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Abstract

We show that there are infinitely many homeomorphism types of atoroidal
surface bundles over surfaces which have signature zero.

1 Introduction

In 3-manifold topology, it is well known that one can construct surface bun-
dles over the circle by taking the mapping torus of a homeomorphism ϕ of
a closed or punctured surface. When the mapping class associated to ϕ is
pseudo-Anosov, seminal work of Thurston [23, 24] shows that this mapping
torus is moreover a finite volume, hyperbolic manifold. In fact, Thurston
shows the stronger fact that the hyperbolicity of such a mapping torus is
equivalent to it being atoroidal, that is, not containing an essential torus.

Motivated by the desire to extend this picture to dimension four, for
several decades it has been an open question whether there similarly exist
atoroidal surface bundles over surfaces in dimension four. Such manifolds
represent natural candidates for constructing hyperbolic manifolds in the
spirit of Thurston. This year, groundbreaking work of Kent–Leininger [16]
resolves this by showing that a plethora of atoroidal surface bundles over
surfaces exist. In what follows, Sg always denotes a closed surface of genus
g ≥ 2, and Mod(Sg) denotes its mapping class group.

Theorem 1.1 (Kent–Leininger). For every g ≥ 4, there exist infinitely
many distinct commensurability classes of purely pseudo-Anosov subgroups
π1(Sh) < Mod(Sg) where h ≥ 2. In particular, there are infinitely many
homeomorphism types of atoroidal surface bundles over surfaces.

Recall that a purely pseudo-Anosov subgroup of the mapping class group
is one for which every non-trivial element is a pseudo-Anosov mapping class.
The equivalence of the existence of such subgroups and the existence of an
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atoroidal surface bundle over a surface is well known; see Section 2.1 for
details. Though not stated explicitly in [16], the statement on homeomor-
phism types follows from the fact that a bundle with base Sh and fiber Sg
has Euler characteristic 4(g−1)(h−1), and both g and h can be chosen to be
arbitrarily large. Furthermore, it is known that surface bundles over surfaces
have finitely many fibering structures [14], in contrast to the 3-dimensional
setting [30].

The work of Kent–Leininger opens the door to exploring whether such
bundles admit interesting geometric structures. For instance, the follow-
ing are well-known and important open questions that have been widely
circulated over the past few decades.

Question 1.2. Suppose that M is an atoroidal surface bundle over a sur-
face. Is π1(M) Gromov hyperbolic? Does M possess a negatively curved
Riemannian metric? Does M possess a hyperbolic metric?

In this paper, by hyperbolic, we mean real hyperbolic. Note that this is
the only locally symmetric structure that such M can admit. For instance,
if a closed manifold is modeled on H2 × H2, then its fundamental group
must contain Z2 by [25, Cor 2.9]. On the other hand, surface bundles are
known not to admit complex hyperbolic structures by [15]. Alternatively,
for the specific kind of surface bundles considered in this paper, one can
argue that if M is a closed 4-manifold with a complex hyperbolic metric,
then χ(M) = 3|σ(M)| by [31], but the Euler characteristic of an Sg-bundle
over Sh is 4(g − 1)(h− 1), while we compute that the signature vanishes.

We also remark that in Question 1.2, an affirmative answer to any of the
questions listed implies an affirmative answer to their predecessors, therefore
M being a real hyperbolic manifold is the strongest statement one could ask
for. To our knowledge, it is widely expected that suchM should not be real
hyperbolic manifolds, although π1(M) is expected to be Gromov hyperbolic.
In the special case of the manifolds arising from the construction of [16],
Kent–Leininger do indeed conjecture the latter is always the case.

Producing or, alternatively, ruling out hyperbolic structures on closed
manifolds M can be difficult in the absence of obvious obstructions to hy-
perbolicity (e.g., being aspherical and atoroidal). In the case that M has
dimension 4, one key obstruction comes from the signature of M , σ(M),
which is an integer-valued invariant attached toM which must vanish when-
ever M is hyperbolic (see Section 2.2 for the definition and details). One
potential strategy to ruling out a hyperbolic structure on an atoroidal sur-
face bundle M is therefore to show that σ(M) ̸= 0. The main goal of this
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paper is to show that, on the contrary, there are infinitely many atoroidal
surface bundles whose signature vanishes.

We remark that, while all closed hyperbolic manifolds have signature
zero, the general relation between signature and negative curvature is a del-
icate one. Indeed, Gromov-Thurston [10] constructed closed manifolds with
curvature pinched close to −1 that are not hyperbolic and have signature
0. For these manifolds, vanishing of the signature can be seen in several
different ways. For example, one can use the fact that they are conformally
flat and apply Chern-Weil theory, see [3], or one can use Viro’s formula for
the signature of a branched cover, see [32]. Alternatively, a geometric argu-
ment can be found in [18, Thm B]. On the other hand, Ontaneda [22, Cor 4]
obtained closed manifolds with curvature pinched close to −1 with non-zero
signature.

To provide context for the statement of our results, we briefly recall
the proof strategy of Theorem 1.1. In what follows, let T 2 denote the 2-
torus and T 2

X = T 2 \ X for a finite set of points X. We also denote by
M41 the 3-manifold obtained as the complement of the figure-eight knot
in S3. This manifold is well known to admit a unique hyperbolic metric
of finite volume and therefore a discrete faithful representation π1(M41) →
PSL2(C) = Isom+(H3). The main novelty of [16] is to show that π1(M41)
admits an injective, type-preserving homomorphism into Mod(T 2

X), when
|X| = 3. By a type-preserving homomorphism, we mean one that takes
loxodromic elements to pseudo-Anosov mapping classes, and parabolic el-
ements to reducible mapping classes, where for this classification we have
identified π1(M41) with its image under the aforementioned discrete, faithful
representation. Using branched covers over T 2, Kent–Leininger then show
that for every g ≥ 4, there is a finite index subgroup Hg < π1(M41) with a
type-preserving homomorphism of Hg into Mod(Sg) (see Section 3 for more
details). From there, any closed, quasi-Fuchsian surface subgroup of Hg

produces an associated atoroidal surface bundle.
With this strategy in mind, our first result is that the corresponding

atoroidal surface bundle has signature 0, provided the associated closed sur-
face is null-homologous. In the interest of providing a tool flexible enough to
handle any future variations of the construction of Kent–Leininger, we will
state and prove it in more generality than just the setting of the previous
paragraph.

Theorem 1.3. Let S be a closed orientable surface, X ⊆ S a finite (possibly
empty) set of points, and SX = S \X. Assume that χ(SX) < 0. Then there
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exists infinitely many g ≥ 2 for which there is an injective, type-preserving
homomorphism ι : Mod(SX) ↪→ Mod(Sg).

Moreover, assume that M is a CW-complex with an injective homomor-
phism π1(M) ↪→ Mod(SX). Let Σ ⊂ M be any null-homologous closed ori-
entable surface. Then the associated Sg-bundle Eι with base Σ has signature
0. If ι(π1(Σ)) is purely pseudo-Anosov, then Eι is atoroidal.

We remark that the main contribution here is the statement on the van-
ishing of σ(Eι). Indeed, the homomorphism ι in Theorem 1.3 is constructed
via the classical branched covering techniques developed by Birman–Hilden
[4, 5], and more recent developments, see [1, 16, 19]. In §3 we propose a
variation on this theme that is adapted to our purposes, namely one that
gives an embedding of Mod(SX) into Mod(Sg) without having to pass to a
finite-index subgroup.

