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We study Farrell Nil-groups associated to a finite-order automorphism of a ring R.
We show that any such Farrell Nil-group is either trivial or infinitely generated
(as an abelian group). Building on this first result, we then show that any finite
group that occurs in such a Farrell Nil-group occurs with infinite multiplicity. If
the original finite group is a direct summand, then the countably infinite sum of
the finite subgroup also appears as a direct summand. We use this to deduce a
structure theorem for countable Farrell Nil-groups with finite exponent. Finally,
as an application, we show that if V is any virtually cyclic group, then the asso-
ciated Farrell or Waldhausen Nil-groups can always be expressed as a countably
infinite sum of copies of a finite group, provided they have finite exponent (which
is always the case in dimension zero).

1. Introduction

For a ring R and an automorphism α : R→ R, one can form the twisted polynomial
ring Rα[t], which as a left R-module coincides with the polynomial ring R[t],
but with product given by r t = tα(r). There is a natural augmentation map
ε : Rα[t]→ R induced by setting ε(t)= 0. For i ∈ Z, the Farrell twisted Nil-groups
NKi (R, α) := ker(ε∗) are defined to be the kernels of the induced K -theory map
ε∗ : Ki (Rα[t])→ Ki (R). This induced map is split injective, hence NKi (R, α) can
be viewed as a direct summand in Ki (Rα[t]). In the special case where the auto-
morphism α is the identity, the ring Rα[t] is just the ordinary polynomial ring R[t],
and the Farrell twisted Nil-groups reduce to the ordinary Bass Nil-groups, which
we just denote by NKi (R). We establish the following:

Theorem A. Let R be a ring, α : R→ R a ring automorphism of finite order, and
i ∈ Z. Then NKi (R, α) is either trivial or infinitely generated as an abelian group.
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The proof of this result relies heavily on a method developed by Farrell [1977],
who first showed that the lower Bass Nil-groups NK∗(R) with ∗ ≤ 1 are always
either trivial or infinitely generated. This result was subsequently extended to the
higher Bass Nil-groups NK∗(R) with ∗ ≥ 1 by Prasolov [1982] (see also [van der
Kallen 1980]). For Farrell’s twisted Nils, when the automorphism α has finite order,
Grunewald [2007] and Ramos [2007] independently established the corresponding
result for NK∗(R, α) when ∗ ≤ 1. All these papers used the same basic idea, which
we call Farrell’s lemma. We exploit the same idea, and establish our own version
of Farrell’s lemma (and prove the theorem) in Section 3.

Remark 1.1. Farrell’s original proof of his lemma used the transfer map on K -
theory. Naïvely, one might want to try to prove Theorem A as follows: choose m
so that αm

= α. Then there is a ring homomorphism from A = Rα[t] to B = Rα[s]
determined by t 7→ sm . Call the induced map on K -theory Fm : K (A)→ K (B).
Since B is a free (left) A-module of rank m, the transfer map Vm is also defined,
and Gm := Vm ◦ Fm = µm (multiplication by m). Then follow Farrell’s original
1977 argument verbatim to conclude the proof. Unfortunately this approach does
not work, for two reasons.

Firstly, the identity Gm = µm does not hold in the twisted case (basically due to
the fact that

⊕
m A and B are not isomorphic as bimodules). We do not explicitly

know what the map Gm does on K -theory, but it is definitely not multiplication
by an integer. Instead, we have the somewhat more complicated identity given in
part (2) of our Lemma 3.1, but which is still sufficient to establish the theorem.

Secondly, while it is possible to derive the identity in part (2) of Lemma 3.1
using the transfer map as in Farrell’s original argument, it is not at all clear how
to obtain the analogue of part (3) in higher dimensions by working at the level of
K -theory groups. Instead, we have to work at the level of categories, specifically,
with the Nil-category NIL(R;α) (see Section 2), in order to ensure property (3).
The details are in [Grunewald 2008].

Next we refine somewhat the information we have on these Farrell Nils, by
focusing on the finite subgroups arising as direct summands. In Section 4, we
establish:

Theorem B. Let R be a ring, α : R → R a ring automorphism of finite order,
and i ∈ Z. If H ≤ NKi (R, α) is a finite subgroup, then

⊕
∞

H also appears as a
subgroup of NKi (R, α). Moreover, if H is a direct summand in NKi (R, α), then
so is

⊕
∞

H.

In the statement above, and throughout the paper,
⊕
∞

H denotes the direct
sum of countably infinitely many copies of the group H . Theorem B together
with some group-theoretic facts enable us to deduce a structure theorem for certain
Farrell Nil-groups. In Section 5, we prove the following result:
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Theorem C. Let R be a countable ring, α : R→ R a ring automorphism of finite
order, and i ∈ Z. If NKi (R, α) has finite exponent, then there exists a finite abelian
group H so that NKi (R, α)∼=

⊕
∞

H.

