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Abstract. The classical Cartan-Hadamard theorem asserts that a closed Rie-
mannian manifold Mn with non-positive sectional curvature has universal cover
M̃n diffeomorphic to Rn, and a byproduct of the proof is that ∂∞M̃n is homeo-
morphic to Sn−1. We prove analogues of these two results in the case where Mn

has a non-empty totally geodesic boundary. More precisely, if Mn
1 ,Mn

2 are two neg-
atively curved Riemannian manifolds with non-empty totally geodesic boundary, of
dimension n 6= 5, we show that ∂∞M̃n

1 is homeomorphic to ∂∞M̃n
2 . We show that if

Mn
1 and Mn

2 are a pair of non-positively curved Riemannian manifolds with totally
geodesic boundary (possibly empty), then the universal covers M̃n

1 and M̃n
2 are

diffeomorphic if and only if the universal covers have the same number of bound-
ary components. We also show that the number of boundary components of the
universal cover is either 0, 2, or ∞. As a sample application, we show that simple,
thick, negatively curved P-manifolds of dimension ≥ 6 are topologically rigid. We
include some straightforward consequences of topological rigidity (diagram rigidity,
weak co-Hopf property, and the Nielson problem).

1. Introduction.

The classical Cartan-Hadamard theorem states that, if M is a simply-connected,
complete Riemannian manifold with non-positive sectional curvature, then the ex-
ponential mapping TpM → M at the point p is a diffeomorphism from the tangent
space at p to the entire manifold. This result has two important consequences which
we propose to generalize in the present paper.

First of all, if Mn is a closed Riemannian manifold of non-positive sectional cur-
vature, then the universal cover M̃n is diffeomorphic to Rn. In particular, in each
dimension n, there is a unique smooth manifold arising as the universal cover of such
manifolds.

Secondly, if Mn is a closed Riemannian manifold of non-positive curvature, and
p ∈ M̃n is a point in the universal cover, then distinct geodesic rays emanating from p
only intersect at their common basepoint. In particular, geodesic projection yields a
homeomorphism between the boundary at infinity ∂∞M̃n and the unit tangent space
at p, and hence one obtains that ∂∞M̃n ∼= Sn−1.

1
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Our goal is to obtain analogues of these two results, in the situation where Mn has
non-empty, totally geodesic boundary. The second statement above is generalized,
under a stronger curvature constraint, in the following:

Theorem 1.1 (Topological characterization of ∂∞M̃). Assume M1, M2 are a pair
of compact, negatively curved Riemannian manifolds of dimension n 6= 5, with non-
empty, totally geodesic boundary. Then we have ∂∞M̃1 is homeomorphic to ∂∞M̃2,
where M̃i is the universal cover of Mi.

Note that if n = 2, then the boundaries at infinity of the M̃i are Cantor sets,
and the Theorem follows from the classical fact that any two Cantor sets are home-
omorphic (Brouwer’s characterization theorem). It is relatively easy to extend the
homeomorphism between the ∂∞M̃i obtained in Theorem 1.1 to a homeomorphism
between the universal covers M̃i (an outline of this argument is given at the end of
Section 2). We do not provide the details for this argument, as in Section 3 the
following stronger result will be obtained, via different methods:

Theorem 1.2 (Smooth characterization of M̃). Assume M1, M2 are a pair of com-
pact, non-positively curved Riemannian manifolds with totally geodesic boundary
(possibly empty). Then the following two statements are equivalent:

• M̃1 is diffeomorphic to M̃2.
• M̃1 has the same number of boundary components as M̃2.

Furthermore, the possible number of boundary components of such an M̃ is either

• 0 boundary components, which is clearly equivalent to M being closed, or
• 2 boundary components, in which case the universal cover M̃ splits isometri-

cally as the product of a totally geodesic, codimension one submanifold with a
closed interval, or

• infinitely many boundary components, which is the generic case.