For a concrete application of Theorem 1.3, recall that H2(M41 ;Z) = 0 as
M41 is a knot complement in S3 (alternatively a hyperbolic once punctured
torus bundle) and therefore every closed, quasi-Fuchsian surface in M41 is
null-homologous. Applying this theorem to the injective, type preserving
homomorphism π1(M41) → Mod(T 2

X) constructed by Kent-Leininger [16]
we conclude the following from Theorem 1.3.

Theorem 1.4. For infinitely many natural numbers h ≥ 2 and infinitely
many natural numbers g ≥ 2, there exists an atoroidal Sg-bundle over Sh
with signature 0. In particular, there are infinitely many homeomorphism
types of atoroidal surface bundles over surfaces with signature 0.

The observant reader will notice that we only claim infinitely many g ≥ 2
in contrast to Theorem 1.1. This is an artifact of our proof and a discussion
of this discrepancy can be found in Remark 4.1.

It is known by work of Salter [27] that surface bundles over surfaces
may have arbitrarily many fibering structures, that is, for every n there is
a surface bundle over surface with at least n different fibering structures.
The constructions of Salter have monodromy contained in the Torelli group,
however, Salter [26] has also shown that the stronger property of having
monodromy contained in the Johnson kernel implies a unique fibering struc-
ture (provided the bundle is non-trivial). From this perspective, we find the
following related question interesting.

Question 1.5. Given a purely pseudo-Anosov, closed surface subgroup aris-
ing from the construction of [16], can one describe the monodromy in Mod(Sg)
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explicitly? Do the subgroups corresponding to non-commensurable, closed to-
tally geodesic surfaces in M41 always give rise to distinct homeomorphism
types of the associated bundles?

This would be the case if one could prove that such bundles have a unique
fibering structure.

Acknowledgements: The authors are grateful to Autumn Kent and Chris
Leininger for helpful conversations related to their construction of atoroidal
surface bundles. Lafont was partially sponsored by NSF DMS–2407438 and
Miller was partially sponsored by NSF DMS–2405264.

2 Background

2.1 Hyperbolic manifolds and surface bundles

We record some well-known facts that we require in the sequel. In what
follows, by a hyperbolic manifoldM we always mean a finite-volume quotient
of Hn by a discrete, torsion free subgroup of Isom+(Hn). In particular,
implicitly all of our manifolds are orientable.

When n = 3, a particularly important construction of hyperbolic mani-
folds M are knot complements in the 3-sphere, which arise from removing
a tubular neighborhood of a knot K from S3 and hyperbolizing the com-
plement. It is a consequence of Thurston’s hyperbolization theorem [23, 24]
that such knot complements are hyperbolizable unless K is a satellite or
torus knot. As we require it in the sequel, we note that a straightforward
Alexander duality computation shows that H̃k(M ;Z) ∼= H̃2−k(S1;Z) and
therefore we have the following.

Lemma 2.1. If M is a knot complement in S3, then H2(M ;Z) = 0.

Of particular interest to us in the sequel will be the question of whether
certain 4-manifolds arising as surface bundles over surfaces are hyperboliz-
able. For this, we remind the reader of the classification of C∞ surface
bundles over an arbitrary base B, which is due to Earle and Eells [8] (see
also [21, Prop 4.6]).

Theorem 2.2 (Earle–Eells). Let B be any C∞ manifold and g any nat-
ural number at least 2. Then isomorphism classes of Sg-bundles over B
are in one-to-one correspondence with conjugacy classes of homomorphisms
π1(B) → Mod(Sg).
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Indeed, what Earle–Eells show in [8] is that Diff0(Sg) is contractible
(provided g ≥ 2) and therefore the natural map Diff(Sg) → Mod(Sg) is a
homotopy equivalence. This theorem will be useful later in the case that B
is either a hyperbolic surface, or a 3-manifold with boundary. In the case
that B is a closed hyperbolic surface, one can moreover decide when the
corresponding closed surface bundle E is atoroidal, i.e. π1(E) has no Z2

subgroup, using the following result of Bowditch [6, Lem 1.2].

Lemma 2.3. Let E be an Sg-bundle over Sh for g, h ≥ 2. Then E is
atoroidal if and only if the associated monodromy representation π1(Sh) →
Mod(Sg) has purely pseudo-Anosov image.

2.2 Recollections on signature

In this subsection, we let M be a closed oriented manifold of dimension 4k
for some k ∈ N. Then Poincaré duality implies that the cup product in
middle dimension

∪ : H2k(M ;R)×H2k(M ;R) → R,

is non-degenerate. Moreover, as any two classes α, β ∈ H2k(M ;R) have the
property that α∪β = β∪α, it follows that−∪− is a non-degenerate, symmet-
ric bilinear form and hence induces a quadratic form qM : H2k(M ;R) → R
over R. By Sylvester’s law of inertia, any such quadratic form is isomet-
ric to one with n+(qM ) eigenvalues of +1 and n−(qM ) eigenvalues of −1,
where n+(qM ) + n−(qM ) equals b2k(M), the dimension of H2k(M ;R). The
signature of M is then given by the formula

σ(M) = n+(qM )− n−(qM ),

which is a homotopy invariant ofM . Moreover, we always have the following
in the special case that M bounds.

Theorem 2.4. For a given 4k-manifold M as above, suppose that there
exists a compact oriented (4k + 1)-manifold F such that ∂F = M , then
σ(M) = 0.

This follows from the usual long exact sequence for the pair (F,M)
combined with Poincaré duality for manifolds with boundary. Indeed, in the
setting of Theorem 2.4 one can show that there is a (b2k(M)/2)-dimensional
isotropic subspace for qM from which the result follows. In fact, one can
moreover show that signature is a surjection from the oriented bordism ring
ΩSO
4k to Z for all k ∈ N and is an isomorphism when k = 1.
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We record the following well-known fact about the signature of hyper-
bolic 4k-manifolds.

Proposition 2.5. If M is a closed hyperbolic 4k-manifold, then σ(M) = 0.

Proof. By Hirzebruch’s signature formula (see [12, Thm 8.2.2]), in order to
show that the signature vanishes, it suffices to show that the Pontryagin
classes pi(M) of M vanish for all i ∈ N. For example, in dimension 4 one
has σ(M) = 1

3 < p1(M), [M ] >. By the Hirzebruch proportionality principle
(see [12, Appendix 1]), this is equivalent to showing that pi(S

4k−1) = 0.
However this is well known and follows, for instance, from the fact that
TS4k−1 is stably trivial.

In the case of 4-manifolds arising as surface bundles over surfaces, the
signature can sometimes be determined via homological data as follows. Let
Σ be a closed orientable surface, and assume one is given a homomorphism
ρ : π1(Σ) → Mod(Sg). This determines an Sg-bundle Eρ → Σ, as well as a
class [ρ(Σ)] ∈ H2(Mod(Sg);Z), namely the pushforward of the fundamental
class of Σ along any map fρ : Σ → BMod(Sg) inducing ρ.

Proposition 2.6. If g ≥ 3, then σ(Eρ) = 0 if and only if [ρ(Σ)] = 0.

