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Abstract

In this paper, we introduce the notion of an EZ-structure on a group, an
equivariant version of the Z-structures introduced by Bestvina [4]. Examples
of groups having an EZ-structure include (1) torsion free δ-hyperbolic groups,
and (2) torsion free CAT (0)-groups.

Our first theorem shows that any group having an EZ-structure has an
action by homeomorphisms on some (Dn,∆), where n is sufficiently large, and
∆ is a closed subset of ∂Dn = Sn−1. The action has the property that it is
proper and cocompact on Dn −∆, and that if K ⊂ Dn −∆ is compact, that
diam(gK) tends to zero as g →∞. We call this property (∗∆).

Our second theorem uses techniques of Farrell-Hsiang [8] to show that the
Novikov conjecture holds for any torsion-free discrete group satisfying condition
(∗∆) (giving a new proof that torsion-free δ-hyperbolic and CAT (0) groups
satisfy the Novikov conjecture).

Our third theorem gives another application of our main result. We show
how, in the case of a torsion-free δ-hyperbolic group Γ, we can obtain a lower
bound for the homotopy groups πn(P(BΓ)), where P(·) is the stable topological
pseudo-isotopy functor.

1 Introduction.

Let Γ be a discrete group. Bestvina [4] defined the notion of a Z-structure on Γ as a
pair (X̄, Z) of spaces satisfying the following four axioms:

• X̄ is a Euclidean retract (ER); i.e. it is locally contractible, and has finite
(covering) dimension.

∗This research was supported in part by the National Science Foundation.
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• Z is a Z-set in X̄; i.e. for every open set U ⊂ X̄, the inclusion U − Z ↪→ U is
a homotopy equivalence.

• X̄ − Z admits a fixed point free, properly discontinuous, cocompact action by
the group Γ.

• The collection of translates of a compact set in X̄ − Z forms a null sequence
in X̄; i.e. for every open cover U of X̄, all but finitely many translates are U
small.

Let us now introduce an equivariant version of a Z-structure:

Definition 1.1. We say that (X̄, Z) is an EZ-structure (equivariant Z-structure) on
Γ provided that (X̄, Z) is a Z-structure, and in addition, the Γ action on X̄ − Z
extends to an action on X̄.

Examples of groups with an EZ-structure include torsion-free δ-hyperbolic groups
[3] and CAT (0)-groups [4]. We note that a special case of a Z-structure on Γ is the
situation where X̄ is a disk Dn, and Z = ∂Dn = Sn−1:

Definition 1.2. We say that Γ satisfies condition (*) provided that there is an EZ-
structure of the form (Dn, Sn−1).

Farrell-Hsiang introduced this special case in [8] (see also [9], [12], [13]). Their mo-
tivation for the development of condition (*) was that it provided an abstract setting
under which the Novikov conjecture could be verified for the group Γ. Observe that
there are groups with an EZ-structure that do not satisfy condition (*); for example,
the free group on 2-generators. We now introduce a condition (∗∆) for torsion-free
groups, generalizing condition (*). (For non torsion-free groups see Definition 3.1
below)

Definition 1.3. We say that Γ satisfies condition (∗∆) provided that there is an
EZ-structure of the form (Dn,∆), where ∆ is a closed subset of ∂Dn = Sn−1

We are now ready to state the first two theorems of this paper:

Theorem 1.1. Let Γ be a discrete group, and assume that Γ has an EZ-structure.
Then Γ satisfies condition (∗∆).

Theorem 1.2. Let Γ be a torsion-free discrete group satisfying condition (∗∆). Then
the Novikov conjecture holds for the group Γ.
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The proofs of these theorems will be provided in section 2 and section 3 respec-
tively. We note that the second theorem is not new, as Carlsson-Pederson [6] have
already proven that groups with an EZ-structure satisfy this form of the Novikov
conjecture. Nevertheless, the proof provided here is conceptually quite different from
their argument (see Ferry-Weinberger [14] and Hu [16] for related results on the
Novikov conjecture).

Now let us further restrict to groups which are torsion-free δ-hyperbolic. For such
a group Γ, Theorem 1.1 above ensures that the group satisfies condition (∗∆). In fact,
δ-hyperbolicity ensures that the Γ-action on the pair (Dn,∆) has several additional
properties. In Section 4, we will use these properties to show the following theorem:

Theorem 1.3. Let Γ be a torsion-free δ-hyperbolic group. Then for each integer
n ≥ 0, the group homomorphism:⊕

S∈M

πn(φS) :
⊕
S∈M

πn(P(BS)) −→ πn(P(BΓ))

is monic.

In the theorem above, M is a maximal collection of maximal infinite cyclic sub-
groups of Γ, with no two elements inM being conjugate, P(·) is the stable topological
pseudo-isotopy functor, and φS : P(BS) → P(BΓ) is the functorially defined contin-
uous map induced by S ≤ Γ (see Hatcher [15]). We refer the reader to section 4 for
a more complete discussion of this result.

Before starting with the proofs, we make a few comments concerning the results
in this paper.

Remark 1. A natural question to ask is which finitely generated groups have an EZ-
structure? A version of this question was already posed by Bestvina [3], where he
asks whether every group Γ with a finite BΓ has a Z-structure. It is interesting to
construct groups which are neither δ-hyperbolic, nor CAT (0) groups, but do have
an EZ-structure. Bestvina gives some important examples of such groups in [3]. Do
torsion free subgroups of finite index in SLn(Z) have an EZ-structure?

Remark 2. It would also be of some interest to find applications of Theorem 1.1
to geometric group theory. Indeed, condition (∗∆) for torsion free groups yields
an action of the group on disks, which, aside from a “bad limit set” is properly
discontinuous, fixed point free, and cocompact. With the exception of cocompactness,
this is reminiscent of the action of a Kleinian group on (the compactification) of
hyperbolic n-space. In some sense, Theorem 1.1 states that every torsion-free δ-
hyperbolic group has an action that mimics that of a Kleinian group. One feels that
this should have some strong geometric consequences.
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Remark 3. One could also consider the possibility of strengthening condition (∗∆)
by also requiring the action of the group Γ on Dn to be smooth. Work of Benoist-
Foulon-Labourie [2] suggests that among δ-hyperbolic groups, perhaps only uniform
lattices satisfy this extra property. In any event it would be interesting to determine
which δ-hyperbolic groups satisfy this smooth form of condition (∗∆).