In particular, in each dimension n ≥ 2, there are up to diffeomorphism precisely
three spaces that occur as the universal cover of a compact, non-positively curved
Riemannian manifolds with totally geodesic boundary (possibly empty).

Finally, we conclude by providing the following application of Theorem 1.1 (see
Section 4 for definitions):

Theorem 1.3 (Topological rigidity of negatively curved P-manifolds). Let X1, X2 be
a pair of simple, thick, negatively curved P-manifolds, of dimension ≥ 6. If π1(X1)
is isomorphic to π1(X2), then X1 is homeomorphic to X2.

This last result has a number of interesting consequences:

Corollary 1.1 (Diagram rigidity). Let D1,D2 be a pair of diagrams of groups, corre-
sponding to a pair of negatively curved, simple, thick P-manifolds of dimension n ≥ 6.
Then lim−→D1 is isomorphic to lim−→D2 if and only if the two diagrams are isomorphic.
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Corollary 1.2 (Weak Co-Hopf property). Let X be a simple, thick, negatively curved
P-manifold of dimension n ≥ 6, and assume that at least one of the chambers has
a non-zero characteristic number. Then Γ = π1(X) is weakly co-Hopfian, i.e. every
injection Γ ↪→ Γ with image of finite index is in fact an isomorphism.

Corollary 1.3 (Nielson realization problem). Let X be a simple, thick, negatively
curved P-manifold of dimension n ≥ 6, and Γ = π1(X). Then the canonical map
Homeo(X) → Out(Γ) is surjective.

We now outline the layout of this paper. In Section 2, we will give a proof of
Theorem 1.1. The argument relies heavily on a characterization of n-dimensional
Sierpinski curves (n 6= 4) due to Cannon [Ca]. The dimension restriction in Theo-
rem 1.1 arises from the corresponding dimension restriction in Cannon’s work. We
note that Ruane [R] used Cannon’s theorem in a similar manner to characterize
CAT(0)-boundaries for non-uniform lattices Γ ≤ SO(n, 1) acting cocompactly on a
Γ-equivariantly truncated Hn.

In Section 3, we will give a proof of Theorem 1.2. The argument relating the
diffeomorphism type of the universal cover with the number of boundary compo-
nents is Morse theoretic in nature. The analysis of the possible number of boundary
components relies on some elementary geometric properties of non-positively curved
spaces.

Finally in Section 4, we will discuss the proof of Theorem 1.3, as well as the
proofs of the three corollaries. The arguments for these follow almost verbatim from
previous results of the author [L2], [L3]. As such, we content ourselves with outlining
the arguments from our previous paper, detailing how our Theorem 1.1 allows us to
extend our previous results to the present setting.
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2. Characterizations of boundaries at infinity.

We now proceed to prove Theorem 1.1 from the introduction. So let M1,M2 be
a pair of compact, negatively curved manifolds of dimension n 6= 5, with non-empty
totally geodesic boundary. We want to establish that ∂∞M̃1 is homeomorphic to
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∂∞M̃2. In order to do this, we will make use of the characterization of Sierpinski
curves due to Cannon [Ca] (generalizing a classic result of Whyburn [W] in dimension
n = 2). We first start with a definition:

Definition 2.1. Let {Ui} be a countable collection of pairwise disjoint subsets of Sn

satisfying the following four conditions:

(1) the collection {Ui} forms a null sequence, i.e. lim{diam(Ui)} = 0,
(2) Sn − Ui is an n-cell for each i,
(3) Cl(Ui) ∩ Cl(Uj) = ∅ for each i 6= j (Cl denotes closure),
(4) Cl(

⋃
Ui) = Sn.

Then we call the complement Sn −
⋃
Ui an (n − 1)-dimensional Sierpinski curve

(abbreviated to S-curve).