A straightforward corollary of Theorem C is the following:

Corollary 1.2. Let G be a finite group, α ∈ Aut(G). Then there exists a finite
abelian group H , whose exponent divides some power of |G|, with the property
that NK0(ZG, α)∼=

⊕
∞

H.

Proof. Connolly and Prassidis [2002] proved that NK0(ZG, α) has finite exponent
when G is finite. KuKu and Tang [2003, Theorem 2.2] showed that NKi (ZG, α)
is |G|-primary torsion for all i ≥ 0. These facts together with Theorem C above
complete the proof. �

Remark 1.3. It is a natural question whether this corollary holds in dimensions
other than zero. In negative dimensions i < 0, Farrell and Jones [1995] showed
that NKi (ZG, α) always vanishes when G is finite. In positive dimensions i > 0,
there are partial results. As mentioned in the proof above, Kuku and Tang [2003,
Theorem 2.2] showed that NKi (ZG, α) is |G|-primary torsion. Grunewald [2008,
Theorem 5.9] then generalized their result to polycyclic-by-finite groups in all di-
mensions. He showed that, for all i ∈ Z, NKi (ZG, α) is mn-primary torsion for
every polycyclic-by-finite group G and every group automorphism α : G→ G of
finite order, where n = |α| and m is the index of some polyinfinite cyclic subgroup
of G (such a subgroup always exists). However, although we have these nice results
on the possible orders of torsion elements, it seems there are no known results on
the exponent of these Nil-groups. This is clearly a topic for future research.

Remark 1.4. As an example in dimension greater than zero, Weibel [2009] showed
that NK1(ZD4) 6= 0, where D4 denotes the dihedral group of order 8. He also
constructed a surjection

⊕
∞
(Z2 ⊕ Z4)→ NK1(ZD4), showing that this group

has exponent 2 or 4. It follows from our corollary that the group NK1(ZD4) is
isomorphic to one of the three groups

⊕
∞
(Z2⊕Z4),

⊕
∞

Z4, or
⊕
∞

Z2.

For our next application, we recall that for every group G there exists an assem-
bly map H G

n (EG; KZ)→ Kn(Z[G]), where H ?
∗
(−; KZ) denotes the specific equi-

variant generalized homology theory appearing in the K -theoretic Farrell–Jones
isomorphism conjecture with coefficients in Z, and EG is a model for the classify-
ing space for proper G-actions. We refer the reader to Section 5 for a discussion
of these notions, as well as for the proof of the following theorem:

Theorem D. For any virtually cyclic group V , there exists a finite abelian group H
with the property that there is an isomorphism⊕

∞

H ∼= coker(H V
0 (EV ; KZ)→ K0(Z[V ])).
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The same result holds in dimension n whenever coker(H V
n (EV ; KZ)→ Kn(Z[V ]))

has finite exponent.

We conclude the paper with some general remarks and open questions in Section 6.

2. Some exact functors

In this section, we define various functors that will be used in our proofs. Let R be
an associative ring with unit and α : R→ R be a ring automorphism of finite order,
say |α| = n. For each integer i ∈ Z, denote by Rαi the R-bimodule which coincides
with R as an abelian group, but with bimodule structure given by r · x := r x and
x ·r := xαi (r) (where x ∈ Rαi and r ∈ R). Note that, as left (or as right) R-modules,
Rαi and R are isomorphic, but they are in general not isomorphic as R-bimodules.
For each right R-module M and integer i , define a new right R-module Mαi as
follows: as abelian groups, Mαi is the same as M , however, the right R-module
structure on Mαi is given by x ·r := xαi (r). Clearly Mαn =M and (Mαi )α j =Mαi+ j

as right R-modules. We could have defined Mαi = M ⊗R Rαi ; however, this has
the slight disadvantage that the above equalities would not hold — we would only
have natural isomorphisms between the corresponding functors.

Let P(R) denote the category of finitely generated right projective R-modules.
There is an exact functor S : P(R)→ P(R) given by S(P) = Pα on objects and
S(φ) = φ on morphisms. Observe that, if we forget about the right R-module
structures, and just view these as abelian groups and group homomorphisms, then
S is just the identity functor. By taking iterates Si of the functor S, we obtain
a functorial Z-action on the category P(R), which factors through a functorial
Zn-action (recall that n is the order of the ring automorphism α).

We are interested in the Nil-category NIL(R;α). Recall that objects of this cate-
gory are of the form (P, f ), where P is an object in P(R) and f : P→ Pα = S(P)
is a right R-module homomorphism which is nilpotent, in the sense that a high
enough composite map of the following form is the zero map:

P
Sk−1( f )◦Sk−2( f )◦···◦S1( f )◦ f
−−−−−−−−−−−−−−−−→ Pαk .

