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Abstract. Every virtually cyclic group G that surjects onto the infinite dihedral group Dy con-
tains an index two subgroup P of the form Hza Z. We show that the Waldhausen Nil-group
of G vanishes if and only if the Farrell Nil-group of P vanishes.
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1 Statement of results

The Bass Nil-groups, Farrell Nil-groups, and Waldhausen Nil-groups appear respec-
tively as pieces in the computation of the algebraic K-theory of direct products, semi-
direct products, and amalgamations. While the Bass Nil-groups have been extensively
studied, much less is known for both the Farrell Nil-groups and the Waldhausen Nil-
groups. For the purposes of computing the algebraic K-theory of infinite groups, the
Nil-groups of virtually cyclic groups yield obstructions to certain assembly maps
being isomorphisms. In particular, the vanishing/non-vanishing of Nil-groups is of
crucial importance for computational aspects of algebraic K-theory. In this short
note we prove the following result:

Main Theorem. Let G be a virtually cyclic group that surjects onto the infinite dihedral

group Dy, and G ¼ G1 �H G2 be the corresponding splitting of groups (with H of index

two in both G1 and G2). Let P ¼ Hza ZaG be the canonical subgroup of G of index

two, obtained by taking the pre-image of the canonical index two Z subgroup of Dy.

Then for i ¼ 0; 1, the following two statements are equivalent:

(A) The Waldhausen Nil-group NKiðZH;Z½G1 �H�;Z½G2 �H�Þ for the group G ¼
G1 �H G2 vanishes.

(B) The Farrell Nil-group NKiðZH; aÞ for the group P ¼ Hza Z vanishes.

The proof of our Main Theorem will be completed in Section 2, with some conclud-
ing remarks in Section 3.

Next, let us recall that the Farrell-Jones Isomorphism Conjecture for a finitely gen-
erated group G states that the assembly map:



H G
n ðEVCðGÞ;KZ�yÞ ! H G

n ðEALLðGÞ;KZ�yÞ ¼ KnðZGÞ

is an isomorphism. The term on the left is the generalized equivariant homology
theory of the space EVCðGÞ with coe‰cients in the integral K-theory spectrum, where
the space EVCðGÞ is a classifying space for G-actions with isotropy in the family VC
of virtually cyclic subgroups. The term on the right gives the algebraic K-theory of
the integral group ring of G.

Explicit models for the classifying space EVCðGÞ are known for few classes of
groups: virtually cyclic groups (take EVCðGÞ to be a point with trivial action), crys-
tallographic groups (by work of Alves and Ontaneda [AO06]), hyperbolic groups (by
work of Juan-Pineda and Leary [JL], and Lück [Lu05]), and in the case of relatively
hyperbolic groups (due to the authors [LO]). In contrast, explicit models are known
for EFINðGÞ for many classes of groups (see [Lu05] for a thorough survey), where
EFINðGÞ is a classifying space for G-actions with isotropy in the family of finite sub-
groups. Furthermore, the algebraic K-theory of finite groups is much better under-
stood than the algebraic K-theory of virtually cyclic groups. As such, it is interesting
to know whether one can further reduce the computation of the algebraic K-theory
of the integral group ring of G to the computation of H G

n ðEFINðGÞ;KZ�yÞ, i.e.,
whether the natural map:

H G
n ðEFINðGÞ;KZ�yÞ ! H G

n ðEVCðGÞ;KZ�yÞ

is an isomorphism. There is a well known criterion for this, namely the map will be
an isomorphism for all na q if and only if, for every infinite virtually cyclic subgroup
Q of G, the map:

HQ
n ðEFINðQÞ;KZ�yÞ ! KnðZQÞ

is an isomorphism for all na q (see [DL98, Theorem 2.3] for q < y, and [FJ93,
Theorem A.10] for q ¼ y). Since the cokernel of these maps are precisely the Nil-
groups, our main theorem now gives us the following

Corollary. Let G be a finitely generated group, and q ¼ 0 or 1. Then the following two

statements are equivalent:

� the relative assembly map

H G
n ðEFINðGÞ;KZ�yÞ ! H G

n ðEVCðGÞ;KZ�yÞ

is an isomorphism for na q,

� for every subgroup Hza ZaG with H finite, and for every na q, the Farrell Nil-

group NKnðZH; aÞ for the group Hza Z vanishes.