Theorem 2.1 (Cannon, [Ca]). Let X, Y be an arbitrary pair of (n− 1)-dimensional
S-curves (n 6= 4). Then we have:

• X is homeomorphic to Y ,
• if i : X → Sn is an arbitrary embedding, then i(X) ⊂ Sn is an (n − 1)-

dimensional S-curve.
• if h : X → Y is an arbitrary homeomorphism, then h extends to a homeo-

morphism of the ambient n-dimensional spheres.

The scheme of the proof of Theorem 1.1 is now clear: considering the double DMi

of the manifold Mi across its boundary, we can view M̃i as a totally geodesic subset of

D̃M i, and hence ∂∞M̃i as an embedded subset of ∂∞D̃M i
∼= Sn−1. If we can establish

that ∂∞M̃i is an (n − 2)-dimensional S-curve, Cannon’s theorem will immediately
imply that ∂∞M̃1 is homeomorphic to ∂∞M̃2. We now proceed to verify the four

conditions of an (n− 2)-dimensional S-curve for ∂∞M̃ ⊂ ∂∞D̃M ∼= Sn−1.
Let us first fix some notation: the collection {Ui} will be the connected components

of ∂∞D̃M − ∂∞M̃ inside ∂∞D̃M ∼= Sn−1. We will denote by {Yi} the connected

components of D̃M − M̃ . Note that each Cl(Yi) intersects M̃ along a boundary

component, which is a totally geodesic codimension one submanifold of D̃M . We

will denote by Zi ⊂ ∂M̃ the boundary component corresponding to Yi ⊂ D̃M − M̃ .
Finally, we observe that each Ui can be identified with a corresponding ∂∞Yi−∂∞Zi,
for some suitable component Yi.

Condition 1: The collection {Ui} forms a null sequence.

Proof. At the cost of rescaling the metric on DM , we may assume that the sectional

curvature is bounded above by −1, and hence that D̃M is a CAT (−1) space. In this

situation, Bourdon [B] defined a metric on ∂∞D̃M inducing the standard topology

on ∂∞D̃M ∼= Sn−1. The metric is given by:

d∞(p, q) = e−d(∗,γpq)
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where γpq is the unique geodesic joining the points p, q ∈ ∂∞D̃M , ∗ ∈ DM a chosen

basepoint (and d denotes the distance inside D̃M). Note that different choices of
basepoints result in metrics which are Lipschitz equivalent. For convenience, we will
pick the basepoint ∗ to lie in the interior of the lift M̃ .

Now consider one of the components Ui, and let us try to estimate diam(Ui). Note
that given any two points p, q ∈ Cl(Ui), we have that the geodesic γpq ⊂ Cl(Yi),
where Yi is the component corresponding to Ui. In particular, we see that d(∗, γpq) ≥
d(∗, Zi), and hence that for any p, q ∈ Cl(Ui) we have the upper bound:

d∞(p, q) = e−d(∗,γpq) ≤ e−d(∗,Zi)

Since diam(Ui) is the supremum of d∞(p, q), where p, q ∈ Cl(Ui), the above bound
yields diam(Ui) ≤ e−d(∗,Zi). On the other hand, since M̃ is the universal cover
of a compact negatively curved manifold with non-empty boundary, we have that
lim{d(∗, Zi)} = ∞, where Zi ranges over the boundary components of M̃ . This

implies that the collection {Ui} forms a null sequence in ∂∞D̃M ∼= Sn−1, as desired.

Condition 2: Sn−1 − Ui is an (n− 1)-cell for each i.

Proof. Recall that there exists a homeomorphism πx : Sn−1 ∼= ∂∞D̃M → T 1
x D̃M

∼=
Sn−1, obtained by mapping a point p ∈ ∂∞D̃M to the unit vector γ̇xp(0), where

γxp is the unit speed geodesic ray originating from x, in the direction p ∈ ∂∞D̃M .
Now let Ui be given, and pick x to lie on the corresponding Zi. Note that under
the homeomorphism πx, we have that ∂∞Zi maps homeomorphically to a totally

geodesic Sn−2 ⊂ Sn−1 ∼= T 1
x D̃M , while the subset Ui maps homeomorphically to one

of the open hemispheres determined by πx(∂
∞Zi). This forces ∂∞D̃M − Ui to map

homeomorphically to one of the closed hemispheres determined by πx(∂
∞Zi), and

hence must be an (n− 1)-cell, as desired.