A morphism φ : (P, f )→ (Q, g) in NIL(R;α) is given by a morphism φ : P→ Q
in P(R) which makes the obvious diagram commutative, i.e., S(φ) ◦ f = g ◦ φ.
The exact structure on P(R) induces an exact structure on NIL(R;α), and we have
two exact functors

F : NIL(R;α)→ P(R), F(P, f )= P,

G : P(R)→ NIL(R;α), G(P)= (P, 0),

which give rise to a splitting of the K -theory groups

Ki (NIL(R;α))= Ki (R)⊕Nili (R;α),
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where
Nili (R;α) := Ker(Ki (NIL(R;α))→ Ki (R)), i ∈ N

(natural numbers start with 0 in this paper).

Remark 2.1. The Farrell Nil-groups NK∗(R, α) mentioned in the introduction co-
incide, with a dimension shift, with the groups Nil∗(R;α−1) defined above. More
precisely, one has for every i ≥ 1 an isomorphism NKi (R, α) ∼= Nili−1(R;α−1)

[Grayson 1988, Theorem 2.1].

We now introduce two exact functors on the exact category NIL(R;α) which
will play an important role in our proofs. On the level of K -theory, one of these
yields the twisted analogue of the Verschiebung operators, while the other gives
the classical Frobenius operators.

Definition 2.2 (twisted Verschiebung functors). For each positive integer m, define
the twisted Verschiebung functors Vm : NIL(R;α)→ NIL(R;α) as follows. On
objects, we set

Vm((P, f ))= (P ⊕ Pα−1 ⊕ Pα−2 ⊕ · · ·⊕ Pα−mn , f )

=

( mn⊕
i=0

Pα−i , f
)
=

( mn⊕
i=0

S−i (P), f
)
,

where the morphism

f :
mn⊕
i=0

Pα−i −→

( mn⊕
j=0

Pα− j

)
α

=

mn⊕
j=0

Pα− j+1

is defined componentwise by the maps fi j : Pα−i → Pα− j+1 given via the formula

fi j =


id if 0≤ i = j ≤ mn− 1,
f if i = mn, j = 0,
0 otherwise.

In the proof of Lemma 2.5 below, we will see that f is nilpotent, so that Vm((P, f ))
does indeed define an object in the category NIL(R;α). If φ : (P, f )→ (Q, g) is
a morphism in the category NIL(R;α), we define the morphism

Vm(φ) :

( mn⊕
i=0

Pα−i , f
)
→

( mn⊕
i=0

Qα−i , g
)

via the formula Vm(φ)=
⊕mn

i=0 S−i (φ). One checks that

(i) g ◦ Vm(φ)= S(Vm(φ)) ◦ f ,

(ii) Vm(id)= id, and

(iii) Vm(φ ◦ψ)= Vm(φ) ◦ Vm(ψ),
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so that Vm is indeed a functor. Moreover, Vm is exact because each S−i is exact.

Definition 2.3 (Frobenius functors). For positive integers m, define the Frobenius
functors Fm : NIL(R;α)→ NIL(R;α) as follows. On objects, set Fm((P, f ))=
(P, f̃ ) where f̃ is the morphism defined by the composition

P
Smn( f )◦Smn−1( f )◦···◦S1( f )◦ f
−−−−−−−−−−−−−−−−−→ Pαmn+1 = Pα

(recall that the ring automorphism α has order |α| = n). It is immediate that the
map f̃ is nilpotent, so that Fm((P, f )) is indeed an object in NIL(R;α). Now
if φ : (P, f )→ (Q, g) is a morphism in the category NIL(R;α), we define the
morphism Fm(φ) : (P, f̃ )→ (Q, g̃) to coincide with the morphism φ. It is obvious
that Fm(id)= id and Fm(φ ◦ψ)= Fm(φ) ◦ Fm(ψ), and one can easily check that
g̃ ◦φ = S(φ) ◦ f̃ , so that Fm is a genuine functor. Clearly Fm is exact.

Definition 2.4 (α-twisting functors). We define the exact functor T :NIL(R;α)→
NIL(R;α) as follows. On objects, we set T ((P, f ))= (S−1(P), S−1( f )), and if
φ : (P, f )→ (Q, g) is a morphism, we set T (φ) to be the morphism S−1(φ) :

S−1(P)→ S−1(Q). Observe that, as with the functors Si on the category P(R), the
iterates T i define a functorial Z-action on the category NIL(R;α), which factors
through a functorial Zn-action.

The relationship between these various functors is described in the following
lemma. We will write Gm for the composite exact functor Gm = Fm ◦ Vm .

Lemma 2.5. We have the equality Gm =
⊕mn

i=0 T i .

Proof. Let (P, f ) be an object in NIL(R;α). Then we have

Gm((P, f ))=
( mn⊕

i=0

S−i (P), f̃
)
,

where
f̃ = Smn( f ) ◦ Smn−1( f ) ◦ · · · ◦ S1( f ) ◦ f .