2 EZ-structure implies condition (∗∆)

Let us fix a discrete group Γ with an EZ-structure (X̄, Z). In this section we will
provide a proof of Theorem 1.1. In order to do this, we will use the EZ-structure
(X̄, Z) to build a new EZ-structure of the form (Dn,∆), where ∆ is a closed subset
of ∂Dn = Sn−1. Let us start with a series of lemmas that will allow us to make the
structure of X̄ − Z more suitable to our purposes.

Lemma 2.1 (Reduction to a complex). Let Γ be a group with an EZ-structure
(X̄, Z). Then there is an EZ-structure (K̃ ∪Z,Z), where K̃ is the universal cover of
a finite simplicial complex.

Proof. We first observe that the hypotheses for an EZ-structure imply that the group
Γ is the fundamental group of an aspherical compact ANR, namely (X̄−Z)/Γ. By a
result of West [24], any compact ANR is homotopy equivalent to a compact polyhedra
K. In particular K is a K(Γ, 1). A result of Bestvina (Lemma 1.4 in [4]) now implies
that (K̃ ∪ Z,Z) is an EZ-structure.

Our next step is to “fatten” K so that it is a manifold with boundary. In order
to do this, we embed (simplicially) K into a high dimensional (n ≥ 5) copy of Rn,
and let W be a regular neighborhood of K. Note that W is a compact manifold with
boundary, and denote by r : W → K a retraction of W onto K. Let the retraction
r̃ : W̃ → K̃ be the Γ-equivariant lift of r.

Lemma 2.2 (Reduction to a manifold with boundary). The pair (W̃ ∪ Z,Z)
is an EZ-structure for Γ.

Proof. We follow the argument of Lemma 1.4 in Bestvina [4]. We start by taking the
diagonal embedding of W̃ in (W̃ ∪∞) × (K̃ ∪ Z). The first factor is the one point
compactification of W̃ , while the map into the second factor is given by r̃ : W̃ →
K̃ ↪→ K̃ ∪ Z. The topology on K̃ ∪ Z comes from taking the closure of the image of
this diagonal embedding. Lemma 1.3 in Bestvina [4] shows that this is a Z-structure.
Furthermore, by construction, the action of Γ on W̃ extends to an action of Γ on
W̃ ∪ Z. Hence we have an EZ-structure.

An identical argument can be used to show the following:
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Lemma 2.3 (Doubling across the boundary). Let (N∪Z,Z) be an EZ-structure
on Γ, and assume that N is a manifold (with or without boundary). Denote by N
the space (N × I)/ ≡, where we collapse each p× I, p ∈ ∂N , to a point (so if N has
no boundary, then N = N × I). Then (N ∪ Z,Z) is an EZ-structure on Γ.

Proof. We proceed as in the previous lemma, using the obvious Γ-equivariant map
ρ : N → N ↪→ N ∪ Z in the place of r̃. That is to say, we embed N into the space
(N ∪∞)× (N ∪Z) using the inclusion map on the first factor, and the map ρ on the
second factor. N ∪Z is then the closure of the image of N under this map, with the
induced topology. Once again, Z lies as a Z-set, and the mapping is Γ-equivariant
by construction.

Note that the space N defined in Lemma 2.3 is also a manifold with boundary,
and that the boundary ∂N of N is by construction just the double of N (the two
copies being N × {0} and N × {1}).

We now return to the situation we are interested in. We have shown that we can
reduce to the case where the EZ-structure is of the form (W̃ ∪ Z,Z), where W̃ is a
manifold with boundary. This allows us to apply the construction from the previous
Lemma to obtain a new EZ-structure (W∪Z,Z). Our next result shows that W∪Z
is in fact a topological manifold. Because we will be refering to this result later in
this section, we prove it in a slightly more general form.

Proposition 2.1. Let (N ∪ Z,Z) be an EZ-structure on Γ, and assume that N is a
manifold (with or without boundary) of dimension ≥ 5. Let (N ∪ Z,Z) be the EZ-
structure defined in Lemma 2.3. Then the space N ∪Z is a manifold with boundary.

Proof. In order to show that the space N ∪ Z is a compact manifold with we will
use the celebrated characterization of high dimensional topological manifolds due to
Edwards and Quinn (for a pleasant general survey, we refer to Mio [20]). Recall that
this characterization provides a list of five necessary and sufficient conditions for a
locally compact high dimensional topological space to be a closed topological man-
ifold. The corresponding characterization for manifolds with boundary requires an
additional condition about the ‘boundary’. We will verify each of these six conditions
as a separate claim.

Claim 1 (Finite dimensional). The space N ∪ Z is finite dimensional.

Proof. Note that, by definition, N ∪Z is obtained by taking the closure of embedding
of N into the space (N ∪∞)× (N ∪ Z). Both of the spaces N ∪∞ and N ∪ Z are
finite dimensional, hence so is their product (N ∪∞) × (N ∪ Z). Finally, N ∪ Z is
a subset of a finite dimensional space, hence must also be finite dimensional.

Claim 2 (Locally contractible). The space N ∪ Z is locally contractible.
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Proof. This follows from the fact that the pair (N ∪ Z,Z) is a Z-structure. Indeed,
the first condition for a Z-structure forces N ∪ Z to be an ER, and ER’s are locally
contractible.

Claim 3 (Homology manifold). The space N ∪Z is a homology manifold with bound-
ary.

Proof. Let n be the dimension of the manifold N . We need to verify that the local
homology of every point is either that of an n-dimensional sphere (for “interior”
points) or that of a point (for “boundary” points). In order to do this, we first
observe that the local homology is easy to compute for points in N . Indeed, N is
actually a manifold with boundary, hence the local homology has the correct values.