Proof. This follows from the following facts

H2(Mod(Sg);Z) ∼= Hom(H2(Mod(Sg);Z),Z) ∼= Z,

H2(Mod(Sg);Z) ∼= Z,

noting that when g ≥ 3, H1(Mod(Sg);Z) = 0, and hence the Ext term van-
ishes. Also, a generator of H2(Mod(Sg);Z) is given by the Meyer signature
cocycle, whose value on ρ(Σ) is precisely σ(Eρ), see [9, §5.6].

Remark 2.7. Let M be a CW-complex with a non-trivial homomorphism
ρ : π1(M) → Mod(Sg). Suppose that M admits a map f : Σ → M from a
closed orientable surface Σ that is π1-injective but null-homologous. Then,
restricting ρ to π1(Σ) provides an example of a non-trivial homomorphism ρ :
π1(Σ) → Mod(Sg) for which [ρ(Σ)] = 0. The associated surface bundle Eρ is
non-trivial but has trivial signature by Proposition 2.6. In Appendix A we
provide an alternative proof of this fact by showing that Eρ is the boundary
of a compact orientable smooth 5-manifold and invoking Theorem 2.4.
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3 Finding type-preserving lifts of Mod(SX)

Let S be a closed orientable surface, X ⊆ S a finite set of points, and
SX = S \ X. The purpose of this section is to construct injective, type-
preserving homomorphisms Mod(SX) → Mod(Sg) into the mapping class
group of a closed surface Sg for some g ≥ 2. These can be obtained via
the branched covering techniques developed by Birman-Hilden [4, 5, 19] and
more recently in [1, 13, 16]. In the closed case, i.e., when X = ∅, this is
achieved in [1, Thm 1, Lem 10], hence we will focus on the punctured case.
In the sequel, let n = |X| ≥ 1.

We start by reviewing how to construct a homomorphism between map-
ping class groups from branched covers, for the reader’s convenience and
to fix notation; see [1, §2] for details. Let κ : S̃ → S be a branched
cover, branching over X. Let Y = κ−1(X) and S̃Y = S̃ \ Y , so that κ
restricts to an unbranched cover S̃Y → SX which we also denote by κ. If
Mod0(SX) ≤ Mod(SX) denotes the finite index subgroup of mapping classes
which lift to S̃Y then there is a short exact sequence

1 // K // M̃od0(SX)
κ∗ //Mod0(SX) // 1 , (1)

where K is the deck group of S̃Y → SX and M̃od0(SX) < Mod(S̃Y ) is the
subgroup of lifts of elements of Mod0(SX). A common strategy for construct-
ing such a homomorphism is to try to split this sequence, and then compose
a section with the map that forgets the punctures Mod(S̃Y ) → Mod(S̃).
Choices of κ for which the sequence (1) splits include the extreme cases of κ
being characteristic and κ having trivial deck group. In both circumstances,
it is possible to obtain the desired embedding into the mapping class group
of a closed surface.

Theorem 3.1. Let S be a closed orientable surface, X ⊆ S a finite set of
points, and SX = S \X. Then there is a finite branched cover κ : S̃ → S,
branching over X, that induces an injective, type-preserving homomorphism
Mod(SX) → Mod(S̃). Moreover, the induced unbranched cover κ : S̃Y =
S̃ \κ−1(X) → SX can be chosen either to be characteristic or to have trivial
deck group.

The main contribution here is that Mod(SX) admits an injective, type-
preserving homomorphism into the mapping class group of some closed sur-
face S̃, induced by a cover with a lot of symmetries or no symmetries at all.
Once one has that, one can compose with the injections from [1, Thm 1] to
obtain embeddings into higher and higher genera.
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Figure 1: The fundamental group generators from Equation (2).

A key observation here is that in order for the injections between map-
ping class groups to be type-preserving, one needs to know that the local
degree of κ around each branch point is at least 2; see [1, Lem 10] and [16,
Prop 20].

To obtain the desired covers with the required local degree condition,
we will study finite covers induced by suitably defined representations of
π1(SX) onto finite groups. We will use the following presentation for the
fundamental group of SX

π1(SX) = ⟨a1, b1, . . . , ag, bg, c1, . . . , cn |
g∏

i=1

[ai, bi] =
n∏

i=1

ci⟩, (2)

where the generators are as in Figure 1 and n = |X| ≥ 1 is the number of
punctures. The ci’s will be called peripheral generators. If g = 0 then it is
understood that ai, bi do not appear, i.e., all generators are peripheral.

3.1 Theorem 3.1 for characteristic covers

If κ : S̃Y → SX is a characteristic cover, then the conjugacy class of π1(S̃Y )
is invariant under the action of Mod(SX) on π1(SX), hence every mapping
class lifts, i.e., Mod0(SX) = Mod(SX), see [1, §2] for details.

Moreover, one can obtain a splitting for the sequence in Equation (1)
following Ivanov-McCarthy [13, §2]. Indeed, let us choose a point yi over
each branch point xi, for i = 1, . . . , n. If f is a homeomorphism of SX , then
f permutes the points in X and so we let xi = f(x1). Since the deck group
K acts transitively on the fiber over a branch point, up to post-composing
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with a deck transformation, one can assume that f has a lift that sends
the chosen y1 to the chosen yi, and such lift is uniquely determined. This
provides a right splitting for the sequence in Equation (1).

Hence, for any characteristic cover one has an injective homomorphism
Mod(SX) → Mod(S̃Y ), that one can then compose with the map that forgets
the punctures Mod(S̃Y ) → Mod(S̃). Therefore to prove Theorem 3.1 one is
reduced to producing a finite characteristic cover with local degree at least
2 at each puncture.

Lemma 3.2. Let ρ : π1(SX) → G be a surjective homomorphism to a fi-
nite group such that the order of ρ(ci) in G is at least 2 for i = 1, . . . , n.
Then there is a branched cover κ : S̃ → S that induces an injective, type-
preserving homomorphism Mod(SX) → Mod(S̃), and such that the associ-
ated unbranched cover κ : S̃Y = S̃ \ κ−1(X) → SX is characteristic.

Proof. The subgroup ker(ρ) has index |G|. Since π1(SX) is finitely gener-
ated, there are only finitely many subgroups of index |G|, hence intersecting
all of them provides a characteristic subgroup H < ker(ρ) which still has
finite index. Let κ : S̃Y → SX be the unbranched cover corresponding to
H. It can be completed to a branched cover κ : S̃ → S, and from the as-
sumption that the order of ρ(ci) in G is at least 2 for i = 1, . . . , n, the local
degree is at least 2 at each branch point. Since H provides a deeper cover,
the same is true for κ.

By the discussion above, since κ is characteristic, we obtain injections

Mod(SX) → Mod(S̃Y ) → Mod(S̃), where the last one is the map that forgets
the punctures.

Proof of Theorem 3.1 for characteristic covers. By Lemma 3.2, it is enough
to construct a representation to a finite group for which the peripheral gen-
erators have order at least 2. When n = |X| ≥ 2, let ρ : π1(SX) → Z/nZ
be the homomorphism ρ(ai) = ρ(bi) = 0 and ρ(ci) = 1. When n = 1, let
ρ : π1(SX) → Sym(3) be the homomorphism ρ(ai) = ρ(bi) = 0 for i ≥ 2,
ρ(a1) = (12), ρ(b1) = (23) and ρ(c1) = [(12), (23)] = (123).