Note that, if we forget the right R-module structures, each Si is the identity functor
on abelian groups. So as a morphism of abelian groups, f̃ = f mn+1. Now recall that
f is a morphism which cyclically permutes the mn+ 1 direct summands occurring
in its source and target. Using this observation, it is then easy to see that f̃ = f mn+1

is diagonal and equal to
⊕mn

i=0 S−i ( f ). So on the level of objects, Gm and
⊕mn

i=0 Ti

agree. From this, we also see that f is nilpotent (as was indicated in Definition 2.2).
It is obvious that they agree on morphisms. �

Remark 2.6. It is natural to consider the more general case when α : R → R
has finite order in the outer automorphism group of the ring R, i.e., there exists
n ≥ 2 and a unit u ∈ R so that αn(r) = uru−1 for all r ∈ R. In this situation, we
have for any right R-module M and integer m an isomorphism τm,M : Mαmn → M ,
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τm,M(r) := rum of right R-modules. This gives rise to a natural isomorphism
between the functors Smn and S0= Id. It is then easy to similarly define twisted Ver-
schiebung functors and Frobenius functors, and to verify an analogue of Lemma 2.5.
However, in this case, we generally do not have that Tn is naturally isomorphic to T0,
unless α fixes u. This key issue prevents our proof of Farrell’s Lemma 3.1(2) below
(which is the key to the proof of our main theorems) from going through in this
more general setting.

3. Nonfiniteness of Farrell Nils

This section is devoted to proving Theorem A.

3A. A version of Farrell’s lemma. We are now ready to establish our analogues
of the key lemmas from [Farrell 1977].

Lemma 3.1. The following results hold:

(1) For all j ∈ N, the induced morphisms K j (Vm), K j (Fm) : K j (NIL(R;α))→
K j (NIL(R;α)) on K -theory map the summand Nil j (R;α) to itself.

(2) For all j,m ∈ N, the identity (2+mn)K j (Gm)− K j (Gm)
2
= µ1+mn holds,

where the map µ1+mn is multiplication by 1+mn.

(3) For all j ∈ N and each x ∈ Nil j (R;α), there exists a positive integer r(x)
such that K j (Fm)(x)= 0 for all m ≥ r(x).

Proof. (1) Let Hm :=
⊕mn

i=0 S−i
: P(R) → P(R); one then easily checks that

F ◦Vm = Hm ◦F . We also have F ◦Fm = F . Statement (1) follows easily from these.

(2) By the additivity theorem for algebraic K -theory, Lemma 2.5 immediately gives
us that

K j (Gm)=

mn∑
i=0

K j (Ti )= id+m
n∑

i=1

K j (Ti )

(recall that the functors Ti are n-periodic). Now let us evaluate the square of the
map K j (Gm):

K j (Gm)
2
=

(
id+m

n∑
i=1

K j (Ti )

)(
id+m

n∑
l=1

K j (Tl)

)

= id+2m
n∑

i=1

K j (Ti )+m2
n∑

i=1

n∑
l=1

K j (Ti+l)

= id+2m
n∑

i=1

K j (Ti )+m2
n∑

i=1

n∑
l=1

K j (Tl)
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= id+2m
n∑

i=1

K j (Ti )+m2n
n∑

l=1

K j (Tl)

= id+(2m+m2n)
n∑

i=1

K j (Ti ).

In the third equality above, we used the fact that the Ti functors are n-periodic, so
that shifting the index on the inner sum by i leaves the sum unchanged. Finally,
substituting in the expression we have for K j (Gm) and the expression we derived
for K j (Gm)

2, we see that

(2+mn)K j (Gm)− K j (Gm)
2

= (2+mn)
(

id+m
n∑

i=1

K j (Ti )

)
−

(
id+(2m+m2n)

n∑
i=1

K j (Ti )

)
= (2+mn) id− id= µ(1+mn),

completing the proof of statement (2).

(3) This result is due to Grunewald [2008, Proposition 4.6]. �

3B. Proof of Theorem A. The theorem now follows easily. Let us focus on the
case where i ≥ 1, as the case i ≤ 1 has already been established by Grunewald
[2007] and Ramos [2007]. So let us assume that the Farrell Nil-group NKi (R, α)∼=
Nili−1(R;α−1) is nontrivial and finitely generated, where i ≥ 1. Then one can
find arbitrarily large positive integers m with the property that the map µ(1+mn)

is an injective map from Nili−1(R;α−1) to itself (for example, one can take m to
be any multiple of the order of the torsion subgroup of Nili−1(R;α−1)). From
Lemma 3.1(2), we can factor the map µ(1+mn) as a composite

µ(1+mn) = (µ(2+mn)− K j (Gm)) ◦ K j (Gm),

and hence there is an infinite sequence of integers m with the property that the
corresponding maps K j (Gm)= K j (Fm) ◦ K j (Vm) are injective. This implies that
there are infinitely many integers m for which the map K j (Fm) is nonzero.

