete example, when n = 3, the permutahedron
I13 is the truncated octahedron (see Figure 1 above). It has 6 square
facets (parametrized by subsets w C {1,2,3,4} with |w| = 2) and 8
hexagonal facets (parametrized by the w with |w| = 1,3). Figure 2
includes some vertex coordinates, and labels some of the facets with
the corresponding subset of {1,2,3,4}.

In the corresponding Tomei manifold M3, tessellated by eight copies
of II?, one can easily see that each edge of the tessellation lies on
exactly four copies of II>. Now consider the 24 squares appearing in
the tessellation of M. The union of all these squares form a collection
of six tori embedded in M, each tessellated by 4 squares. Note that,
from the definition of the gluings, each square bounds two copies of II3,
whose indices in Z?* differ in the middle coordinate (corresponding to
the generator e;). This implies that the collection of six tori separate
M? into two copies of a manifold N. Each of the two copies of N is
tessellated by four copies of II?, and there is a Zs-involution on M3
which fixes the collection of tori, and interchanges the two copies of
N. The involution can be easily described in terms of the description
M = (Z3 x T13)/ ~: it sends each element (g, ) to (es - g, ).

A nice consequence of Gaifullin’s work is the following elementary:

Lemma 6.1. If M is a Tomei manifold, then ||M]|| > 0.

Proof. Let N be a closed hyperbolic manifold of the same dimension
as M. It follows from work of Gromov and Thurston that ||N]|| > 0



COMPARING SEMI-NORMS ON HOMOLOGY 11

212y L123

4312

H3z|

342

FIGURE 2. A portion of II3. Vertices are labelled by
their coordinates in R* (parentheses and commas omitted
to avoid cluttering the picture). Facets are labelled with
the corresponding subset w C {1,2,3,4}.

(see [9, Chapter 6]). Take an arbitrary triangulation of N, pass to
the barycentric subdivision, and apply Gaifullin’s desingularization.
This gives us a finite cover M — M with a map f: M — N, of
degree d # 0. Since ||N|| > 0, the obvious inequality |[M]||/d > ||N]]
immediately forces ||M|| > 0. But the simplicial volume scales under
covering maps, so we conclude that ||[M]| > 0, as desired. O

In general, the computation of the exact value of the simplicial vol-
ume is an extremely difficult problem. For the 3-dimensional Tomei
manifold, we can, however, give an exact computation. Let V5 denote
the volume of a regular ideal hyperbolic octahedron, and V3 denote the
volume of a regular ideal hyperbolic tetrahedron. These volumes can
be expressed in terms of the Lobachevsky function

A) = _/0 log |2 sin(t)] dt
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and are exactly equal to Vg = 8A(7/4) and V5 = 2A(7/6) (see Thurston
9, Section 7.2]). Up to five decimal places, Vg5 ~ 3.66386 and V3 ~
1.01494.

Lemma 6.2. The 3-dimensional Tomei manifold M? has simplicial
volume ||M|| = 8Vzs/V3, (which is ~ 28.8794).

Proof. Closed 3-manifolds are one of the few classes of manifolds for
which the simplicial volume is known. Recall that for hyperbolic 3-
manifolds, the simplicial volume is proportional to the hyperbolic vol-
ume, with constant of proportionality 1/V3. For Seifert fibered 3-
manifolds, the existence of an S'-action immediately implies that the
simplicial volume is zero. For a general closed, orientable, 3-manifold,
the validity of Thurston’s geometrization conjecture (recently estab-
lished by Perelman) implies that there is a decomposition into geomet-
ric pieces. Since simplicial volume is additive under connected sums (in
dimensions > 3), and under gluings along tori (see [5, Section 3.5]), this
implies that the simplicial volume of any closed, orientable 3-manifold
is proportional (with constant 1/V3) to the sum of the (hyperbolic)
volumes of the hyperbolic pieces in its geometric decomposition.

Let us apply this procedure to the Tomei manifold M. Recall that
M is the double of a 3-manifold N with ON consisting of four tori.
From the gluing formula we deduce that |[M]|| = 2||N||. To compute
| V]|, recall that N is tessellated by four copies of the 3-dimensional
permutahedron I3, with the collection of square faces of all the II?
forming the boundary tori of N. This implies that the interior of N
is tessellated by copies of II? with the square boundary faces removed.
Next we claim that Int(N) supports a finite volume hyperbolic metric.

Under this tessellation, each interior edge of N lies on exactly four
of the II3. Let O C H? denote the regular ideal hyperbolic octahedron.
This octahedron has all six vertices on the boundary at infinity of H?,
and has all incident pairs of faces forming angles of 7/2. A copy of
the permutahedron II? can be obtained by removing small horoball
neighborhoods of each of the ideal vertices. Each hexagonal face of II3
corresponds to a triangular face of O. So one can form a manifold N° by
gluing together four copies of O, using the same gluing pattern as in the
formation of N. Using isometries to glue together the sides of O, one
obtains a metric on N° which is hyperbolic, except possibly along the 1-
skeleton of N°. To check whether or not one has a singularity along the
edges of N°, one just needs to calculate the total angle transverse to the
edge. But recall that along each edge in N°, one has four copies of O
coming together. Since each edge in O has an internal angle of /2, the
total angle transverse to each edge of N° is equal to 2m. We conclude
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that N° supports a complete hyperbolic metric, with hyperbolic volume
= 4V4.

N is obtained from N° by removing a neighborhood of the ideal
vertices in each O in the tessellation of N°. This means that N is
obtained from the non-compact, finite volume, hyperbolic manifold N°
by “truncating the cusps”. It follows that Int(NN) is diffecomorphic to
N°. Since cutting M open along the collection of tori results in two
copies of Int(N) = N°, a manifold supporting a hyperbolic metric, we
have that this is exactly the geometric decomposition of M predicted
by Thurston’s geometrization conjecture (compare with [2, pg. 105,
Footnote 2]). Our discussion above implies that

2Vol(N°)  8Vs

M = — =
logl) = =5 = T
completing the proof of the Lemma. O
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