3.2 Theorem 3.1 for totally irregular covers

In the previous section, we obtained a right splitting in Equation (1) using
the fact that the deck group of a characteristic cover acts transitively on
each fiber. On the other end of the spectrum, one can split the sequence
in Equation (1) whenever the deck group K of κ is trivial. Indeed, in this
case, κ∗ is an isomorphism. The induced injection of mapping class groups
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is more canonical in the sense that it only depends on the cover κ and not
a choice of point in the fiber.

To construct such covers from finite groups, the key proposition for us
is the following, due to Aramayona–Leininger–Souto [1, Prop 6], which is
stated for closed surfaces but holds equally well for punctured surfaces. See
the discussion after the statement.

Proposition 3.3 (Aramayona–Leininger–Souto). Suppose that G is a finite
group, ρ : π1(SX) → G is a surjective homomorphism with characteristic
kernel, and H < G is a subgroup such that

(a) H is self-normalizing, i.e., NG(H) = H,

(b) Aut(G) ·H = Inn(G) ·H.

If κ : S̃Y → SX is the cover corresponding to ρ−1(H) < π1(SX). Then

(1) π1(S̃Y ) is invariant under the Mod(SX) action on π1(SX),

(2) The sequence in Equation (1) with κ∗ arising from this cover splits.

In particular, if H satisfies conditions (a), (b), then there is an injective
homomorphism Mod(SX) → Mod(S̃Y ).

We remark here that condition (a) implies that the deck group K in
Equation (1) is trivial (see e.g. [11, Prop 1.39]), hence not only does this
sequence splits but κ∗ is actually an isomorphism. Condition (b) ensures
that every mapping class on SX lifts to S̃Y and hence Mod0(SX) coincides
with Mod(SX). Indeed, as in the proof of [1, Prop 1.6], one shows that
Condition (b) implies that

Aut(π1(SX)) · π1(S̃Y ) = Inn(π1(SX)) · π1(S̃Y ).

It follows that Out(π1(SX)) preserves the conjugacy class of π1(S̃Y ) in
π1(SX). Since Mod(SX) ≤ Out(π1(SX)), it follows as an application of
[11, Prop 1.33] that every mapping class of SX lifts to S̃Y , i.e., Mod0(SX) =
Mod(SX). Therefore in this setting, the homomorphism in Proposition 3.3 is

simply induced by the isomorphism κ−1
∗ : Mod(SX) → M̃od0(SX) composed

with the inclusion of the latter into Mod(S̃Y ).
Again, if the local degree of κ at each branch point is at least 2 then

the composition Mod(SX) → Mod(S̃Y ) → Mod(S̃) is an injective, type-
preserving homomorphism into the mapping class group of a closed surface.

11



Remark 3.4. Constructing examples of pairs (G,H) which satisfy condi-
tions (a), (b) of Proposition 3.3 is not particularly difficult. However the ad-
ditional requirements that one has a surjective homomorphism π1(SX) → G
with characteristic kernel and that the associated cover has local degree at
least 2 at each branch point are non-trivial to satisfy. In the rest of this
section we provide pairs (G,H) for which this can be accomplished.

First, we use similar homomorphisms as in [1] to produce examples of
covers satisfying the hypotheses of Proposition 3.3. The following proposi-
tion mirrors the argument in the alternate proof of [1, Thm 1]. However,
later on we will have to make different choices for the subgroups and repre-
sentations involved, so we provide the arguments for the convenience of the
reader.

Proposition 3.5. Let G0 be a non-abelian finite simple group, and let H0 ≤
G0 be a subgroup satisfying the following assumptions:

1. H0 is self-normalizing, i.e., NG0(H0) = H0.

2. Aut(G0) ·H0 = Inn(G0) ·H0.

Then given any surjective homomorphism ρ1 : π1(SX) → G0, there is a
k = k(ρ1), depending on ρ1, such that if we let

G = Gk
0 = G0 × · · · ×G0 and H = Hk

0 = H0 × · · · ×H0,

then there is a surjective homomorphism ρ : π1(SX) → G with characteristic
kernel for which the pair (G,H) satisfies the hypotheses of Proposition 3.3.

Proof. First of all, we show that for any choice of k the pair (G,H) satisfies
the hypotheses of Proposition 3.3. Condition (a) follows from assumption
(1). Moreover, since G is a product of non-abelian finite simple groups,
automorphisms of G are compositions of permutations of the factors with
automorphisms of each factor. Permuting the components of H clearly
preserves its conjugacy class, so condition (b) follows from assumption (2).

Now we show that there is a choice of k for which we can construct a
surjective homomorphism ρ : π1(SX) → G = Gk

0 with characteristic ker-
nel. To this end, let ρ1 : π1(SX) → G0 be the given surjective homomor-
phism. Considering ρ1 as an element of Hom(π1(SX), G0), we enumerate the
Aut(π1(SX))-orbit of ρ1, acting by precomposition. Aut(G0) also acts on
Hom(π1(SX), G0) by postcomposition and we let {ρ1, . . . , ρk} be a maximal
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subcollection of Aut(π1(SX)) ·ρ1 for which no two elements of this subcollec-
tion are in the same Aut(G0)-orbit. We also require that the first element,
ρ1, is the same ρ1 we began with. Then the homomorphism

ρ = ρ1 × · · · × ρk : π1(SX) → G = Gk
0,

has characteristic kernel by construction and is surjective by a lemma of
Hall (see e.g. [1, Lem 8]).

Now, we enrich the previous proposition by adding conditions on the lo-
cal degree around the punctures. Recall that we have fixed the presentation
for π1(SX) in Equation (2), in which the generators ci are peripheral loops,
each running around a puncture.

Proposition 3.6. Let G0 be a non-abelian finite simple group, and let H0 <
G0 be a subgroup. Let ρ1 : π1(SX) → G0 be a surjective homomorphism.
For each i = 1, . . . , n, let δi be the order of ρ1(ci) in G0 and let δ = min{δi}.
Assume that:

1. H0 is self-normalizing.

2. Aut(G0) ·H0 = Inn(G0) ·H0.,

3. For each i = 1, . . . , n, we have δi ≥ 2 and gcd(δi, |H0|) = 1.

Then there exist k ∈ N and a branched cover κ : S̃ → S such that:

(1) The degree of κ is [G0 : H0]
k, and the deck group of κ is trivial .

(2) For each y ∈ Y = κ−1(X), the local degree degy κ of κ at y is at least
δ. More precisely, if κ(yi) = xi ∈ X, and ci is the peripheral generator
corresponding to the puncture xi, then δi | degyi κ.

(3) The genera of S̃, S satisfy g(S̃) ≥ 1+[G0 : H0]
k

(
g(S)− 1 +

n(δ − 1)

2δ

)
.

(4) The branched cover κ induces an injective, type-preserving homomor-
phism ι : Mod(SX) → Mod(S̃).

Proof. Let k = k(ρ1) be the integer from Proposition 3.5, G = Gk
0, H = Hk

0 ,
and let ρ : π1(SX) → G = Gk

0 be the corresponding surjective homomor-

phism. Let S̃Y → SX be the unbranched cover corresponding to ρ−1(H) <
π1(SX). This cover can be completed to a branched cover κ : S̃ → S
branched precisely over points in X. We now proceed to prove all the de-
sired properties of κ.