On the other hand, let x1, . . . , xk be a finite set of generators for the abelian group
Nili−1(R;α−1). Then from Lemma 3.1(3), we have that for any m ≥max{r(xi )}

the map K j (Fm) is identically zero, a contradiction. This completes the proof of
Theorem A.

4. Finite subgroups of Farrell Nil-groups

4A. A lemma on splittings. In order to establish Theorem B, we will need an
algebraic lemma for recognizing when two direct summands inside an ambient
group jointly form a direct summand.
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Lemma 4.1. Let G be an abelian group and H <G, K <G be a pair of subgroups.
Suppose there are two retractions λ : G→ H and ρ : G→ K with the property
that λ(K ) = {0}. Then there exists a subgroup L < G which is isomorphic to H
and such that L ⊕ K is also a direct summand of G.

Proof. Consider the morphism (λ, ρ) : G→ H × K given by g 7→ (λ(g), ρ(g)). It
is split by the morphism β : H × K → G given by (h, k) 7→ h− ρ(h)+ k, since
λ, ρ are retractions and λ(K )= 0. Therefore β(H × K ) is a direct summand of G.
Let L < G be the image of H ×{0} under β. By noting that K = β({0}× K ), we
see that L ⊕ K < G is a direct summand. �

4B. Proof of Theorem B. In order to simplify the notation, we will simply write Vm

for K j (Vm), and use a similar convention for Fm and Gm .

Case i ≥ 1. We first consider the case when i ≥ 1, and recall that NKi (R, α) ∼=
Nili−1(R;α−1). Let H < Nili−1(R;α−1) be a finite subgroup. According to
Lemma 3.1(3), since H is finite, there exists an integer r(H)=maxx∈H {r(x)}, so
that Fm(H)= 0 for all m > r(H). Let S consist of all natural numbers m > r(H)
such that gcd(1+mn, |H |)= 1. Then S contains every multiple of |H | which is
greater than r(H), so is an infinite set. By definition, the composite

Nili−1(R;α−1)
Vm // Nili−1(R;α−1)

Fm // Nili−1(R;α−1),

is the morphism Gm , and we define the subgroup Hm ≤ Nili−1(R;α−1) to be
Hm := Vm(H). By the defining property of the set S we have that, for m ∈ S,
(µ2+mn −Gm) ◦Gm = µ1+mn is an isomorphism when restricted to H . Hence Gm

is a monomorphism when restricted to H , forcing Vm to also be a monomorphism
when restricted to H . So, for all m ∈ S, we see that Hm ∼= H .

We now claim that Hm ∩ H = {0} for all m ∈ S. Indeed, since integers in S
are larger than r(H), we have Fm(H) = 0. But, for m ∈ S, the composite map
Gm = Fm ◦ Vm is an isomorphism from H to Gm(H) = Fm(Hm), so Fm must be
injective on Hm . Putting these two statements together, we get that Hm ∩ H = {0}.
We conclude that H⊕H <Nili−1(R;α−1). Applying the same argument to H⊕H
and so on, we conclude that ⊕∞H < Nili−1(R;α−1).

Next, we argue that if the original subgroup H was a direct summand in the
group Nili−1(R;α−1) then we can find a copy of H ⊕ H which is also a direct
summand in Nili−1(R;α−1), and which extends the original direct summand (i.e.,
the first copy of H inside the direct summand H⊕H coincides with the original H ).

To see this, let us assume that H <Nili−1(R;α−1) is a direct summand, so there
exists a retraction ρ : Nili−1(R;α−1)→ H . Let Hm be obtained as above. We first
construct a retraction λ : Nili−1(R;α−1)→ Hm . Recall that µ1+mn is an isomor-
phism on Hm , so there exists an integer l so that µl ◦µ1+mn is the identity on Hm .
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We define λ : Nili−1(R;α−1)→ Hm to be the following composition of maps:

Nili−1(R;α−1)
Fm
−→Nili−1(R;α−1)

µ2+mn−Gm
−−−−−−→Nili−1(R;α−1)

ρ
−→H

Vm |H
−−−→Hm

µl
−→Hm .

We claim that λ is a retraction. Note that for x ∈ Hm there exists y ∈ H with
Vm(y)= x . We now evaluate

λ(x)= (µl ◦ Vm ◦ ρ ◦ (µ2+mn −Gm) ◦ Fm)(x)

= (µl ◦ Vm ◦ ρ ◦ (µ2+mn −Gm) ◦ Fm)(Vm(y))

= (µl ◦ Vm ◦ ρ ◦ (µ2+mn −Gm) ◦Gm)(y)

= (µl ◦ Vm ◦ ρ ◦ ((2+mn)Gm −G2
m)))(y)

= (µl ◦ Vm ◦ ρ ◦µ1+mn)(y)

= (µl ◦µ1+mn)((Vm ◦ ρ)(y))

= (µl ◦µ1+mn)(Vm(y))

= (µl ◦µ1+mn)(x)

= x .