Condition 3: Cl(Ui) ∩ Cl(Uj) = ∅ for all i 6= j.

Proof. Note that by definition we have that Ui∩Uj = ∅, and that Cl(Ui) = Ui∪∂∞Zi,
Cl(Uj) = Uj ∪ ∂∞Zj. Hence it is sufficient to show that ∂∞Zi ∩ ∂∞Zj = ∅ for i 6= j

(since these are codimension one spheres in Sn−1 ∼= ∂∞D̃M , with the Ui, Uj con-
nected components of the respective complements). But a pair of distinct boundary
components of M̃ , the universal cover of a compact negatively curved manifold with
non-empty totally geodesic boundary, must diverge exponentially (with growth rate
bounded below in terms of the upper bound on sectional curvature). In particular,
no geodesic ray in Zi is within bounded Hausdorff distance of a geodesic ray in Zj,
and hence the boundaries at infinity are pairwise disjoint, as desired.

Condition 4: Cl(
⋃
Ui) = Sn−1.
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Proof. Fix a point x ∈ M̃ , and consider the homeomorphism πx : Sn−1 ∼= ∂∞D̃M →
T 1
x D̃M

∼= Sn−1. We will show that every point in T 1
x D̃M

∼= Sn−1 can be approxi-

mated by a sequence of points in πx(Ui). This will imply that T 1
x D̃M = Cl(

⋃
πx(Ui)),

and since πx is a homeomorphism, Condition 4 will follow.

Now if p ∈ T 1
x D̃M lies in one of the πx(Ui), we are done, so let us assume that

p ∈ T 1
x D̃M −

⋃
πx(Ui). Let γ be a unit speed geodesic ray originating from x with

tangent vector p at the point x. Note that we have that γ ⊂ M̃ ⊂ D̃M , since we

are assuming p ∈ T 1
x D̃M −

⋃
πx(Ui). Now observe that M̃ is the universal cover of a

compact negatively curved manifold with non-empty totally geodesic boundary, and
hence there exists a constant K with the property that every point in M̃ is within
distance K of ∂M̃ =

⋃
Zi (for instance take K = diam(M)).

So for each integer k ∈ N, we can find a point yk ∈ ∂M̃ satisfying d(γ(k), yk) ≤ K.
Now observe that if ηk is the geodesic ray originating from x and passing through
yk, we have that ηk(∞) ∈ Uik , where Zik is the component of ∂M̃ containing the

point yk. This implies that η̇k(0) ∈ T 1
x D̃M lies in the corresponding πx(Uik), i.e.

that the sequence of vectors {η̇k(0)} ⊂ T 1
x D̃M lies in the set

⋃
πx(Ui). We are

left with establishing that lim{η̇k(0)} = p. To see this, we need to estimate the
angle between the geodesics ηk and the geodesic γ. But this is easy to do: consider
the geodesic triangle with vertices (x, γ(k), yk), and note that d(x, γ(k)) = k, while
d(γ(k), yk) ≤ K. Applying the Alexandrov-Toponogov triangle comparison theorem,
we see that the angle ∠(η̇k(0), γ̇(0)) is bounded above by the angle of a comparison
triangle in H2 (recall that we assumed the metrics have been scaled to have upper
bound−1 on the sectional curvature). But an easy calculation in hyperbolic geometry
shows that if one has a sequence of triangles in H2 of the form (Ak, Bk, Ck) with the
property that d(Ak, Bk) = k and d(Bk, Ck) ≤ K, then the angle at the vertex Ak
tends to zero as k tends to infinity. This implies that lim{∠(η̇k(0), γ̇(0))} = 0, and
hence completes the proof of Condition 4.