If in addition, we know that the Farrell-Jones Isomorphism Conjecture holds for the

group G, then we have that (for na q):

H G
n ðEFINðGÞ;KZ�yÞGKnðZGÞ:
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Proof. We start by recalling that Farrell-Jones [FJ95] have shown that the Nil-groups
(Bass, Farrell, and Waldhausen type) always vanish for na�1. So we focus on
n ¼ 0; 1.

The proof follows immediately from the discussion above: if one has an infinite
virtually cyclic subgroup of the form Hza Z for which the Farrell Nil-group
NKnðZH; aÞ0 0, then the criterion above tells us that the relative assembly map fails
to be an isomorphism for n. Let us now argue for the converse. We know that every
infinite virtually cyclic subgroup Q of G is either a semidirect product Hza Z, or
surjects onto the infinite dihedral group Dy. For groups of the first type, we have
that the Farrell Nil-group vanish (by assumption). For groups of the second type, we
know that there is an index two subgroup which is a semi-direct product of a finite
group H with Z (where Z acts on H via some automorphism a). Our main theorem
says that if the Farrell Nil-group NKnðZH; aÞ associated to the semi-direct product is
zero (which holds by hypothesis), then the Waldhausen Nil-group associated to V are
likewise automatically zero. In particular, if the Farrell Nil-groups vanish for every

infinite virtually cyclic subgroup of the form Hza Z, then the Nil-groups vanish
for every infinite virtually cyclic subgroup Q in G. The criterion discussed above now
implies that the relative assembly map is actually an isomorphism. r
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advice throughout the years.

In addition, we would like to thank J. Grunewald, D. Juan-Pineda, I. Leary, S.
Prassidis, and M. Varisco for helpful comments on a preliminary draft of this paper.

The work in this paper was partly supported by the National Science Foundation
under grant DMS-0606002.

2 Proof of the Main Theorem

In this section, we will provide a proof of the main theorem. The proof will make use
of two maps to compare the K-theory of ZG with the K-theory of ZP:

� the maps s� : KiðZPÞ ! KiðZGÞ, functorially induced by the inclusion P ,! G,
and the transfer maps s� : KiðZGÞ ! KiðZPÞ (see Farrell-Hsiang [FH78]). This
will be used to establish (A) ) (B).

� a map piA : piPðE; rEÞ ! piPðEÞ between suitably defined spectra of stable
pseudo-isotopies (see Farrell-Jones [FJ95]). This will be used to establish (B) ) (A).

Recall that in the situation we are dealing with, the group P ¼ Hza Z is the ca-
nonical index two subgroup of the group G ¼ G1 �H G2.

Another result we will need is that, as shown by Farrell-Hsiang [FH68], the group
KiðZPÞ can be expressed in the following form:
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KiðZHa½Z�ÞGClNKiðZH; aÞlNKiðZH; a�1Þð1Þ

where C is a suitable quotient (determined by the automorphism a) of the group
Ki�1ðZHÞlKiðZHÞ. On the other hand, a classic result of Waldhausen [W78a],
[W78b] (as reformulated by Connolly-Prassidis [CP02]) expresses KiðZGÞ as:

ð2Þ KiðZ½G1 �H G2�Þ

GNKiðZH;Z½G1 �H�;Z½G2 �H�Þl ½ðKiðZG1ÞlKiðZG2ÞÞ=KiðZHÞ�:

We will first establish that (A) ) (B) (in Section 2.1). We will then briefly recall a
construction of Farrell-Jones [FJ95] of a stratified fiber bundle rE : E ! X , for a
suitably defined space E, and stratified control space X (Section 2.2). We will also
explain in that section the relevance of their result to what we are trying to establish.
Next we shall use the topology of the spaces r�1

E ðxÞ for x A X , to gain information on
the E2-terms in the Quinn spectral sequence (see Section 2.3). Finally, we shall use
the information we obtain concerning the spectral sequence to prove that (B) ) (A)
(Section 2.4). Throughout Sections 2.1–2.4, we will be working exclusively with the
case i ¼ 1. We will complete the proof in Section 2.5 by explaining the required
modifications needed to obtain the case i ¼ 0.

2.1. Vanishing of Waldhausen Nil forces vanishing of Farrell Nil. In order to show
that (A) ) (B), we first assume that the Waldhausen Nil-group NK1ðZH;Z½G1 �H�;
Z½G2 �H�Þ ¼ 0. Note that under this hypothesis, the decomposition in equation (2)
reduces to:

K1ðZ½G1 �H G2�ÞG ðK1ðZG1ÞlK1ðZG2ÞÞ=K1ðZHÞ

We now want to argue that the corresponding Farrell Nil-group NK1ðZH; aÞ is triv-
ial. The key observation is contained in the following:

Lemma 2.1. The map s� is injective on the subgroup NK1ðZH; aÞ in the decomposition

(1) of the group K1ðZPÞ.

Proof. This follows from [FH68, Proposition 20], which shows that the composite
map s� � s� : K1ðZPÞ ! K1ðZPÞ has an explicit expression in terms of the decompo-
sition of K1ðZPÞ given in equation (1) above: it maps an element in the NK1ðZH; aÞ
summand to the sum of itself with the image of this element under the canonical
isomorphism t : NK1ðZH; aÞ ! NK1ðZH; a�1Þ. This can be seen as follows: in the
short exact sequence

0 ! P ! G ! Z=2 ! 0

the Z=2 acts on P ¼ Hza Z via the map z 7! �z on the Z factor. But the Farrell
Nil-groups NK1ðZH; aÞ and NK1ðZH; a�1Þ are canonically associated to the sub-
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semirings Z½Hza Zþ� and Z½Hza Z��, where Zþ, Z� refers to the non-negative and
non-positive integers respectively. Since the action of Z=2 on P interchanges these
two sub-semirings inside ZP, the induced action of the non-trivial element g A Z=2
on the K1ðZPÞ interchanges the two summands NK1ðZH; aÞ and NK1ðZH; a�1Þ
via the canonical isomorphism t (this map was precisely the one used by Farrell-
Hsiang to see that these two Nil-groups are isomorphic). Now the composite map
s� � s� : K1ðZPÞ ! K1ðZPÞ is given by the following formula

x 7! Sg AZ=2g�ðxÞ

where g� : K1ðZPÞ ! K1ðZPÞ is the map induced on the K-theory of ZP via the
action of g on P (recall that P is normal in G). In the situation we are interested in, the
discussion above implies that for x A NK1ðZH; aÞ, we have ðs� � s�ÞðxÞ ¼ xþ tðxÞ,
where t : NK1ðZH; aÞ ! NK1ðZH; a�1Þ is the canonical isomorphism. This implies
that the composite map s� � s� is injective on the NK1ðZH; aÞ summand, and hence
the map s� must likewise be injective, concluding the proof of the lemma. r

In particular, in the decomposition of the group K1ðZ½G1 �H G2�Þ, we have that
the group NK1ðZH; aÞ injects into the group ðK1ðZG1ÞlK1ðZG2ÞÞ=K1ðZHÞ. Since
the latter group is a finitely generated abelian group, this implies that the group
NK1ðZH; aÞ is finitely generated. But Grunewald [G1, Theorem 2.5] and Ramos [R]
independently showed that the groups NK1ðZH; aÞ are either trivial or infinitely gen-
erated. This forces NK1ðZH; aÞ to vanish, establishing (A) ) (B).