13



To prove (1), note that the degree d of κ is the index of ρ−1(H) in
π1(SX), which is in turn equal to the index [G : H] = [G0 : H0]

k. The
triviality of the deck group follows from the fact that NG(H) = H.

Let us prove (3) from (2). The Riemann-Hurwitz formula applied to κ
gives that χ(S̃) = dχ(S)−

∑
y∈Y (degy κ− 1). This says that

g(S̃) = 1 + d(g(S)− 1) +
1

2

∑
y∈Y

(degy κ− 1).

To estimate the correction term, note that the sum of the local degrees over
any point is equal to the degree d. Moreover, (2) implies that there are at
most d/δ points over each x ∈ X. Therefore we have

∑
y∈Y

(degy κ− 1) =
∑
x∈X

 ∑
y∈κ−1(x)

degy κ

− |κ−1(x)|

 ,

≥
∑
x∈X

(
d− d

δ

)
=
dn(δ − 1)

δ
,

which proves (3).
To prove (4) from (2), note that S̃Y → SX is by definition the cover

corresponding to ρ−1(H). By Proposition 3.5 we have that ρ and (G,H)
satisfy the conditions in Proposition 3.3. Therefore there is an injective ho-
momorphism Mod(SX) → Mod(S̃Y ). Since by (2) the local degree of κ is
at least δ ≥ 2, we have that this homomorphism is also type-preserving by
[1, Lem 10]. Now consider the homomorphism that forgets the punctures
Mod(S̃Y ) → Mod(S̃). By the second paragraph of the proof of [16, Prop
20], this homomorphism is injective and type-preserving as soon as the local
degree of κ at each branch point is at least 2. But once again this is guar-
anteed by (2). The homomorphism ι in (4) is the composition of these two
homomorphisms.

It remains to prove (2), i.e., to check the local degree of κ at points
in Y . Let yi ∈ Y and κ(yi) = xi ∈ X. Let ci be the peripheral genera-
tor corresponding to the puncture xi. For any cover of SX , recall that an
elevation of ci is any connected component of its full preimage under the
covering map. Let βi be the elevation of ci to S̃ corresponding to yi. The
local degree degyi κ is equal to the degree of the cover βi → ci. In order

to deal with the non-regular cover S̃Y → SX , we introduce two auxiliary
regular covers. Let τ : T̃Z → SX denote the regular cover corresponding to
ker(ρ). This is a cover with degree d and deck group G. Moreover, there is

14



a cover τ ′ : T̃Z → S̃Y such that τ = κ ◦ τ ′. This cover is also regular, with
deck group H.

Now, let ηi be any elevation of ci to T̃Z . Since τ : T̃Z → SX was chosen to
be the regular cover corresponding to ker(ρ), one computes that the degree
of the induced cover ηi → ci is

di = lcm{ordρ1(ci), ordρ2(ci), . . . , ordρk(ci)},
= lcm{δi, ordρ2(ci), . . . , ordρk(ci)},

where ordρi(ci) is the order of ρi(ci) in G0. In particular, note that δi | di.
Let βi = τ ′(ηi) ⊆ S̃Y . Let d′i be the degree of the induced cover ηi → βi.
Since τ ′ is regular with deck group H, we have that d′i | |H|.

To conclude, note that we have factored the cover ηi → ci as ηi → βi →
ci. Since the degree is multiplicative in covers, we get that di = d′i degyi κ.

As noted, δi | di and d′i | |H|. It follows that δi | |H| degyi κ = |H0|k degyi κ.
Finally, the assumption that δi and |H0| are coprime implies that δi | degyi κ,
as desired.

The remainder of this section will be devoted to producing covers satis-
fying Proposition 3.6, which is the content of the following statement, and
will complete the proof of Theorem 3.1 for covers with trivial deck group.

Theorem 3.7. Let S be a closed orientable surface, X ⊆ S a finite set of
n points, and SX = S \ X. Assume χ(SX) < 0. Let p ≥ max{n, 13} be a
prime such that p ≡ 1 (mod 4). Then there exists k ∈ N and a branched
cover κ : S̃ → S such that

1. The branched cover κ induces an injective, type-preserving homomor-
phism ι : Mod(SX) → Mod(S̃).

2. The genus of S̃ satisfies g(S̃) ≥ 1 + (p+ 1)k
(
g(S)− 1 +

n

2

p− 1

p+ 1

)
.

3. The deck group of κ is trivial.

Proof. This boils down to producing a pair (G0, H0) and a surjective homo-
morphism ρ1 : π1(SX) → G0 satisfying the assumptions of Proposition 3.6.

To accomplish this, we need to split into cases depending on the topology
of SX . We refer the reader to the next three subsections §3.2.1, 3.2.2, 3.2.3
for explicit constructions, where G0 is always chosen to be G0 = PSL2(Fp).
On the other hand, we change H0 and ρ1. Our choice of H0 will always
have order at most p(p−1)/2, which gives the smallest possible value of the
degree. Moreover, the order of a peripheral generator will always be at least
(p+ 1)/2, which gives the values in the genus computation.
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3.2.1 The generic case

We start with the case g ≥ 1 and n ≥ 2. We use the presentation for the
fundamental group of SX in Equation (2), where the generators are as in
Figure 1.

For the convenience of the reader, we note that the group G0 = PSL2(Fp)
is simple for any prime p ≥ 5 and that SL2(Z), and hence its quotients, is

generated by the two matrices

(
1 1
0 1

)
and

(
1 0
1 1

)
.

Let A0 < G0 the subgroup of diagonal matrices, and H0 the normalizer
of A0 given explicitly as

H0 = NG0(A0) =

{
h ∈ G0

∣∣∣∣ h =

(
a 0
0 1/a

)
or

(
0 −a

1/a 0

)
with a ∈ F∗

p

}
.

To verify condition (1) in Proposition 3.5, note that H0 is a maximal
subgroup of G0 ([29, Prob III.§6.7]) and hence is self-normalizing in G0

as G0 is a simple group. To verify condition (2), note that Aut(G0) ∼=
PGL2(Fp) and moreover any automorphism of G0 is a composition of an
inner automorphism and conjugation by the diagonal matrix

d0 =

(
1 0
0 ϵ

)
,

where ϵ ∈ F∗
p\F∗2

p is any fixed non-square number (see for instance [28, Thm
30]). One computes that conjugation by d0 normalizes H0 and therefore
Aut(G0) ·H0 = Inn(G0) ·H0.

Define a representation ρ1 : π1(SX) → G0 as follows:

ρ1(a1) = ρ1(b1) =

(
1 1
0 1

)
, ρ1(ai) = ρ1(bi) =

(
1 0
0 1

)
, for i ≥ 2

ρ1(ci) =

(
1 0
1 1

)
for i < n, ρ1(cn) =

(
1 0

p− n+ 1 1

)
.

A direct computation shows that for any prime p ≥ n the above assignments
give a well defined surjective homomorphism ρ1 : π1(SX) → G0 such that
ρ1(ci) has order p in G0 for all i = 1, . . . , n. In particular, note that the
order of ρ1(ci) is coprime with |H0| = p− 1.