Now let us focus on a point p that lies on Z ⊂ N ∪ Z. We claim that the
(reduced) local homology at p is trivial. So we need to show that H̄∗((N ∪ Z), (N ∪
Z)− p) = 0. But this is also an immediate consequence of the fact that Z is a Z-set
in N ∪ Z. Indeed, an equivalent formulation of the Z-set property states that there
is a homotopy J : (N ∪ Z)× I → N ∪ Z which satisfies the conditions:

• J maps N × I into N .

• J0 : (N ∪ Z)× {0} → N ∪ Z is the identity map.

• Jt : (N ∪ Z)× {t} → N ∪ Z maps into N for all t > 0.

In particular, the homotopy J gives a family of homotopic maps which respect
the pair ((N ∪ Z), (N ∪ Z) − p), hence they all induce the same maps on the level
of the homology groups H̄∗((N ∪ Z), (N ∪ Z) − p). But the map induced by J0 is
the identity map, while the map induced by J1 is the trivial map (since J1(N ∪Z) ⊂
N ⊂ (N ∪Z)−p). Hence we have that the identity map coincides with the zero map,
which immediately implies that H̄∗((N ∪ Z), (N ∪ Z) − p) is trivial. We conclude
that N ∪ Z is indeed a homology manifold with boundary.

Let us now recall the definition of the disjoint disk property. A topological space
X has the disjoint disk property provided that any pair of maps from D2 into a space
X can be approximated, to an arbitrary degree of precision, by maps whose images
are disjoint.

Claim 4 (Disjoint disk property). The space N ∪ Z has the disjoint disk property.

Proof. Note that, since N ∪ Z is an ER, it is metrizable; we will use this metric to
measure the closeness of maps. Let f, g be arbitrary maps from D2 into N ∪ Z, and
let ε > 0 an arbitrary real number. We need to exhibit a pair of maps which are ε
close to the maps we started with, and have disjoint image.
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Observe that, since Z is a Z-set in the space N∪Z, there is a map H : N∪Z → N
with the property that H is an (ε/2)-approximation of the identity map on N ∪ Z.
Consider the compositions f ′ := H ◦ f and g′ := H ◦ g, and observe that the maps f ′

and g′ are (ε/2)-approximations of f and g respectively. Furthermore, f ′ and g′ map
D2 into the subset N , which we know is a manifold of dimension ≥ 6.

But high dimensional manifolds automatically have the disjoint disk property, so
we can find (ε/2)-approximations f ′′, g′′ to the maps f ′, g′ whose images are dis-
joint. It is immediate from the triangle inequality that the f ′′, g′′ satisfy our desired
properties. Hence the space N ∪ Z has the disjoint disk property.

Claim 5 (Manifold point). The space N ∪ Z has a manifold point.

Proof. By a manifold point, we mean a point with a neighborhood homeomorphic to
some Rn. This is clear, since N is actually a topological manifold.

We now remind the reader of the characterization of high dimensional topological
manifolds due to Edwards-Quinn ([7],[22],[23]):

Theorem 2.1 (Characterization of topological manifolds.). Let X be a locally compact
topological space, n ≥ 5 an integer. Assume that X satisfies the following properties:

• X has the local homology of an n-dimensional manifold.

• X is locally contractible.

• X has finite (covering) dimension equal to n.

• X satisfies the disjoint disk property.

Then there is a locally defined invariant I(X) ∈ 8Z + 1 with the property that X is a
topological manifold if and only if I(X) = 1.

The corresponding theorem for a manifold with boundary requires an additional
modification of the first two conditions. Namely, one needs to replace them with the
following:

• every point p ∈ X has either the local homology of an (n − 1)-sphere, or that
of a point.

• the subset of points having the local homology of a point, denoted by ∂h(X)
(the “homological” boundary), is a topological manifold of dimension n− 1.
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Under these two conditions, the Edwards-Quinn result implies that the space X is
a topological manifold with boundary (and the set ∂h(X) is the boundary of the
manifold X) if and only if the locally defined invariant I(X) = 1 (see Theorem 3.4.2
in Quinn [21]).

As such, we have reduced our theorem to showing the following:

Claim 6. The set ∂h(N ∪ Z) is a compact manifold of dimension one lower than the
dimension of N .

Proof. By the proof of claim 3, we know exactly what the set ∂h(N ∪Z) is. Namely,
it consists of the set ∂N ∪ Z. Note that the set ∂N is just the double of N across
it’s boundary. In particular, ∂h(N ∪ Z) is obtained by taking two copies of N ∪ Z,
and identifying the two copies of ∂N ∪ Z.

We now claim that ∂N ∪ Z is a Z-set in the space N ∪ Z. In order to show this
we need to exhibit a map fε : N ∪Z → N ∪Z that is ε-close to the identity, and has
fε(N ∪ Z) ⊂ N − ∂N . Note that since Z is a Z-set in N ∪ Z, there is a map g that
is (ε/2)-close to the identity, and maps N ∪ Z into N . Next, observe that since N
itself is a manifold with boundary, ∂N is a Z-set in N , which implies the existence
of a map h : N → N − ∂N which is (ε/2)-close to the identity. Composing the two
maps and using the triangle inequality gives us our desired claim.

So we see that ∂h(N∪Z) is obtained by doubling a Z-compactification N∪Z of an
open manifold Int(N) along it’s Z-boundary ∂N ∪Z. By a result of Ancel-Guilbault
(Theorem 9 in [1]), this is automatically a manifold. The dimension claim comes
from the fact that ∂h(N ∪ Z) contains ∂N , hence must be a manifold of the same
dimension as ∂N , which is one less than the dimension of N .

The Edwards-Quinn result now applies, completing our proof.

Let us summarize what we have so far: if Γ has an EZ-structure, we have shown
that there is an EZ-structure (W ∪Z,Z) with the additional property that W ∪Z is
a topological manifold, and Z is a closed subset in the boundary of the topological
manifold. We now want to further improve the EZ-structure so that the space is in
fact a topological disk. In order to do this, we iterate our procedure once more and
define the space W = (W × I)/ ≡, where again the equivalence relation is given by
collapsing p × I, p ∈ ∂W to a point. By Lemma 2.3, the pair (W ∪ Z,Z) is again
an EZ-structure for Γ, and by Proposition 2.1, W ∪ Z is a topological manifold with
boundary. We claim that W ∪ Z is in fact a topological disk.