2.2. Some results of Farrell-Jones. Farrell and Jones in [FJ95, Section 2] defined a 3-
dimensional stratified control space X , and constructed from the pair P ,! G a strati-
fied fiber bundle E over X . The stratified control space X contains a distinguished
point p, and the stratified fiber bundle rE : E ! X in their construction has the fol-
lowing properties:

� E is a closed manifold with p1ðEÞGG,

� for every x A X satisfying x0 p, the group p1ðExÞ is a finite group,

� for the distinguished point p A X , p1ðEpÞGP.

where Ex ¼ r�1
E ðxÞ.

The important result for our purposes is [FJ95, Theorem 2.6], establishing that the
group homomorphism

piA : piPðE; rEÞ ! piPðEÞð3Þ

is an epimorphism for every integer i. Here PðEÞ is the spectrum of stable topological
pseudoisotopies on E, PðE; rEÞ is the spectrum of those stable pseudoisotopies which
are controlled over X via rE , and A is the ‘assembly’ map.
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Now the relevance to the situation we are considering is that, by results of Ander-
son and Hsiang [AH77, Theorem 3], the lower homotopy groups of the pseudo-
isotopy spectrum coincide (with a shift in dimension) with the lower algebraic K-
theory of the integral group ring of the fundamental group of the space. In particular,
we have that the right hand side of the map in (3) is given by:

pjPðEÞ ¼
WhðGÞ; j ¼ �1
~KK0ðZGÞ; j ¼ �2

Kjþ2ðZGÞ; ja�3

8><
>:

To understand the left hand side of the map given in (3), we recall that Quinn [Qu82,
Theorem 8.7] constructed a spectral sequence En

s; t abutting to psþtPðE; rEÞ with
E2
s; t ¼ HsðX ; fptPðrEÞgÞ. Here fpqPðrEÞg, q A Z, denotes the stratified system of

abelian groups over X where the group above x A X is pqPðr�1
E ðxÞÞ.

Note that by Anderson and Hsiang’s result (see [AH77, Theorem 3]) mentioned
above, we also have that for every x:

pjPðExÞ ¼
Whðp1ðExÞÞ; j ¼ �1
~KK0ðZp1ðExÞÞ; j ¼ �2

Kjþ2ðZp1ðExÞÞ; ja�3

8><
>:

where Ex ¼ r�1
E ðxÞ.

2.3. E2-terms in the Quinn spectral sequence. Let us now assume that ðBÞ holds, and
let us analyze the E2-terms in the Quinn spectral sequence. Recall that in our situa-
tion, we have that the groups p1ðExÞ are all finite, except at one distinguished point p

where p1ðEpÞGP. In particular, since the lower algebraic K-groups of the integral
group ring of a finite group are finitely generated, this implies that the groups
pjPðExÞ are finitely generated groups, except possibly over the distinguished point p.

We now focus on the distinguished point p, and recall that we are assuming that
the Farrell Nil-group NK1ðZH; aÞ is trivial. Since the Nil-groups NK1ðZH; aÞ and
NK1ðZH; a�1Þ are canonically isomorphic (see [FH68, Proposition 20]), we conclude
that the Nil-groups vanish. This implies, by the formula for K1ðZPÞ given in equa-
tion (1) that K1ðZPÞ ¼ C. Recall that C is a suitable quotient (determined by the
automorphism a) of the group K0ðZHÞlK1ðZHÞ. Since H is finite, we have that
K0ðZHÞ and K1ðZHÞ are finitely generated, and it follows that K1ðZPÞ ¼ C is fi-
nitely generated. Since WhðPÞ is a quotient of K1ðZPÞ, this implies that the White-
head group WhðPÞ is likewise finitely generated.