3.2.2 The once-punctured case

If n = 1 and g ≥ 1, then we need to change the representation ρ1 : π1(SX) →
G0 used in the case n ≥ 2. Let C be any element of order (p+ 1)/2 in G0.
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Such elements exist because G0 contains a dihedral group of order p + 1.
Given any p ≥ 13, the main theorem in [20] guarantees the existence of two
elements A,B ∈ G0 such that ⟨A,B⟩ = G0 and [A,B] = C. Then, still
referring to the presentation in Equation (2), we set

ρ1(a1) = A, ρ1(b1) = B, ρ1(c1) = C

ρ1(ai) = ρ1(bi) =

(
1 0
0 1

)
, for i ≥ 2.

This gives a well defined surjective homomorphism ρ1 : π1(SX) → G0 such
that ρ1(c1) has order (p+ 1)/2.

Let H0 be the subgroup of upper triangular matrices. As shown in [1],
the pair (G0, H0) satisfies the assumptions (1) and (2) in Proposition 3.6.
Moreover, H0 has order p(p − 1)/2, which is coprime with (p + 1)/2, as
(p+ 1)/2 and (p− 1)/2 are consecutive integers.

3.2.3 The genus zero case

Let S0,n denote the sphere with n punctures and present the fundamental
group as in Equation (2) so that

π1(S0,n) = ⟨c1, . . . , cn |
n∏

i=1

ci = 1⟩.

Suppose that p > n− 2, so that (n− 2) has a multiplicative inverse s in Fp.
Moreover, let t ∈ Fp be an element so that any solution to the polynomial
x2 − (2 + t)x+1 in Fp2 has order p+1, necessarily some such t ∈ Fp exists.
Define a representation ρ1 : π1(S0,n) → G0 by

ρ1(ci) =

(
1 0
s 1

)
, for i ≤ n− 2, ρ1(cn−1) =

(
1 t
0 1

)
,

ρ1(cn) =

((
1 0
1 1

)(
1 t
0 1

))−1

=

(
1 + t −t
−1 1

)
Note that ρ1 is surjective since if k is the multiplicative inverse of t in Fp,
then

ρ1(c1 . . . cn−2) =

(
1 0
1 1

)
, ρ1(cn−1)

k =

(
1 1
0 1

)
,

which generate G0. Moreover by construction ρ1(ci) has order p for all
1 ≤ i ≤ n− 1. Note that trace(ρ1(cn)) = 2 + t and therefore this element is
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non-parabolic since t ̸= 0 [20, Lem 3.2]. Moreover, by our choice of t, ρ1(cn)
has order (p + 1)/2 by examining its characteristic polynomial and noting
that we are in PSL2(Fp) not SL2(Fp).

Letting H0 be as in the generic case of §3.2.1, we have that |H0| = p−1,
which in particular is coprime to both p and (p + 1)/2 whenever p ≡ 1
(mod 4).

Remark 3.8. The attentive reader will notice that such a representation
actually defines a branched cover for any Sg,n provided n ≥ 3 by considering
the composite map

π1(Sg,n) ↠ π1(S0,n) → G0,

where the former map sends all ai, bi to the identity element. In particular,
this gives another way of using Proposition 3.6 in that special case.

We also point out that we did not actually need to choose t satisfying
the above condition, provided one is willing to choose H0 based on t. More
explicitly, one can choose any t ∈ F∗

p and define the similar representation as
above. If x2−(2+t)x+1 is reducible then ρ1(cn) will have order bigger than
1, due to the trace condition, and dividing (p− 1)/2. In that case, one can
choose H0 to be the dihedral group of order p+1 and still conclude since the
orders of ρ1(ci) and |H0| are coprime. If x2− (2+ t)x+1 is irreducible then
ρ1(cn) will have order bigger than 1 and dividing (p+1)/2 and one similarly
chooses H0 to be the dihedral group of order p− 1 and concludes as above.
In particular, any non-zero choice of t gives an appropriate branched cover.

4 Proofs of Theorems 1.3 and 1.4

In this section, we combine the ingredients from Sections 2 and 3 to finish
the proofs of the main theorems.

Proof of Theorem 1.3. From Theorem 3.1, there is an injective, type-preserving
homomorphism

ι : Mod(SX) → Mod(S̃),

into the mapping class group of a closed orientable surface S̃. Composing
with the injections from [1, Thm 1], one obtains injective, type-preserving
homomorphisms ι : π1(M) ↪→ Mod(Sg) for arbitrarily high genus g. Alter-
natively, one can use Theorem 3.7 for an increasing sequence of primes.

Restricting ι to π1(M), and then to π1(Σ), we have produced injective,
type-preserving homomorphisms ι : π1(Σ) → Mod(Sg) for infinitely many
values of g. Corresponding to each of these homomorphisms, Theorem 2.2

18



provides an atoroidal Sg-bundle Eι over Σ. Since [Σ] = 0 in H2(M ;Z), we
also have that [ιp(Σ)] = 0 in H2(Mod(Sg);Z) and therefore we conclude
that σ(Eι) = 0 by Proposition 2.6. Alternatively, one can use the results in
Appendix A to prove directly that Eι bounds a compact oriented 5-manifold,
and then invoke Theorem 2.4.

The final statement is a consequence of Lemma 2.3 and the fact that ι
is type-preserving.

Proof of Theorem 1.4. By work of Kent-Leininger [16], the fundamental group
of the figure-eight knot complementM41 admits an injective, type-preserving
representation into Mod(T 2

X), where T 2 is the torus and |X| = 3.
Let Σ ∼= Sh be any closed-orientable quasi-Fuchsian surface in M41 of

genus h. In particular, Σ is π1-injective and totally loxodromic; moreover,
Σ is null-homologous by Lemma 2.1. By Theorem 1.3 we obtain infinitely
many g for which there exist an atoroidal Sg-bundle Eg,h with base Σ ∼= Sh
with signature 0.

Note that χ(Eg,h) = 4(g − 1)(h − 1), so for fixed h and different values
of g we obtain non-homeomorphic bundles.

Remark 4.1. In the case of S = T 2 and |X| = 3, Kent-Leininger [16]
construct an injective, type-preserving homomorphism from a finite index
subgroup of Mod(T 2

X) into Mod(Sg) for all g ≥ 4. This then provides a ho-
momorphism ι as above for a finite cover of the figure-eight knot complement.
As a null-homologous surface does not necessarily lift to a null-homologous
surface, for the purposes of Theorem 1.3 we do not want to pass to finite
index subgroups. So here we used a variation of the techniques from [1, 16]
that work only for infinitely many g, but do not require to pass to a finite
index subgroup.

A Appendix: bounding null-homologous surfaces

The purpose of the appendix is to provide a proof of the following proposition
that does not rely on Proposition 2.6, as promised in Remark 2.7.

Proposition A.1. Let M be a CW-complex, ρ : π1(M) → Mod(Sg) a
homomorphism, and let f : Σ → M be a map from a closed orientable
surface that is π1-injective but null-homologous. Let E be the Sg-bundle
over Σ associated with the restriction of ρ to f∗(π1(Σ)). Then there exists a
compact orientable smooth 5-manifold W such that ∂W = E. In particular,
σ(E) = 0.

19



This is based on the fact that, while in general null-homologous classes
need not bound genuine manifolds, in low dimensions this is the case. More
precisely, we have the following statement.