This verifies that λ is a retraction. Note also that λ(H)=0, since Fm(H)=0 follows
from the fact that m ∈ S (recall that integers in S are larger than r(H)). Hence we
are in the situation of Lemma 4.1, and we can conclude that H ⊕ H also arises as
a direct summand of Nili−1(R;α−1). Note that, when applying our Lemma 4.1,
we replaced the second copy Hm of H by some other (isomorphic) subgroup, but
kept the first copy of H to be the original H . Hence the direct summand H ⊕ H
does indeed extend the original summand H . Iterating the process, we obtain
that

⊕
∞

H is a direct summand of Nili−1(R;α−1). This completes the proof of
Theorem B in the case where i ≥ 1.

Case i ≤ 1. Next, let us consider the case of the Farrell Nil-groups NKi (R, α−1)

where i ≤ 1. For these, the proof of Theorem B proceeds via a (descending) induc-
tion on i , with the case i = 1 having been established above.

We remind the reader of the standard technique for extending results known
for K1 to lower K -groups. Take the ring 3Z consisting of all N×N matrices with
entries in Z which contain only finitely many nonzero entries in each row and each
column, and quotient out by the ideal I G3Z consisting of all matrices which vanish
outside of a finite block. This gives the ring 6Z=3Z/I , and we can now define
the suspension functor on the category of rings by tensoring with the ring 6Z, i.e.,
sending a ring R to the ring6(R) :=6Z⊗R, and a morphism f : R→ S to the mor-
phism Id⊗ f :6(R)→6(S). The functor 6 has the property that there are natural
isomorphisms Ki (R) ∼= Ki+1(6(R)) (for all i ∈ Z). Moreover, there is a natural
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isomorphism 6(Rα[t])∼= (6R)Id⊗α[t], which induces a commutative square

Ki (Rα[t])

∼=

��

// Ki (R)

∼=

��
Ki+1((6Z⊗ R)Id⊗α[t]) // Ki+1(6Z⊗ R)

By induction, this allows us to identify NK1−m(R, α) with NK1(6
m R, Id⊗m

⊗α)

for each m ≥ 1, where 6m denotes the m-fold application of the functor 6. Obvi-
ously, if the automorphism α has finite order in Aut(R), the induced automorphism
Id⊗m

⊗α will have finite order in Aut((6Z)⊗m
⊗ R). So, for the Farrell Nil-groups

NKi (R, α) with i ≤ 0, the result immediately follows from the special case of NK1

considered above. This completes the proof of Theorem B.

5. A structure theorem and Nils associated to virtually cyclic groups

In this section, we discuss some applications and prove Theorem C and Theorem D.
For a general ring R, we know by Theorem A that a nontrivial Nil-group is an
infinitely generated abelian group. While finitely generated abelian groups have a
very nice structural theory, the picture is much more complicated in the infinitely
generated case (the reader can consult [Robinson 1993, Chapter 4] for an overview
of the theory). If one restricts to abelian (torsion) groups of finite exponent, then
it is an old result of Prüfer [1923] that any such group is a direct sum of cyclic
groups (see [Robinson 1993, item 4.3.5, p. 105] for a proof).

5A. Proof of Theorem C. We can now explain how our Theorem B allows us to
obtain a structure theorem for certain Nil-groups. Let R be a countable ring and
α : R→ R be an automorphism of finite order. It is well-known that the twisted
Nil-groups NKi (R, α) are countable when R is a countable ring. [Sketch: K0(R)
is countable since it is generated by Idem(R), the countable set consisting of all
finite idempotent matrices with entries in R. When i < 0, Ki (R) can be viewed as
a quotient of Ki+1(R[t, t−1

]), so is countable by induction on i . And when i > 0,
Ki (R) := πi (BGL(R)+), and countability follows from the fact that BGL(R)+ is
a countable CW-complex. NKi (R, α) is then a subgroup of the countable group
Ki (R), so is itself countable.]

If in addition NKi (R, α) has finite exponent, then, by the result of Prüfer men-
tioned above, it follows that NKi (R, α) decomposes as a countable direct sum of
cyclic groups of prime power order, each of which appears with some multiplic-
ity. In view of our Theorem B, any summand which occurs must actually occur
infinitely many times. Since the exponent of the Nil-group is finite, there is an
upper bound on the prime power orders that can appear, and hence there are only
finitely many possible isomorphism types of summands. Let H be the direct sum
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of a single copy of each cyclic group of prime power order which appear as a
summand in NKi (R, α). It follows immediately that

⊕
∞

H ∼= NKi (R, α). This
completes the proof of Theorem C.