From the result of Anderson and Hsiang [AH77], this tells us that at the dis-
tinguished point p,

p�1PðEpÞ ¼ Whðp1ðEpÞÞ ¼ WhðPÞ

is finitely generated. Furthermore, by results of Farrell-Jones [FJ95, Corollary 1.3]
we know that for ja�4, the groups
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pjPðEpÞ ¼ Kjþ2ðZp1ðEpÞÞ ¼ Kjþ2ðZPÞ

vanish, and that the group p�3PðEpÞ ¼ K�1ðZp1ðEpÞÞ ¼ K�1ðZPÞ is finitely gen-
erated. We summarize the information we have so far concerning the homotopy
groups pjPðExÞ in the following:

Fact 1. For the distinguished point p A X , we have that for ja�1, the groups
pjPðEpÞ are finitely generated, except possibly for the case where j ¼ �2. For all
other points x0 p in X , the groups pjPðExÞ are finitely generated for all ja�1.

Now in terms of the stratified space X , let us recall how the E2
p;q term of the spectral

sequence can be computed. The space X is a stratified 3-dimensional CW-complex,
with six cells. Furthermore, for points x; y A X lying in the interior of the same
strata sp, we have that Ex is homeomorphic to Ey (we will denote this common
space by Es p ). In particular, the stratified system of abelian groups is constant on
the interior of each cell. Then the E2

p;q term is given by the homology of the chain
complex:

� � � !
L
s pþ1

pqPðEs pþ1Þ !
L
sp

pqPðEs pÞ !
L
s p�1

pqPðEs p�1Þ ! � � �

where each sum is over all appropriate dimensional strata in the decomposition of X .
Note that from this chain complex, and the fact that X is 3-dimensional, we imme-
diately see that E 2

p;q ¼ 0 as soon as pa�1 or 4a p. Similarly, since all the groups in
the chain complex are trivial for qa�4, we see that for such values of q, E2

p;q ¼ 0.
This gives us:

Fact 2. The only E2
p;q-terms that can be non-zero are those for which 0a pa 3 and

�3a q. In particular, the spectral sequence collapses (by the E4-stage).

Next we observe that the distinguished point p A X is actually a 0-cell in the CW-
complex structure on X . From Fact 1 above, along with the chain complex describ-
ing the E2-terms, we immediately obtain the following:

Fact 3. Within the range qa�1, all the E 2-terms in the spectral sequence are finitely

generated, with the possible exception of the E2
0;�2 term.

2.4. Vanishing of Farrell Nil forces vanishing of Waldhausen Nil. Now that we have
gathered together information on the E2-terms of the spectral sequence (assuming
statement (B) holds), let us show that statement (A) must also hold.

Observe that, in an arbitrary spectral sequence, if a term E2
p;q is finitely generated,

then Ek
p;q is finitely generated for all kb 2. Furthermore, we have that if a term

E2
p;q ¼ 0, then Ek

p;q ¼ 0 for all kb 2. From Fact 2, our sequence collapses by the

E4-term, and we see that the only possible non-zero terms satisfying pþ q ¼ �1
are E4

0;�1, E4
1;�2, and E4

2;�3. Combining Fact 3 with the observation above, we see
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that p�1PðE; rEÞGE4
0;�1 lE4

1;�2 lE4
2;�3 is finitely generated, and by Farrell-Jones

[FJ95, Theorem 2.6], this group surjects onto p�1PðEÞ ¼ WhðGÞ. In particular, we
see that the group WhðGÞ must be finitely generated, and hence the group K1ðZGÞ is
finitely generated. From the decomposition in equation (2), we see that the Wald-
hausen Nil-group NK1ðZH;Z½G1 �H�;Z½G2 �H�Þ is a direct summand in K1ðZGÞ,
and hence, must also be finitely generated. But Grunewald [G1] has shown that the
Waldhausen Nil-group is either trivial or infinitely generated. We conclude that the
Waldhausen Nil-group is in fact trivial, completing the proof that (B) ) (A).