Lemma A.2. Let f : Σ → M be a continuous map from a closed oriented
surface into a CW-complex M . If f∗[Σ] = 0 ∈ H2(M ;Z), then Σ bounds
a connected oriented 3-manifold W , and there exists a continuous map F :
W →M with the property that F |∂W = f .

While this result is well-known, we outline two different proofs for the
convenience of the reader. The first proof uses a high level argument on
bordism theory, while the second one is more elementary and provides a
concrete construction.

First proof of Lemma A.2. We recall Atiyah’s bordism theory for a topo-
logical space M (see [2]). Elements of the bordism group MSOk(M) con-
sist of equivalence classes of pairs (N, f), where N is a closed (but not
necessarily connected) oriented smooth k-manifold, and f is a continuous
map f : N → M . Two elements (N1, f1) and (N2, f2) are equivalent if
there exists a compact oriented smooth (k + 1)-manifold W k+1 satisfy-
ing ∂W k+1 = N1

∐
(−N2) and a continuous map F : W → M satisfying

F |Ni = fi. The group operation is given by disjoint union, and the zero
element is the pair (∅, ∅). In particular, the lemma is equivalent to the
statement that (Σ, f) = 0 ∈ MSO2(M).

Note that the functor MSO∗ forms a generalized homology theory [2] – it
satisfies all the axioms of homology, except for the dimension axiom. Indeed,
the MSO-groups of a point are the oriented bordism groups ΩSO

q , which in

low dimensions satisfy ΩSO
0

∼= Z, ΩSO
q = 0 for 1 ≤ q ≤ 3, and ΩSO

4
∼= Z with

the isomorphism provided by the signature. Moreover there is a natural
homomorphism MSOk(M) → Hk(M ;Z), given by (N, f) 7→ f∗[N ].

To complete the proof, we just verify that the natural homomorphism is
an isomorphism in degrees k ≤ 3. For the CW-complexM , one can compute
the generalized homology group MSOk(M) by using an Atiyah–Hirzebruch
type spectral sequence (see for instance [7, Thm 9.6]). The E2-term is given
by

E2
p,q := Hp(M ; ΩSO

q ),

and the spectral sequence converges to MSOp+q(M).
Since the coefficients ΩSO

q vanish for q < 0 and homology vanishes for
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p < 0, this is a first quadrant spectral sequence. The first few rows are:

E2
p,q =

{
Hp(M ;Z), q = 0, 4

0, 1 ≤ q ≤ 3.

In particular, the only non-zero entries satisfying p + q ≤ 3 are the four
entries E2

p,0 = Hp(M ;Z) for 0 ≤ p ≤ 3. The differentials in the spectral
sequence take the form drp,q : Er

p,q → Er
p−r,q+r−1. This immediately implies

that, within the range p + q ≤ 3, we have E∞
p,q = E2

p,q. Putting this all
together, we obtain the equalities:

MSOp(M) = E∞
p,0 = E2

p,0 = Hp(M ;Z),

within the range p ≤ 3. Since the natural homomorphism MSOp(M) →
Hp(M ;Z) coincides with the projection to the E∞

p,0 term, this completes the
proof of the lemma.

Alternatively, one can give a constructive proof of Lemma A.2, which we
now sketch. In the following, an n-dimensional pseudomanifold with bound-
ary is a simplicial complex Y such that every simplex of Y is contained in at
least one n-simplex, and every (n− 1)-simplex of Y is contained in exactly
one or two n-simplices. The subcomplex consisting of (n− 1)-simplices that
are contained in exactly one n-simplex is called the boundary of Y , and it is
denoted by ∂Y . When ∂Y = ∅, we say that Y is a closed pseudomanifold.

Second proof of Lemma A.2. Take a triangulation of Σ, and consider the 2-
chain

∑
(f ◦ σi) ∈ C2(M ;Z), where σi are the triangles in the triangulation

of Σ. Since this chain represents f∗[Σ] = 0, there is a 3-chain
∑
biτi ∈

C3(M ;Z) satisfying
∂
(∑

biτi
)
=

∑
(f ◦ σi).

After potentially composing with some orientation reversing involution of
the standard simplex ∆3, we may assume all the coefficients bi are positive.
Since all singular 2-simplices in

∑
bi∂(τi) cancel, with the exception of those

in
∑

(f ◦ σi), we can form an abstract CW-complex by taking
∑
bi tetra-

hedra, and pairwise identifying facets that cancel out. After doing these
identifications, one obtains a 3-dimensional compact oriented pseudomani-
fold with boundary Y and a map F : Y → M induced by the individual
maps τi : ∆

3 → M on the individual tetrahedra (see [11, Pgs 108–109], or
[17, Prop 2.1]). Note that by construction, ∂Y can be identified with the
triangulated surface Σ, and the map F restricts to f on ∂Y = Σ.
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Without loss of generality, we can assume Y is connected. The links
of lower dimensional facets in Y are themselves connected oriented pseudo-
manifolds with boundary of the appropriate dimension. Now consider the
possible non-manifold points in Y . Along any 2-face, we have exactly one
or two tetrahedra glued together. The points in the interior of a 2-face are
respectively manifold boundary points or manifold points. Along any edge,
the link in Y will be a connected 1-dimensional pseudomanifold with bound-
ary. There are only two possibilities: an interval (if the edge lies in ∂Y ) or
a circle (if the edge is not on ∂Y ). The points in the interior of an edge are
respectively manifold boundary points or manifold points. Finally, we can
consider the links of vertices. Again, there are two possibilities. If v is a
vertex not on ∂Y , then the link is a connected oriented closed 2-dimensional
pseudomanifold, hence an oriented surface Σg of some genus g ≥ 0. The
vertex v will be a manifold point if and only if the link is a sphere S2 = Σ0.
Similarly, if v is a vertex on ∂Y , then the link will be a connected oriented
2-dimensional pseudomanifold with boundary, with a single S1 boundary
component (the link of v in ∂Y ), i.e. a surface Σg,1 of genus g with a single
boundary component. Again, v will be a manifold boundary point if and
only if the link is a disk D2 = Σ0,1.

Finally, we resolve the singularities of Y by forming a 3-manifold Ŷ → Y .
Ŷ is formed by modifying a small neighborhood of each non-manifold vertex
of Y . First consider vertices v that do not lie on ∂Y . If the link is Σg

of genus g ≥ 1, you replace the conical neighborhood C(Σg) by gluing in
a handlebody Hg of genus g along ∂Hg = Σg = ∂C(Σg). Collapsing a
tubular neighborhood of ∂Hg gives an induced map Hg → C(Σg). Next,
consider vertices that lie on ∂Y , with link some surface Σg,1 with boundary
component a circle. Again, one can replace the conical neighborhood C(Σg,1)
by gluing in a handlebody Hg, where now you attach the handlebody by
identifying a smoothly embedded Σg,1 ⊂ Σg = ∂Hg with the subset Σg,1 ⊂
C(Σg,1). The subset Σg,1 ⊂ Hg we are gluing along has a small tubular
neighborhood in Hg which is homeomorphic to Σg,1 × [0, 1], so collapsing
the complement of this neighborhood gives a map Hg → C(Σg,1). After
making all these replacements, we obtain the connected oriented 3-manifold
with boundary Ŷ and the (neighborhood collapsing) map ψ : Ŷ → Y . By
construction, the map ψ has degree one, i.e. ψ∗[Ŷ ] = [Y ], and is homotopic
to a homeomorphism on the boundary. Finally, we get the desired bounding
map F̂ = F ◦ ψ : Ŷ → Y →M .