Proposition 2.2. The space W ∪ Z is a disk.

Proof. We begin by showing that the space ∂(W ∪ Z) is simply connected. No-
tice that ∂(W ∪ Z) is the double of the compact manifold with boundary W ∪ Z
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along its boundary ∂W ∪ Z. Furthermore each of the spaces W ∪ Z is contractible.
Siefert-Van Kampen now yields that the double ∂(W∪Z) must be simply connected.
Furthermore, observe that the space W ∪ Z is contractible.

Finally we note that any contractible manifold of dimension ≥ 6 with simply con-
nected boundary must be homeomorphic to a disk. This is a well known consequence
of the h-cobordism theorem. A proof in the smooth category can be found in Chapter
9, Proposition A, of Milnor’s book [19]. The same proof holds verbatim, replacing
the use of Smale’s smooth h-cobordism theorem with the topological h-cobordism
theorem of Kirby-Seibenmann’s [18]. This concludes our proof of the proposition.

We have shown how given an arbitrary EZ-structure on a discrete group Γ, we can
construct an EZ-structure of the form (Dn,∆), where ∆ is a closed subset of ∂Dn =
Sn−1. In particular, we see that any group which has an EZ-structure automatically
satisfies condition (∗∆).

3 Condition (∗∆) implies the Novikov conjecture.

We start this section by giving a reformulation of condition (∗∆) which is closer to
the formulation given by Farrell-Hsiang:

Definition 3.1. We say that a group Γ satisfies condition (∗∆) if for some integer
n there is an action of Γ on (Dn,∆), ∆ a closed subset of Sn−1 = ∂Dn with the
following two properties:

• Γ acts properly discontinuously and cocompactly on Dn −∆,

• for each compact subset K of Dn − ∆, and each ε > 0, there exists a δ =
δ(K, ε) > 0 such that for each γ ∈ Γ, if d(γK,∆) < δ, then diam(γK) < ε.

Observe that condition (∗∆) generalizes condition (*) formulated in Farrell-Hsiang
[8] (the reader is also referred to [9] and the survey papers [12],[13]). The only
difference between the two conditions is that condition (*) also required the set ∆ to
be ∂Dn = Sn−1, and Γ to be torsion-free. Furthermore, for torsion-free groups, it is
easy to see that condition (∗∆) corresponds exactly to the existence of an EZ-structure
of the form (Dn,∆), where ∆ is a closed subset of Sn−1.

Note that, by the Theorem proved in the previous section, any group which has
an EZ-structure automatically satisfies condition (∗∆). In particular, the following
two families of groups satisfy condition (∗∆):

• torsion-free δ-hyperbolic groups.

• torsion-free CAT (0)-groups.
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Before starting the proof of Theorem 1.2, we first state the following useful
Lemma:

Lemma 3.1. Let (Dm,∆) be a Γ-space satisfying the properties given in condition
(∗∆). Then there is a second Γ-space (Dm+1,∆) also satisfying (∗∆), and a continuous
Γ-equivariant surjection Dm × I → Dm+1 mapping ∆ × I to ∆ and mapping (Dm −
∆)× I homeomorphically to Dm+1 −∆.

Proof. Let X̄ = (Dm × I)/ ≡, where the equivalence relation collapses each line
segment x × I, x ∈ ∆, to a point. Let φ : Dm × I → X̄ be the quotient map, and
give X̄ the Γ-space structure such that φ is Γ-equivariant. Clearly, φ|(Dm−∆)×I is a
homeomorphism onto X̄ −∆.

Projection onto the first factor of Dm×I induces a Γ-equivariant map Ψ : X̄−∆ →
Dm. The topology on X̄ = (X̄ − ∆) ∪ ∆ induced, using Ψ, by the construction in
Lemma 2.2 coincides with the one described above, as both topologies are compact
and Hausdorff. Hence (X̄,∆) is an EZ-structure on Γ.

It remains to show that X̄ is homeomorphic to Dm+1. For this we introduce a
second decomposition space Y = Dm× [0, 2]/ ∼, where ∼ collapses each line segment
x× [0, 1], x ∈ ∆, to a point. Since Y and X̄ are clearly homeomorphic, it suffices to
construct a homeomorphism from Y to Dm × [0, 2]. To do this, let φ : Dm → [0, 1]
be a continuous function such that φ−1(0) = ∆. Define f : Dm × [0, 2] → Dm × [0, 2]
to be f(x, t) = (x, tφ(x)) if 0 ≤ t ≤ 1, and f(x, t) = (x, (2 − φ(x))t + 2φ(x) − 2) if
1 ≤ t ≤ 2. Observe that f is a surjection.

Since the point inverses of f give the decomposition ∼ of Dm × [0, 2], f induces
the desired homeomorphism.

The condition (*) was introduced by Farrell-Hsiang in order to provide an abstract
setting in which Novikov’s Conjecture could be verified. But the proof given in their
paper carries over almost verbatim to the more general setting of condition (∗∆).
Namely the following is true:

Theorem 3.1. Let (Dm,∆) be a Γ-space with the properties given in condition (∗∆).
Suppose that Γ is torsion-free, and let Mm denote the orbit space (Dm−∆)/Γ. Observe
that Mm is an aspherical compact manifold with boundary. Then the map in the
(simple) surgery exact sequence:

Ss(Mm × Dn, ∂) −→ [Mm × Dn, ∂;G/Top]

is identically zero when n ≥ 1 and n+m ≥ 6.

Proof. For the reader’s convenience, we recall the argument of [8] for the special case
where Γ satisfies condition (*), as exposited in the Trieste notes [13], emphasizing
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the modifications needed for the more general setting of condition (∗∆). So as not to
obscure the argument, we assume that n = 1 and Mm is triangulable. Notice that
the Lemma 3.1 formally reduces the general case n ≥ 1 to the special case n = 1.