2.5. Modifications for the case iF 0. We now proceed to explain the modifications
required to deal with the case i ¼ 0. The argument given above would extend verba-
tim, provided we had analogues for i ¼ 0 for the following key results (known to
hold for i ¼ 1):

� the result in [FH68, Proposition 20], used in the proof of Lemma 2.1.

� the results of Ramos [R] and Grunewald [G1] establishing that the Waldhausen
and Farrell Nil-groups are either trivial or infinitely generated.

To explain why these results extend to i ¼ 0, we recall some basic facts concerning
the suspension functor from rings to rings. The cone ring LZ of Z is the ring of
matrices over Z such that every column and every row contains only finitely many
non-zero entries. The suspension ring SZ is the quotient of LZ by the ideal of fi-
nite matrices. For an arbitrary ring R we define the suspension ring SR ¼ SZnR.
The suspension fuctor SZn� has the key property that KiðRÞGKiþ1ðSRÞ for all
i A Z.

Fact 4. For PaG as in our Main Theorem, with respect to the decomposition

K0ðZHa½Z�ÞGClNK0ðZH; aÞlNK0ðZH; a�1Þ

we have for all x A NK0ðZH; aÞ the equality ðs� � s�ÞðxÞ ¼ xþ tðxÞ, where
t : NK0ðZH; aÞ ! NK0ðZH; a�1Þ is the canonical isomorphism.

To establish this fact, we merely note that [FH68, Proposition 20] holds for any ring
R, and establishes that, for an abstract ring automorphism a, we have (1) the K1 of
the twisted ring Ra½T � can be computed via

K1ðRa½T �ÞGClNK1ðR; aÞlNK1ðR; a�1Þ;

where C is some suitable quotient of K0ðRÞlK1ðRÞ, and (2) the groups NK1ðR; aÞ
and NK1ðR; a�1Þ are canonically associated to the sub-semirings Ra½Tþ� and Ra½T��.
Here T is an infinite cyclic group, Tþ and T� the semigroup generated by the gen-
erator and the inverse of the generator respectively.

Now observe that there is a canonical ring isomorphism SðRa½T �ÞG ðSRÞ1na½T �
(see [G2, Remark 2.12 part (2)]). This induces a commutative diagram:
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K0ðRa½T �Þ ���! K0ðRÞ

G

???y
???yG

K1ðSðRa½T �ÞÞ ���! K1ðSRÞ

which implies that the kernel of the top row is isomorphic to the kernel of the
bottom row. But these groups are, by definition, NK0ðR; aÞlNK0ðR; a�1Þ and
NK1ðSR; 1n aÞlNK1ðSR; 1n a�1Þ respectively. Furthermore, the functor S maps
the sub-semiring Ra½Tþ� (and Ra½T��) of the ring Ra½T � to the sub-semiring
ðSRÞ1na½Tþ� (and ðSRÞ1na½T��, respectively) of the ring ðSRÞ1na½T �. This forces
the isomorphism above to restrict to isomorphisms NK0ðR; aÞGNK1ðSR; 1n aÞ
and NK0ðR; a�1ÞGNK1ðSR; 1n a�1Þ respectively. Finally, under the situation we
are dealing with, we note that the non-trivial element g A Z=2 ¼ G=P which acts on
R ¼ ZP by interchanging the two sub-semirings Ra½Tþ� and Ra½T�� commutes with
the functor S, and hence acts on ðSRÞ1na½T � by permuting the two sub-semirings
ðSRÞ1na½Tþ� and ðSRÞ1na½T��. This implies that the map t acts on the decomposi-
tion of K0ðZPÞ by interchanging the two factors NK0ðR; aÞ and NK0ðR; a�1Þ, as was
required in the argument of Lemma 2.1. This completes the verification of the first
point mentioned above.