Appealing to Cannon’s theorem now immediately yields Theorem 1.1: if M1,M2

are a pair of compact, n-dimensional (n 6= 5), negatively curved manifolds with non-
empty, totally geodesic boundary, then ∂∞M̃1, ∂

∞M̃2 are a pair of (n−2)-dimensional
S-curves, and hence are homeomorphic to each other.

Remark. We point out that Theorem 1.1 can be used to give a proof of a weak form
of Theorem 1.2 under some stricter dimension and curvature hypotheses. The rough
outline of such an argument is as follows: taking two such manifolds M1,M2, The-
orem 1.1 tells us that ∂∞M̃1 is homeomorphic to ∂∞M̃2. Fixing a pair of points
pi ∈ Int(M̃i), one can use the homeomorphism between the pair of ∂∞M̃i to “radi-
ally extend” to a homeomorphism between a pair of subsets Ci ⊂ M̃i, each of which
is homeomorphic to the cone over the corresponding ∂∞M̃i (and where each pi is
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the cone point of the corresponding Ci). Now when n ≥ 3, the complements of Ci
in M̃i can be easily seen to decompose into countably many connected components,
one for each component of the boundary ∂M̃i. Furthermore, the closure of each of
these components can be shown to be homeomorphic to Rn−1× [0, 1], with the subset
Rn−1×{1} contained in Ci, and the subset Rn−1×{0} corresponding to a component
of ∂M̃i. With some work, one can see that the complements of C1 in M̃1 attach to
C1 in precisely the same manner as the complements of C2 attach to M̃2, allowing
the homeomorphism between the Ci to extend to a homeomorphism between the M̃i.
Note that the argument sketched out here can only a priori give homeomorphism
information (though see the remark at the end of Section 3.1), since it is obtained by
“extending inwards” the homeomorphism between the boundaries at infinity (which
are fairly pathological spaces). We omit the details of this argument, since the con-
siderably stronger Theorem 1.2 will be established (via completely different methods)
in the next section.

3. Generalized Cartan-Hadamard theorem.

In this section, we provide a proof of Theorem 1.2. Let us first recall that there
are two components to Theorem 1.2:

• a characterization of the diffeomorphism type of M̃ in terms of the number
of boundary components of M̃ , and

• a count of the possible number of boundary components of M̃

where M̃ is the universal cover of a compact Riemannian manifold M of non-positive
curvature, with totally geodesic boundary. Note that the case where the manifold M
is closed is classical, hence we will assume throughout this section that ∂M 6= ∅. We
argue each of the two portions of Theorem 1.2 separately, as they require drastically
different techniques.

3.1. Characterization of universal covers. In order to establish the characteri-
zation of universal covers in terms of the number of boundary components, we make
use of Morse theory. This approach is philosophically very different than the argu-
ment sketched out in the remark at the end of the previous section, since instead of
“extending inwards” from the boundary at infinity, we will be “growing outwards”
our diffeomorphism.

We first observe that, since M̃ is a manifold with boundary, it has a canonical
stratification with two strata: the interior Int(M̃) of M̃ , and the boundary ∂M̃ . In
addition, since the boundary ∂M is totally geodesic inside M , one can embed M as a
totally geodesic codimension zero submanifold of the double DM . Lifting, we have a
natural totally geodesic embedding of the universal cover M̃ inside the Riemannian

manifold D̃M (which we know is diffeomorphic to Rn). Our plan is now to use a
suitable version of Morse theory to analyze the topology of M̃ . The function we will
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use will be the square of the distance to a suitable point p ∈ Int(M̃). The next two
Claims establish the existence of a suitable point p.

Claim 1: There exists a point p ∈ Int(M̃) such that for every pair of distinct
boundary components N,N ′ ⊂ ∂M̃ , we have that d(p,N) 6= d(p,N ′).