Let (Dm+1,∆) be the Γ-space determined by applying Lemma 3.1 to the Γ-space
(Dm,∆), and notice that Mm × D1 = (Dm+1 −∆)/Γ. Define the space:

E2m+1 = (Dm+1 −∆)×Γ (Dm − Sm−1)

and let p : E2m+1 → Mm × D1 be the bundle projection induced by the projection
to the first factor (the fiber of this projection is Dm − Sm−1). Then the following
diagram commutes:

Ss(Mm × D1, ∂) −→ [Mm × D1, ∂;G/Top]

α ↓ ↓ p∗

S(E , ∂) −→ [E , ∂;G/Top]

where α is the obviously defined transfer map (see [13], pgs. 246-247). Since p is
a homotopy equivalence, p∗ is an isomorphism. Hence to prove the theorem, it is
sufficient to verify the following:

Assertion: The map α is identically zero.

To verify this assertion, note first that an arbitrary element in Ss(Mm × D1, ∂)
can be represented by a pair (f, h), where f : Mm → Mm is a self-homeomorphism
with f |∂Mm = Id∂Mm , and h : Mm × D1 → Mm × D1 is a homotopy of f to IdMm

relative ∂Mm. Define:

E2m = (Dm −∆)×Γ (Dm − Sm−1)

and notice that by Lemma 3.1, we have that E2m+1 = E2m × I.
Observe that, given such a pair (f, h), there is a well defined lift f̃ : Dm −∆ →

Dm − ∆, and that f̃ |Sm−1−∆ = IdSm−1−∆. Now let h̃ be the unique lift of h to
(Dm−∆)×I = Dm+1−∆ with the property that h̃ is a proper homotopy equivalence
(relative Sm−1 −∆) between IdDm−∆ and the self-homeomorphism f̃ .

Then k := h̃× IdDm−Sm−1 determines a proper homotopy (relative ∂E):

k : E = E × I −→ E × I

between IdE and a self-homeomorphism g : E → E (which is also determined by
f̃ × IdDm−Sm−1). Note that S(E , ∂) = S(E × I, ∂), since E = E × I. Hence the pair
(g, k) represents the image of the pair (f, h) under the transfer map, i.e. (g, k) =
α(f, h). The assertion then claims that the pair (g, k) obtained in this manner is
always zero in S(E , ∂). In particular, the assertion would follow from the following:
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Proposition 3.1. g is pseudo-isotopic to IdE (relative ∂E), via a pseudo-isotopy which
is properly homotopic to k (relative ∂).

We will now use the condition (∗∆) to construct the pseudo-isotopy posited in
this proposition. Start by defining a new space Ē := Dm ×Γ (Dm − Sm−1). Note
that the projection onto the second factor determines a fiber bundle projection q :
Ē → Int(Mm) with fiber Dm (recall that Int(Mm) = (Dm − Sm−1)/Γ). Hence Ē is
a manifold containing E as an open dense subset, and ∂E ⊂ ∂Ē.

Next observe that the second property of condition (∗∆) implies that f̃ extends
to a Γ-equivariant homeomorphism f̄ : Dm → Dm by setting f̄ |Sm−1 = IdSm−1 .
Consequently, f̄ × IdDm−∆ determines a self-homeomorphism ḡ : E → E which
extends g : E → E and satisfies ḡ|∂Ē = Id∂Ē. We now proceed to construct a
pseudo-isotopy φ : Ē × I → Ē × I satisfying:

• φ|Ē×{0} = ḡ

• φ|Ē×{1} = IdĒ×{1}

• φ|(∂Ē)×I = Id(∂Ē)×I

Once this is done, then the restriction of φ to the subset E × I ⊂ Ē × I will be the
pseudo-isotopy posited in the proposition.

Observe that the three properties stated above define φ on the entire set ∂(Ē×I).
We need to extend φ over Int(Ē × I). In order to do this, consider the fiber bundle
r : Ē × I → Int(M) with fiber Dm × I, where r is the composition of the projection
onto the first factor of Ē × I followed by the map q : Ē → Int(M). Observe that
if σ is an n-simplex in a triangulation of Int(M), then r−1(σ) can be identified with
Dn+m+1.

The construction of φ proceeds by induction over the skeleta of Int(M) via a
standard obstruction theory argument. And the obstructions encountered in extend-
ing φ from the (n − 1)-skeleton to the n-skeleton are precisely those of extending
a self-homeomorphism of Sn+m to a self-homeomorphism of Dn+m+1. But these ob-
structions all vanish, because of the Alexander Trick. Recall that this Trick asserts
that any self-homeomorphism η of Sn extends to a self-homeomorphism η̄ of Dn+1.
In fact, η̄(tx) = tη(x) where x ∈ Sn and t ∈ I is an explicit extension.

Now the restriction ψ := φ|E×I is the pseudo-isotopy from g to IdE asserted in the
proposition. A similar argument, which we omit, shows that ψ is properly homotopic
to k relative ∂. This concludes the proof.
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4 Bounding πn(P(BΓ)) for δ-hyperbolic groups.

In this section, we give an application of our main result to obtaining a lower bound
for the homotopy groups πn(P(BΓ)) which holds for all torsion-free δ-hyperbolic
groups Γ. Here P(·) is the stable topological pseudo-isotopy functor (see Hatcher
[15]). For this we need to first recall some basic facts about δ-hyperbolic groups.
Let Γ be a torsion free δ-hyperbolic group (we exclude the case Γ = Z). Then the
following are true:

Fact 1. If S is an infinite cyclic subgroup of Γ, then there is a maximal infinite cyclic
subgroup containing S. Furthermore this maximal subgroup is unique.

Fact 2. If C is a maximal infinite cyclic subgroup of Γ, then its normalizer is C
itself.

Fact 3. If S1 and S2 are a pair of maximal infinite cyclic subgroups of Γ, and {S±i } ⊂
∂∞Γ are the corresponding pair of points in the boundary at infinity, then either
S1 = S2 or {S±1 } ∩ {S±2 } = ∅.

Fact 4. If S is a maximal infinite cyclic subgroup of Γ, then γ · S− 6= S+ for all
γ ∈ Γ.

We briefly explain why each of these facts holds. The existence part of Fact 1
follows from Proposition 3.16 in Bridson-Haefliger (pg. 465 in [5]), while uniqueness
follows from Fact 3. For a maximal infinite cyclic subgroup, the normalizer coincides
with the centralizer. If the element is not in the group itself, this would yield a pair
of commuting elements, giving a Z2 in Γ, which is impossible, giving us Fact 2. Fact
3 follows from the proof of Theorem 3.20 in Bridson-Haefliger (pg. 467 in [5]). Fact
4 is an easy consequence of Fact 3.