5B. Farrell–Jones isomorphism conjecture. In applications to geometric topol-
ogy, the rings of interest are typically integral group rings ZG. For computations
of the K -theory of such rings, the key tool is provided by the (K -theoretic) Farrell–
Jones isomorphism conjecture [Farrell and Jones 1993]. Davis and Lück [1998]
gave a general framework for the formulations of various isomorphism conjec-
tures. In particular, they constructed for any group G an OrG-spectrum, i.e., a
functor KZ : OrG→ Sp, where OrG is the orbit category of G (objects are cosets
G/H, H < G and morphisms are G-maps) and Sp is the category of spectra. This
functor has the property that πn(KZ(G/H))= Kn(ZH). As an ordinary spectrum
can be used to construct a generalized homology theory, this OrG-spectrum KZ

was used to construct a G-equivariant homology theory H G
∗
(−; KZ). It has the

property that
H G

n (G/H ; KZ)= πn(KZ(G/H))= Kn(ZH)

(for all H < G and n ∈ Z). In particular, on a point,

H G
n (∗ ; KZ)= H G

n (G/G; KZ)= Kn(ZG).

Applying this homology theory to any G-CW-complex X , the obvious G-map
X→∗ gives rise to an assembly map

H G
n (X; KZ)→ H G

n (∗ ; KZ)∼= Kn(ZG).

The Farrell–Jones isomorphism conjecture asserts that, when the space X is a
model for the classifying space for G-actions with isotropy in the virtually cyclic
subgroups of G, the above assembly map is an isomorphism. Thus, the conjecture
roughly predicts that the K -theory of an integral group ring ZG is determined by
the K -theory of the integral group rings of the virtually cyclic subgroups of G,
assembled together in some homological fashion.

In view of this conjecture, one can view the K -theory of virtually cyclic groups
as the “basic building blocks” for the K -theory of general groups. Focusing on such
a virtually cyclic group V , one can consider the portion of the K -theory that comes
from the finite subgroups of V . This would be the image of the assembly map

H V
n (EV ; KZ)→ H V

n (∗; KZ)∼= Kn(ZV ),

where EV is a model for the classifying space for proper V -actions. While this map
is always split injective (see [Bartels 2003]), it is not surjective in general. Thus, to
understand the K -theory of a virtually cyclic group, we need to understand the K -
theory of finite groups, and to understand the cokernel of the above assembly map.
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The cokernel of this map can also be interpreted as the obstruction to reducing the
family of virtually cyclic groups used in the Farrell–Jones isomorphism conjecture
to the family of finite groups — this is the transitivity principle (see [Farrell and
Jones 1993, Theorem A.10]). Our Theorem D gives some structure for the cokernel
of the assembly map.

5C. Proof of Theorem D. Let V be a virtually cyclic group. Then one has that V
is either of the form (i) V = G oα Z, where G is a finite group and α ∈ Aut(G), or
is of the form (ii) V = G1 ∗H G2, where Gi , H are finite groups and H is of index
two in both Gi .

Let us first consider case (i). In this case, the integral group ring Z[V ] is isomor-
phic to the ring Rα̂[t, t−1

], the α̂-twisted ring of Laurent polynomials over the coef-
ficient ring R = Z[G], where α̂ ∈ Aut(Z[G]) is the ring automorphism canonically
induced by the group automorphism α. Then it is known (see [Davis et al. 2011b,
Lemma 3.1]) that the cokernel we are interested in consists of the direct sum of the
Farrell Nil-group NKn(ZG, α̂) and the Farrell Nil-group NKn(ZG, α̂−1). Applying
Theorem C and Corollary 1.2 to these two Farrell Nil-groups, we are done.

In case (ii), we note that V has a canonical surjection onto the infinite dihedral
group D∞ = Z2 ∗ Z2, obtained by surjecting each Gi onto Gi/H ∼= Z2. Taking
the preimage of the canonical index-two subgroup Z≤ D∞, we obtain a canonical
index-two subgroup W ≤ V . The subgroup W is a virtually cyclic group of type (i),
and is of the form H oα Z, where α ∈ Aut(H). Hence it has associated Farrell Nil-
groups NKn(ZH, α̂).

The cokernel of the relative assembly map for the group V is a Waldhausen
Nil-group associated to the splitting of V (see [Davis et al. 2011b, Lemma 3.1]).
It was recently shown that this Waldhausen Nil-group is always isomorphic to a
single copy of the Farrell Nil-group NKn(ZH, α̂) associated to the canonical index-
two subgroup W ≤ V (see for example [Davis et al. 2011a; 2011b], or for an earlier
result in a similar vein [Lafont and Ortiz 2008]). Again, combining this with our
Theorem C and Corollary 1.2, we are done, completing the proof of Theorem D.