To see this, we first note that given any pair N,N ′ of distinct boundary compo-
nents, the set of points q ∈ M̃ satisfying d(q,N) = d(q,N ′) is a codimension one
submanifold of M̃ . Indeed, we can consider the smooth function φ : M̃ → R given
by φ(x) := d(x,N)2 − d(x,N ′)2, and observe that the set of points we are interested
in is just the pre-image set φ−1(0). Hence to show that this is a submanifold, we
just need to establish that 0 is a regular value of the smooth map φ. So let x ∈ M̃
satisfy φ(x) = 0, and observe that, since N,N ′ are totally geodesic submanifolds
and M̃ is simply connected of non-positive curvature, there exist a unique pair of
minimal length geodesic segments γ, γ′ emanating from x, and terminating on N,N ′

respectively.
Now consider the unit tangent vectors v, v′ ∈ TxM̃ tangent to γ, γ′. From the

explicit form of φ, we observe that the corresponding differential dφ : TxM̃ → T0R ∼=
R is given by the concrete expression:

dφ(w) = 2D · 〈w, v − v′〉x

where w ∈ TxM̃ is arbitrary, D is the distance from x to N , and the inner product
is taken with respect to the Riemannian metric on M̃ . Finally, we observe that if
x was not a regular point for the map φ, then dφ would have to be identically zero
on TxM̃ . This would imply that v − v′ = 0, and hence that v = v′, which in turn
would force γ = γ′. But this contradicts the fact that N,N ′ were distinct boundary
components.

Now the inverse function theorem implies that the set of points φ−1(0) we are
interested in is in fact a smooth submanifold of codimension one. Finally, since there
are only countably many pairs of boundary components, one sees that the set of
points E where some d(q,N) = d(q,N ′) lies on a countable union of codimension one
submanifolds, and hence has measure zero. This implies that there exists a point in
p ∈ Int(M̃) − E, and it is immediate from the definition of E that the point p has
the desired property.

Claim 2: For the point p chosen above, the set of distances from p to the connected
components of ∂M̃ forms a discrete subset of R+.

Let us assume that the set of distances from p to the connected components of
M̃ have an accumulation point, and argue by contradiction. Pick r > 0 such that
the metric ball Bp(r) intersects infinitely many boundary components {Ni}. Now for
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each Ni, define the subset Ui to be the set of directions, in T 1
p (M̃), corresponding to

geodesic segments joining p to points in Ni. Note that each Ui ⊂ T 1
p M̃ is (topologi-

cally) an open ball inside T 1
p M̃

∼= Sn−1, and that the collection of subsets {Ui} are

pairwise disjoint in T 1
p M̃ . We now argue that each Ui contains a metric ball Vi of

radius a fixed δ > 0, which will obviously give us a contradiction, as the entire sphere
T 1
p M̃ has finite volume, and hence can only contain finitely many such metric balls.
To establish this result, we first note that every Ui contains a distinguished point

xi, consisting of the direction corresponding to the unique minimal length geodesic
joining p to the corresponding Ni. We will use the point xi as the center for our
metric balls Ui. Now note that each of the open sets Ui can be uniquely identified
by its boundary ∂Ui ⊂ T 1

p M̃ (homeomorphic to Sn−2), hence it is sufficient for
us to establish that the distance from xi to ∂Ui is uniformly bounded from below.
Observe that the distance in the unit tangent space T 1

p M̃ is given by the angle
between the corresponding vectors. To bound this angle from below, we make use
of the Alexander-Toponogov triangle comparison theorem: a point in ∂Ui is a limit
of points inside Ui, corresponding to a sequence of points {yk} in Ni whose distance
from the point xi tends to infinity. Considering the sequence of triangles with vertices
{p, xi, yk} (corresponding to the sequence of points {yk}) one can use the lower bound
κ on sectional curvatures (recall that M̃ is the universal cover of a compact manifold
M) to construct a sequence of comparison triangles {p̄, x̄i, ȳk} in H2

κ, the constant
κ-curvature space. The triangle comparison theorem tells us that the angle of the
triangle {p, xi, yk} at the vertex p is at least as large as the angle of the comparison
triangle {p̄, x̄i, ȳk} at the vertex p̄. But observe that we have dH2

κ
(p̄, x̄i) = d(p, xi) ≤ r,

while dH2
κ
(x̄i, ȳk) = d(xi, yk) → ∞ as k → ∞. A direct computation shows that for

such triangles in H2
κ, the angles at the vertex p̄ approach a limiting value δ > 0. This

implies that each of the sets Ui contains an open metric ball, centered at xi, of radius
δ > 0, giving us the desired contradiction.