Now fix a set M where the elements of M are maximal infinite cyclic subgroups
of Γ with each conjugacy class represented exactly once. For each S ∈ M, let
φS : P(BS) → P(BΓ) be the functorially defined continuous map (see Hatcher [15]).
Note that BS = S1 for each S ∈M. Theorem 1.3 that we are going to prove in this
section states that, for each integer n ≥ 0, the group homomorphism:⊕

S∈M

πn(φS) :
⊕
S∈M

πn(P(BS)) −→ πn(P(BΓ))

is an injection.
Note that π0(P(S1)) ∼= Z2 ⊕ Z2 ⊕ · · · , where there are countably infinite number

of Z2’s (see Igusa [17]). Furthermore, the Isomorphism Conjecture for P(BΓ) formu-
lated by Farrell-Jones [11] is equivalent to the assertion that the homeomorphisms
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in Theorem 1.3 are all isomorphisms together with the assertion that the Whitehead
groups Wh(Γ× Zn) vanish for all n.

Let us now proceed to prove Theorem 1.3. By Theorem 1.1, we know that we
have a sequence of EZ-structures (Dm, ∂∞Γ), defined for all sufficiently large m, such
that Γ acts on Dm by orientation preserving homeomorphisms, and (Dm+1, ∂∞Γ) =
(Dm, ∂∞Γ) × I (i.e. is Dm × I/ ≡ where each interval x × I, with x ∈ Sm−1, is
collapsed to a point). Furthermore, each S ∈M determines a pair of distinct points
S+, S− ∈ ∂∞Γ. We start our argument by showing:

Claim 1. (Dm, {S±}) is an EZ-structure for S.

Proof (Claim 1). To see this claim, we first note that a closed subset of a Z-set is
still a Z-set, hence the pair (Dm, {S±}) satisfies the first two conditions for an EZ-
structure. We also have, by restriction, an action of the group S on Dm. Observe that
the condition on the translates of compact sets forming a null sequence is inherited
from the corresponding property for the the Γ-action. So we are left with showing
that the S-action on Dm − {S±} is fixed point free, properly discontinuous, and
cocompact.

To see that the S-action on Dm − {S±} is fixed point free, we note that the Γ-
action on Dm − ∂∞Γ is fixed point free, hence if the S-action has a fixed point, it
must lie in the set ∂∞Γ − {S±}. But recall that the action of a δ-hyperbolic group
on it’s boundary at infinity is hyperbolic. More precisely, for every element g ∈ Γ
(g 6= 1), we have a pair of fixed points {g±} ⊂ ∂∞Γ with the property that, for any
compact set C in ∂∞Γ− {g±}, and any open sets g+ ⊂ U+, g− ⊂ U−, there exists a
positive integer N such that:

• gn · C ⊂ U+ for every n ≥ N .

• g−n · C ⊂ U− for every n ≥ N .

In the particular case we are interested in, we have that {g±} = {S±} for every
element g ∈ S (g 6= 1). Now assume that p ∈ ∂∞Γ− {S±} is fixed by some element
g ∈ S. Then since ∂∞Γ is Hausdorff, we can find a pair of open neighborhoods U±

around the points S± which do not contain the given point p. By hyperbolicity of
the action, we have that some high enough power of g must take p into U+. Hence
g cannot fix the point p.

To see proper discontinuity of the action, we again restrict to looking at points in
∂∞Γ− {S±}. Indeed, since the Γ-action on Dm − ∂∞Γ is properly discontinuous, so
is the S-action on Dm − ∂∞Γ. So if proper discontinuity fails, it must do so at some
point p ∈ ∂∞Γ − {S±}. But note that, by hyperbolicity of the action (and as ∂∞Γ
is Hausdorff), we can find a triple of pairwise disjoint open sets U0, U+, U− ⊂ ∂∞Γ
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with p ∈ U0, S+ ∈ U+, S− ∈ U−, and with the property that gn ·p ∈ U+, g−n ·p ∈ U−
for n large enough (g here refers to a generator for the subgroup S). In particular,
there are only finitely many points of the form gi · p which can lie in the open set
U0. Note that the topology on ∂∞Γ with respect to which the S-action is hyperbolic
coincides with the one induced on ∂∞Γ when viewed as a subset of Dm. This gives
us proper discontinuity of the S-action.

Finally, to see cocompactness, we need to exhibit a compact set in Dm − {S±}
whose S-translates cover Dm − {S±}. Recall that the Γ-action on Dm − ∂∞Γ is
cocompact, and fix a compact fundamental domainKΓ for the Γ-action. Now consider
the Cayley graph Cay(Γ) of the group Γ with respect to a finite symmetric generating
set. Define the set TS ⊂ Γ as follows: for each S-orbit of the S-action on Γ, pick out
an element that minimizes the distance in Cay(Γ) from the S-orbit to the identity
element (note that this choice might not be canonical). TS will consist of the union
of one such element from each of the S-orbits in Γ. Now define the set KS to be the
union of TS ·KΓ with the compact subset Cε ⊂ ∂∞Γ− {S±}, where Cε is defined to
be the complement of the open ε-neighborhood of {S±} for a sufficiently small ε. We
claim that KS is a compact fundamental domain for the S-action on Dm − {S±}, if
ε is small enough.

We start by arguing that the S-translates of KS do indeed cover Dm−{S±}. This
is easy to see, as the S-translates of TS yield the entire group Γ, and hence the union
of the S-translates of TS ·KΓ will coincide with Γ ·KΓ = Dm − ∂∞Γ. On the other
hand, the S-translates of Cε will cover ∂∞Γ−{S±}, if ε is small enough, because the
action of g is uniformly continuous on ∂∞Γ, fixes S±, and g±n · x → S± as n → ∞
for every x ∈ ∂∞Γ− {S±}. This gives us that S ·KS = Dm − {S±}.