For the second point mentioned above, we note that, by the argument in the pre-
vious paragraph, we have that NK0ðZH; aÞGNK1ðSðZHÞ; 1n aÞ. Since Grunewald
[G1] showed that the NK1ðR; bÞ is either trivial or infinitely generated, for any ring
R and any automorphism b of finite order, we immediately have the corresponding
property for NK0. A similar argument shows that, for the Waldhausen Nil-groups,
we have isomorphisms:

NK0ðZH;Z½G1 �H�;Z½G2 �H�Þ

GNK1ðSðZHÞ;SðZ½G1 �H�Þ;SðZ½G2 �H�ÞÞ

Note in the above expression that the functor S has a natural extension to left
bimodules, in the sense that if B is a left bimodule for the ring R, then SB is a left
bimodule for SR (see [G2, Section 2] for more details). Applying Grunewald’s result
for NK1 to the right hand term, concludes the argument for the following:

Fact 5. For PaG as in our main theorem, we have that both

� the Farrell Nil-group NK0ðZH; aÞ, and

� the Waldhausen Nil-group NK0ðZH;Z½G1 �H�;Z½G2 �H�Þ,

are either trivial or infinitely generated.

Finally, we explain how Facts 4 and 5 can be used to promote the arguments in
Sections 2.1–2.4. Using Fact 4, the proof in Lemma 2.1 extends verbatim to show
that the map s� : K0ðZPÞ ! K0ðZGÞ is injective on the subgroup NK0ðZH; aÞ. Using
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Fact 5 and the decompositions of K0ðZPÞ and K0ðZGÞ given in equations (1) and (2),
the arguments in the last paragraph of Section 2.1 yield the implication (A) ) (B) for
the case i ¼ 0.

In the proof of the converse, the sole changes occur in Section 2.3, Fact 1, where
all the groups pjPðEpÞ are finitely generated except possibly for j ¼ �1 (instead of
j ¼ �2). Correspondingly, there is a change in Fact 3, where within the range
qa�1, all the E2-terms of the spectral sequence are finitely generated except possi-
bly for the E2

0;�1 term. The argument in Section 2.4 allows one to conclude that the

group p�2PðE; rEÞGE4
0;�2 lE4

1;�3 is finitely generated, and the rest of the discus-
sion in Section 2.4, along with Fact 5, completes the converse implication (B) ) (A)
for the case i ¼ 0.

3 Concluding remarks

While our main theorem provides a relationship between the Farrell Nil-groups and
the Waldhausen Nil-groups, one can speculate about whether one can establish a
further reduction to the Bass Nil-groups. This motivates the following:

Question. For an arbitrary ring R, are the following two statements equivalent:

� the Bass Nil-group NKiðRÞ vanishes, and

� the Farrell Nil-groups NKiðR; aÞ vanish for every automorphism a of the ring R.

This last question seems extremely di‰cult to answer. The most interesting case
would be where the ring R is the integral group ring of a finitely generated group G,
and the automorphisms are generated by automorphisms of G.

Finally, we point out that if one does not assume vanishing of the Farrell Nil-group
of P, the Quinn spectral sequence still gives us some information relating the Farrell
Nil-group of P with the Waldhausen Nil-group of G. Indeed, a more careful analysis
of the Quinn spectral sequence can be used to show that the Farrell Nil-group ap-
pearing in the E2 term survives to the E4 stage, and surjects onto the Waldhausen
Nil-group (see Prassidis [P97, pages 412–413] for a similar analysis). This is moti-
vated by the well-known philosophy that, in the map of Farrell-Jones:

piA : piPðE; rEÞ ! piPðEÞ

the controlled (resp. non-controlled) part of the pseudo-isotopy spectrum PðE; rEÞ
must map to the controlled (resp. non-controlled) part of the pseudo-isotopy spec-
trum PðEÞ. The non-controlled part is precisely the Nil-groups.

Now one could use this surjection to show that the exponent of the Waldhausen
Nil-group must divide the exponent of the Farrell Nil-group. We observe however
that the estimates this would yield provide no improvement on known estimates (due
independently to Grunewald [G1] and Ramos [R]). In the interest of clarity of expo-
sition, the authors have chosen to omit this further analysis, leaving the details to the
interested reader.
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