We conclude that each ball centered at p intersects only finitely many boundary
components, and hence the collection of distances from p to the boundary components
does indeed form a discrete subset in R+.

Having established the existence of a point p as in Claim 1, we can now consider the

function φ : D̃M → R given by φ(−) = d2(p,−). Note that φ is a proper function,

and by the classical Cartan-Hadamard theorem is smooth on D̃M , with a single

critical point (a minimum) at p ∈ Int(M̃) ⊂ D̃M . In particular, φ defines a proper

Morse function on D̃M . Let us denote by f the restriction of φ to M̃ . We now plan
on using the function f to analyze the topology of M̃ , a non-compact manifold with
boundary. In order to do this, we will use Morse theory for manifolds with boundary.
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Let us now briefly recall the definition of a Morse function in the setting of man-
ifolds with boundary. Given a manifold with boundary M , embedded as a smooth
submanifold of RN , and a smooth function φ : RN → R, we denote by f the re-
striction f := φ|M : M → R. We will denote by ∂f the further restriction of f to
the smooth submanifold ∂M ⊂ RN . Restricting f to the interior of M , we obtain
a smooth function f ◦ on a non-compact manifold Int(M) with empty boundary; let
Crit(f ◦) ⊂ Int(M) denote the critical points of this function. Furthermore, we can
also consider the smooth function ∂f on ∂M ; let Crit(∂f) ⊂ ∂M denote the critical
points of this function. We now say that f is a Morse function provided that:

(1) the restriction f ◦ is a Morse function on Int(M) (in the classical sense),
(2) the restriction ∂f is a Morse function on ∂M (in the classical sense), and
(3) Crit(f ◦) has no accumulation points in M .

For such a Morse function f , the set of critical points of f is just the union
Crit(f) := Crit(f ◦)

∐
Crit(∂f).

Our next step is to verify that the function f , obtained by restricting the function

φ(−) := d2(p,−) from D̃M ∼= Rn to M̃ , is indeed a Morse function on the manifold

with boundary M̃ . We first observe that the function φ on D̃M is Morse, and has
a unique critical point, which is a minimum occurring at p ∈ Int(M̃). In particular,
we have that Crit(f ◦) = {p}. We now need to identify the set Crit(∂f). Note that
since Crit(f ◦) consists of a single point, condition (3) holds vacuously.

Claim 3: The function ∂f : ∂M̃ → R has one critical point on each component N
of ∂M̃ . Furthermore, each of these critical points is a minimum.

To see this, we first observe that, since N ⊂ M̃ is a totally geodesic submanifold,
the non-positive curvature hypothesis forces the existence of a unique point x realizing
d(p, x) = d(p,N). This point will clearly be the unique global minimum of the
function f restricted to N , completing the second point of the Claim. So we are
left with arguing that f has no other critical points. This is of course equivalent to
showing that for all y 6= x with y ∈ N , the restriction f |N : N → R+ has a non-zero
gradient at the point y. But observe that the gradient ∇f |N(y) of the restricted
function f |N is simply the projection of the gradient ∇f(y) of the original function
f to the tangent space TyN . Hence it is sufficient to argue that ∇f(y) fails to be
perpendicular to TyN . But this is easy to do: take the geodesic triangle {p, x, y},
and consider the comparison triangle {p̄, x̄, ȳ} in R2. By the Alexander-Toponogov
triangle comparison theorem, we know that all the angles in the triangle {p, x, y}
must be smaller than the corresponding angles in the triangle {p̄, x̄, ȳ}. Note that
the angle at the vertex x is π/2, since x minimizes the distance from p to N (and
applying the first variation of energy formula), which tells us that the angle at vertex
x̄ is ≥ π/2. But the sum of the angles in the Euclidean triangle {p̄, x̄, ȳ} is π, hence
both the remaining angles must be < π/2. Since the angle at y is smaller than the
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Figure 1. Stratified manifold with corners M̃R := f−1(−∞, R].