So we are left with showing that KS is compact in Dm−{S±}, provided ε is small
enough. We start by showing that S± /∈ TS ·KΓ (the overline refers to the closure in
Dm). So let us assume, by way of contradiction, that S+ ∈ TS ·KΓ (the argument for
S− is completely analogous). Then we can find a sequence of points {xi} in TS ·KΓ

with the property that lim xi = S+. Since each of these points lies in a translate
of KΓ, we can consider instead the sequence {hi} ⊂ TS of elements in the group
Γ having the property that xi ∈ hi · KΓ. Now the fact that limxi = S+ in Dm is
equivalent to the fact that limhi = S+ in the Cayley graph Cay(Γ).

Recall that, in Cay(Γ), saying that limhi = S+ implies that the sequence {hi}
is within a uniformly bounded distance D from the sequence {gn} (where g is the
generator for S, and n ranges over non-negative integers). On the other hand, the
definition of the set TS now forces the entire sequence {hi} to lie within distance D
of the identity. Indeed, if an element h ∈ TS lies within D of an element gi ∈ S,
then (since Γ acts by isometries on its Cayley graph) the element g−ih lies within D
of the identity element, and is in the same S-orbit as the element h. In particular,
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this forces h to be within D of the identity (since by construction, h minimizes the
distance to the identity within its S-orbit). So we have exhibited a bounded sequence
in Cay(Γ) which converges to a point in ∂∞Γ, giving us our contradiction.

So the closure of TS · KΓ does not contain S±, hence the intersection of the
closure of TS · KΓ with ∂∞Γ lies outside of a small ε-neighborhood of {S±}. This
immediately gives us that the union of TS ·KΓ with the corresponding Cε is a compact
set in Dm − {S±}, and hence that the action of S on Dm − {S±} is cocompact.

We now have that the pair (Dm, {S±}) satisfies all the conditions for an EZ-
structure, concluding the proof of Claim 1.

We now continue the proof of Theorem 1.3. Note that (Dm+1, {S±}) = (Dm, {S±})×
I. Arguing as in the paper by Farrell-Jones (see pgs. 462-467 in [10]), it suffices to
construct, for each sufficiently large integer m, a pair of continuous maps:

gS : P (Mm
S ) −→ P (Mm)

gS : P (Mm) −→ P (Mm
S )

where Mm = (Dm−∂∞Γ)/Γ, Mm
S = (Dm−{S±})/S, and P (·) denotes the (unstable)

pseudo-isotopy space, and where the maps gS and gS satisfy the following:

Assertion: gS ◦ gS is homotopic to the identity, and gS′ ◦ gS is homotopic to a
constant map whenever S 6= S ′.

We first discuss the construction of the maps gS, gS, and will then discuss why the
pair of maps we constructed satisfy the assertion. Start by observing that both Mm

and Mm
S are compact m-dimensional manifolds with boundary (we will henceforth

suppress the superscript indicating dimension unless it is explicitly relevant to the
argument being presented). Now let p = pS : Int(MS) → Int(M) be the covering
space corresponding to the subgroup S ⊂ Γ = π1(Int(M)). Using the s-cobordism
theorem (and assuming m ≥ 6), one easily constructs an isotopy φt = φS

t : MS →MS

such that φ0 = IdMS
, and p ◦ φ1 : MS → M is an embedding. To define gS, let

f : MS × I → MS × I be a pseudo-isotopy (i.e. an element of P (MS)). Recall that
f is an automorphism (i.e. an onto homeomorphism) with the property that:

f |MS×{0}∪(∂MS)×I = Id|MS×{0}∪(∂MS)×I .

We can now define f∗ = gS(f) ∈ P (M) by setting f∗(x, t) to be:

• (x, t) if x ∈M − Image(p ◦ φ1)

• p ◦ φ1(f(x̄, t)) if x = p ◦ φ1(x̄)

where x ∈M and t ∈ I. This gives us the map gS.
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On the other hand, to define gS(f), where f ∈ P (M), let f̃ : (Dm − ∂∞Γ)× I →
(Dm − ∂∞Γ)× I be the lift of f such that f̃(x, t) = (x, t) if either x ∈ Sm−1 = ∂Dm

or if t = 0. Now f̃ induces an automorphism f̄ of (Dm+1, ∂∞Γ), since (Dm+1, ∂∞Γ) =
(Dm, ∂∞Γ) × I. Note that f̄ is Γ-equivariant and that f̄ |∂−Dm+1 = Id∂−Dm+1 , where
∂−Dm+1 is the image of Dm×{0}∪Sm−1×I under the quotient map Dm×I → Dm+1.
Since ∂∞Γ ⊂ ∂−Dm+1, f̄ induces an S-equivariant automorphism of Dm+1 − {S±}
which then descends to an automorphism fS of (Dm+1 − {S±})/S. After “appropri-
ately identifying”

MS = (Dm+1 − {S±})/S

with Mm
S × I, gS(f) is defined by gS(f) = fS.

To do this identification, first note that MS is the quotient space of Mm
S ×I where

each interval x × I, x ∈ ∂Mm
S is collapsed to a point. So Mm

S × {0} is canonically
identified with a codimension zero submanifold ∂−MS of ∂MS. By equating ∂Mm

S ×I
with a short collar of ∂(∂−MS) in ∂MS, an identification of MS × I to MS can be
constructed such that the composition:

P (MS) −→ Aut(MS, ∂−(MS)) −→ P (MS)

is homotopic to the identity (here the two maps above are the naturally defined
continuous maps; in fact, the second map is the homeomorphism induced by the
identification while the first is determined by the fact that MS is a quotient space of
MS × I). This is the “appropriate identification” mentioned above.

This gives us the two maps for which we claim the assertion holds. Before contin-
uing our proof, we note that, when m ≥ 6, the spaces Mm

S are all homeomorphic to
S1×Dm−1. Indeed, this follows by the s-cobordism theorem, and the fact that S acts
via orientation preserving homeomorphisms on Dm − {S±}; thus the closed tubular
neighborhood of any embedded circle S1 in Int(Mm

S ), which induces a homotopy
equivalence, is homeomorphic to S1 × Dm−1.