Remark A.3. We note that Lemma A.2 can fail if we replace Σ by a closed
oriented manifold N of dimension ≥ 4. For a concrete example, consider
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the cone M = C(CP 2), N = CP 2, and the map f : N → M given by the
inclusion of N as the base of the cone. Since M is contractible, we have
H4(M ;Z) = 0, hence clearly f∗[N ] = 0. However, since the signature of
N = CP 2 is non-zero, there are no compact orientable 5-manifolds W that
are bounded by N = CP 2.

In the spectral sequence proof, the issue is that in degree 4, the spectral
sequence gives rise to a short exact sequence

0 // E∞
0,4

//MSO4(M) // E∞
4,0

// 0 .

The term E∞
4,0 = E2

4,0 = H4(M ;Z) shows that there is still a surjection to

H4(M ;Z), but it now has a kernel E∞
0,4 = E2

0,4 = H0(M ; ΩSO
4 ) ∼= ΩSO

4
∼= Z.

The example described above provides a concrete element in the kernel.
In the constructive proof, one can start with a triangulation of the 4-

manifold N satisfying [N ] = 0 ∈ H4(M ;Z) and construct a 5-dimensional
pseudomanifold Y with boundary ∂Y = N . However when one tries to
resolve the singularities of Y to turn it into a manifoldW = Ŷ , we eventually
end up having to resolve singularities at vertices. At an interior vertex v,
the link is a closed oriented 4-manifold Lv. If the signature of Lv is zero, one
can remove the conical neighborhood C(Lv) and replace it by a bounding
manifold Mv (with ∂Mv = Lv). In the general case, we might not be able
to resolve all of these singularities. The obstruction to doing this lies in the
sum of the signatures of the Lv, which one can naturally view as an element
in H0(Y ; ΩSO

4 ) ∼= Z. Thus the failure of the constructive approach naturally
gives rise to the same obstruction class as the spectral sequence approach.

As an immediate corollary, we obtain the following.

Corollary A.4. Suppose M is a manifold and Σ is a closed, essential sur-
face in M such that [Σ] = 0 ∈ H2(M ;Z). Then there is a connected oriented
3-manifold N with ∂N = Σ and a continuous map F : N → M such that
F |∂N = idΣ.

We can now prove the main proposition of this appendix.

Proof of Proposition A.1. Since f : Σ → M is null-homologous, Corollary
A.4 provides a connected oriented 3-manifold N with ∂N = Σ and a con-
tinuous map F : N → M such that F |∂N = idΣ. In particular, ∂N = Σ is
π1-injective in N , and we have the inclusions

π1(Σ) = F∗ (π1(∂N)) ≤ F∗(π1(N)) < π1(M).
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Consider the composite homomorphism

ι ◦ F∗ : π1(N) → Mod(Sg).

Then by Theorem 2.2 there is an Sg-bundle W over N whose boundary ∂W
is an Sg-bundle over ∂N = Σ. Since F |∂N = idΣ, the monodromy restricted
to ∂N is identical to that of E and therefore Theorem 2.2 shows that ∂W
and E are isomorphic as Sg-bundles over Sh. In particular, ∂W and E
are diffeomorphic. By Theorem 2.4, σ(∂W ) = 0 hence we conclude that
σ(E) = 0 as well, as required.

References

[1] J. Aramayona, C. J. Leininger, and J. Souto. Injections of mapping
class groups. Geom. Topol., 13(5):2523–2541, 2009.

[2] M. F. Atiyah. Bordism and cobordism. Proc. Cambridge Philos. Soc.,
57:200–208, 1961.

[3] A. Avez. Characteristic classes and Weyl tensor: Applications to gen-
eral relativity. Proc. Nat. Acad. Sci. U.S.A., 66:265–268, 1970.

[4] J. S. Birman and H. M. Hilden. On the mapping class groups of closed
surfaces as covering spaces. In Advances in the Theory of Riemann
Surfaces (Proc. Conf., Stony Brook, N.Y., 1969), volume No. 66 of
Ann. of Math. Stud., pages 81–115. Princeton Univ. Press, Princeton,
NJ, 1971.

[5] J. S. Birman and H. M. Hilden. On isotopies of homeomorphisms of
Riemann surfaces. Ann. of Math. (2), 97:424–439, 1973.

[6] B. H. Bowditch. Atoroidal surface bundles over surfaces. Geom. Funct.
Anal., 19(4):943–988, 2009.

[7] J. F. Davis and P. Kirk. Lecture notes in algebraic topology, volume 35
of Graduate Studies in Mathematics. American Mathematical Society,
Providence, RI, 2001.

[8] C. J. Earle and J. Eells. A fibre bundle description of Teichmüller
theory. J. Differential Geometry, 3:19–43, 1969.

[9] B. Farb and D. Margalit. A primer on mapping class groups, volume 49
of Princeton Mathematical Series. Princeton University Press, Prince-
ton, NJ, 2012.

24



[10] M. Gromov and W. Thurston. Pinching constants for hyperbolic man-
ifolds. Invent. Math., 89(1):1–12, 1987.

[11] A. Hatcher. Algebraic topology. Cambridge University Press, Cam-
bridge, 2002.

[12] F. Hirzebruch. Topological methods in algebraic geometry. Classics in
Mathematics. Springer-Verlag, Berlin, 1995. Translated from the Ger-
man and Appendix One by R. L. E. Schwarzenberger, With a preface to
the third English edition by the author and Schwarzenberger, Appendix
Two by A. Borel, Reprint of the 1978 edition.

[13] N. V. Ivanov and J. D. McCarthy. On injective homomorphisms be-
tween Teichmüller modular groups. I. Invent. Math., 135(2):425–486,
1999.

[14] F. E. A. Johnson. A rigidity theorem for group extensions. Arch. Math.
(Basel), 73(2):81–89, 1999.

[15] M. Kapovich. On normal subgroups in the fundamental groups of com-
plex surfaces. arXiv:math/9808085.

[16] A. Kent and C. Leininger. Atoroidal surface sundles. arXiv:2405.12067.

[17] J.-F. Lafont and C. Pittet. Comparing seminorms on homology. Pacific
J. Math., 259(2):373–385, 2012.

[18] J.-F. Lafont and R. Roy. A note on the characteristic classes of non-
positively curved manifolds. Expo. Math., 25(1):21–35, 2007.

[19] D. Margalit and R. R. Winarski. Braids groups and mapping class
groups: the Birman-Hilden theory. Bull. Lond. Math. Soc., 53(3):643–
659, 2021.

[20] D. McCullough and M. Wanderley. Writing elements of PSL(2, q) as
commutators. Comm. Algebra, 39(4):1234–1241, 2011.

[21] S. Morita. Geometry of characteristic classes, volume 199 of Trans-
lations of Mathematical Monographs. American Mathematical Soci-
ety, Providence, RI, 2001. Translated from the 1999 Japanese original,
Iwanami Series in Modern Mathematics.

[22] P. Ontaneda. Riemannian hyperbolization. Publ. Math. Inst. Hautes
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