6. Applications and concluding remarks

We conclude this short note with some further applications and remarks.

6A. Waldhausen’s A-theory. Recall that Waldhausen [1985] introduced a notion
of algebraic K -theory A(X) of a topological space X . Once the K -theoretic con-
tribution has been split off, one is left with the finitely dominated version of the
algebraic K -theory Afd(X). This finitely dominated version satisfies the “funda-
mental theorem of algebraic K -theory”, in that one has a homotopy splitting

Afd(X × S1)' Afd(X)× BAfd(X)× NAfd
+
(X)× NAfd

−
(X); (6.1)
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see [Hüttemann et al. 2001] (the reader should compare this with the corresponding
fundamental theorem of algebraic K -theory for rings; see [Grayson 1976]). The
Nil-terms appearing in this splitting have been studied by Grunewald, Klein, and
Macko [Grunewald et al. 2008], who defined Frobenius and Verschiebung opera-
tions Fn, Vn , on the homotopy groups π∗(NAfd

±
(X)). In particular, they show that

the composite Vn ◦ Fn is multiplication by n [ibid., Proposition 5.1], and that for
any element x ∈ πi (NAfd

±
(X)) of finite order, one has Fn(x)= 0 for all sufficiently

large n (see the discussion in [ibid., p. 334, Proof of Theorem 1.1]). Since these
two properties are the only ones used in our proofs, an argument identical to the
proof of Theorem B gives the following result:

Proposition 6.2. Let X be an arbitrary space, and let NAfd
±
(X) be the associated

Nil-spaces arising in the fundamental theorem of algebraic K -theory of spaces. If
H ≤ πi (NAfd

±
(X)) is any finite subgroup, then⊕

∞

H ≤ πi (NAfd
±
(X)).

Moreover, if H is a direct summand in πi (NAfd
±
(X)), then so is

⊕
∞

H.

Remark 6.3. An interesting question is whether there exists a “twisted” version
of the splitting in (6.1), which applies to bundles X→W → S1 over the circle (or
more generally to approximate fibrations over the circle), and provides a homotopy
splitting of the corresponding Afd(W ) in terms of spaces attached to X and the
holonomy map.

6B. Cokernels of assembly maps. For a general group G, one would expect from
the Farrell–Jones isomorphism conjectures that the cokernel of the relative assem-
bly map for G should be “built up”, in a homological manner, from the cokernels
of the relative assembly maps of the various virtually cyclic subgroups of G (see
for example [Lafont and Ortiz 2009] for an instance of this phenomenon). In view
of our Theorem D, the following question seems relevant:

Question. Can one find a group G, an index i ∈ Z, and a finite subgroup H , with
the property that H embeds in coker(hG

i (EG)→ Ki (Z[G])), but
⊕
∞

H does not?

In other words, we are asking whether contributions from the various Nil-groups
of the virtually cyclic subgroups of G could partially cancel out in a cofinite man-
ner. Note the following special case of this question: is there an example for which
this cokernel is a nontrivial finite group?

6C. Exotic Farrell Nil-groups. Our Theorem C shows that, for a countable tame
ring (meaning the associated Farrell Nil-groups have finite exponent), the asso-
ciated Farrell Nil-groups, while infinitely generated, still remain reasonably well
behaved, i.e., are countable direct sums of a fixed finite group. In contrast, for a
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general ring R (or even a general integral group ring ZG), all we know about the
nontrivial Farrell Nil-groups is that they are infinitely generated abelian groups. Of
course, the possibility of having infinite exponent a priori allows for many strange
possibilities, e.g., the rationals Q, or the Prüfer p-group Z(p∞) consisting of all
complex pi -th roots of unity (i ≥ 0). We can ask:

Question. Can one find a ring R, automorphism α ∈ Aut(R), and i ∈ Z, so that
NKi (R, α)∼=Q? How about NKi (R, α)∼= Z(p∞)? What if we require the ring to
be an integral group ring R = ZG?

Remark 6.4. Grunewald [2008, Theorem 5.10] proved that, for every group G and
every group automorphism α of finite order, NKi (QG, α) (for all i ∈ Z) is a vector
space over the rationals after killing torsion elements. However this still leaves the
possibility that they may vanish.

Or rather, in view of our results, the following question also seems natural:

Question. What conditions on the ring R, automorphism α ∈ Aut(R), and i ∈ Z,
are sufficient to ensure NKi (R, α) is a torsion group of finite exponent? Does
NKi (ZG;α) have finite exponent for all polycyclic-by-finite groups when α is of
finite order?

Finally, while this paper completes our understanding of the finiteness proper-
ties of Farrell Nil-groups associated with finite-order ring automorphisms, nothing
seems to be known about the Nil-groups associated with infinite-order ring auto-
morphisms. This seems like an obvious direction for further research.
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