Now the Assertion, made above, can be verified in the same way that properties
(i) and (ii) in Lemma 2.1 of Farrell-Jones [10] were proven. We merely point out that
they follow directly from the following two claims which we proceed to formulate and
then to verify. Let TS denote the image of pS ◦ φS

1 . Note that TS is a codimension
zero submanifold of Int(Mm

S ) and that TS is homeomorphic to S1 × Dm−1. Recall
that:

pS : Int(MS) −→ Int(M)

is the covering projection corresponding to S ⊂ Γ. And that φS
1 : MS → Int(MS) is

an embedding isotopic to IdMS
. Recall that we assumed that Γ is not cyclic.

Now let {Ci} denote the connected components of p−1
S (TS), and note that p−1

S =∐
iCi. Let C̄i denote the closure of Ci in MS. It is an elementary observation that
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each Ci is a codimension zero submanifold of Int(MS) as well as an open subset of
p−1

S (TS). Furthermore, observe that Image(φS
1 ) is a codimension zero submanifold of

Int(MS) which is homeomorphic to S1 × Dm+1.

Claim 2. We can index the set {Ci} so that C0 = Image(φ1
S) and C̄i is homeomorphic

to Dm when i 6= 0.

Now let S ′ ∈ M with S ′ 6= S, and denote by {C ′i} the connected components of
p−1

S′ (TS) and by C̄ ′i the closure of C ′i in MS′ . It is again elementary that each C ′i is a
codimension zero submanifold of Int(MS′) as well as an open subset of p−1

S′ (TS).

Claim 3. Each C̄ ′i is homeomorphic to Dm.

We now proceed with the proofs of the two claims. The Facts 1δ-4δ used in the
proofs below refer to the facts about δ-hyperbolic groups discussed at the beginning
of this section.

Proof (Claim 2). One easily sees that each pi : Ci → TS is a covering projection
where pi = pS|Ci

. Hence Image(φS
1 ) must be one of the components Ci since p :

Image(φS
i ) → TS is a homeomorphism. Thus we may index the components starting

with C0 = Image(φS
1 ). Therefore it remains to show that C̄i is homeomorphic to Dm

when i 6= 0. To do this, define

• q : Dm − ∂∞Γ −→M = (Dm − ∂∞Γ)/Γ

• r = rS : Dm − {S±} −→MS = (Dm − {S±})/S

to be the universal covering maps whose groups of deck transformations are Γ and S
respectively. Then we have the following commutative triangle of covering spaces:

Int(Dm) r //

q
&&LLLLLLLLLL

Int(Ms)

p
yyrrrrrrrrrr

Int(M)

Note that q−1(TS) =
∐

iDi where each Di is a connected component of q−1(TS).
And let D̄i be the closure of Di in Dm. One easily sees the following ten points:

1. Each Di is open in q−1(TS).

2. Each Di is a codimension zero submanifold of Int(Dm).

3. qi : Di → TS is a universal covering space (where qi = q|Di
) whose group of deck

transformations Si consists of all γ ∈ Γ such that γ(Di) = Di. Consequently,
Di is homeomorphic to Dm−1 × R.
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4. The components Di are permuted transitively by Γ. Consequently, the groups
Si are all conjugate cyclic subgroups of Γ.

5. At least one of the groups Si is S. Hence all the Si are maximal cyclic subgroups
of Γ. And we can rearrange the indexing so that S0 = S.

6. If the cardinality |Si ∩Sj| > 1, then i = j. This follows from points (4) and (5)
by using Fact 1δ and Fact 2δ.

7. Let φ̃t : Dm − {S±} → Dm − {S±} be the lift of the isotopy φt with respect
to the covering projection r such that φ̃0 = Id. Then D0 = Image(φ̃1), and
consequently D̄0 = D0 ∪ {S±}, which forces D̄0 to be homeomorphic to Dm.

8. Because of points (4) and (7), D̄i = Di∪{S±i } and is homeomorphic to Dm. Also
because of point (6) and Fact 3δ, D̄i ⊂ Dm − {S±} if i 6= 0, and consequently
D̄i is also the closure of Di in Dm − {S±}.

9. If γ(D̄i) ∩ D̄i 6= ∅, where γ ∈ Γ, then γ ∈ Si. This results from points (4),
(6), (8), along with Facts 3δ and 4δ. Consequently, if i 6= 0, then r|D̄i

: D̄i →
r(D̄i) = r(Di) is a homeomorphism since Si∩S0 = 1, because of point (6) (Here
r(Di) denotes the closure of r(Di) in MS).

10. There is a surjection of indexing sets i 7→ α(i), with α(0) = 0, such that
ri : Di → Cα(i) is a covering space (here ri denotes r|Di

). This follows from the
above commutative triangle in which p, q, and r are open maps.

It now follows immediately from points (8), (9), and (10), that C̄i is homeomorphic
to Dm when i 6= 0; thus completing the proof of Claim 2.

Proof (Claim 3). This proof closely parallels the one just given for Claim 2. Note
that the above points (1)-(9) continue to hold. And by replacing S by S ′ in the above
commutative triangle, the following analogue (10)′ of point (10) is similarly verified
using that pS′ , q, and rS′ are open maps: there is a surjection i 7→ β(i) of indexing
sets such that r′i : Di → C ′β(i) is a covering space where r′i = rS′|Di

.
Then Fact 3δ yields that:

{S±i } ⊆ (Dm − ∂∞S ′) = Domain(rS′)

which together with point (8) shows that

D̄i ⊆ Domain(rS′).

Therefore point (9) yields that:

rS′|D̄i
: D̄i −→ rS′(D̄i) = rS′(Di) = C ′β(i)
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is a homeomorphism. But D̄i is homeomorphic to Dm by point (8), and β is a
surjection by point (10)′. This concludes the proof of Claim 3.

Finally, we point out that, from these two claims, it is easy to show the assertion.
Indeed, the pseudo-isotopies gS ◦ gS(f) and gS′ ◦ gS(f) are supported over ∪iC̄i and
∪iC̄

′
i respectively. Because of claims 2 and 3, the Alexander trick can be used to

verify the Assertion. We refer the reader to section 2 of Farrell-Jones [10] for more
details.
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