angle at ȳ, we immediately get that the angle at y is likewise < π/2. Finally, we
observe the initial vector of the geodesic segment yp is a scalar multiple of the vector
∇f(y), while the initial vector of the geodesic segment yx lies in TyN . This yields
that ∇f(y) is not perpendicular to TyN , and hence that y cannot be a critical point
of f |N , as desired.

Having established that the function f is a Morse function, we now want to use
this function to understand the topology of M̃ . Note that, by the choice of the
point p, the critical values of the Morse function f form a discrete subset of R+, and
each critical value corresponds to a unique critical point. Let us denote by M̃r the
sublevel set f−1(−∞, r]. An illustration of such a sublevel set is given in Figure 1:
M̃ is drawn as a submanifold in D̃M , and the subset M̃R ⊂ M̃ is shaded. Note
that M̃R is naturally a manifold with corners, as well as a stratified space, with the
codimension one strata (corresponding to ∂M̃) drawn in a darker shade.

Before stating our Morse theoretic result, let us briefly elaborate on the structure of
the sublevel sets for a Morse function on a manifold with boundary. First recall that
an n-dimensional manifold with corners is a space locally modeled (in the obvious
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sense) on the subspaces

Rn
k := {(x1, . . . , xn) ∈ Rn | x1 ≥ 0, . . . , xk ≥ 0} ⊂ Rn

where 0 ≤ k ≤ n. Observe that Rn
0 is just the usual Rn, while Rn

1 is a standard half
space. The subset of points which locally correspond to the origin in Rn

k form the
codimension k corner. With this convention in place, a manifold without boundary
can be viewed as a manifold with corners, where all corners are of codimension 0. A
manifold with boundary can be viewed as a manifold with corners, where all corners
are of codimension ≤ 1 (and the boundary of the manifold coresponds precisely to the
1-dimensional corner). In particular, we see that in the classical Morse theory, the
generic sublevel sets of a Morse function on a manifold with corners of codimension 0
(a manifold without boundary) naturally have the structure of a manifold with corners
of codimension ≤ 1 (a manifold with boundary). Similarly, for a Morse function on
a manifold with corners of codimension ≤ 1 (a manifold with boundary), generic
sublevel sets will have a natural structure of a manifold with corners of codimension
≤ 2. This structure can readily be seen in Figure 1: the illustration shows M̃R as a
manifold with corners, with exactly 8 points forming the corners of codimension 2.

Note that, if we were to forget the “corner” structure, we can view the sublevel set
as a manifold with boundary. The boundary of the sublevel set M̃R = f−1(−∞, R]
naturally decomposes into two sets: the set (∂f)−1(−∞, R] ⊂ ∂M̃ , along with the set
f−1(R). Each of these two sets are (n−1)-dimensional manifolds with boundary, and
they intersect in the subset (∂f)−1(R) = ∂

(
f−1(R)

)
. Since we will be considering the

sublevel sets M̃R for larger and larger values of R, we will need to keep track of the
portion of ∂M̃R that lies inside the set ∂M̃ . This is achieved by imposing a stratifi-
cation on M̃R, where the codimension one strata is the subset (∂f)−1(−∞, R] ⊂ M̃ .

Next, let us recall the basic results concerning the topology of sublevel sets in the
classical setting of Morse functions on closed manifolds. If f : M → R is a Morse
function, and Mr denotes the sublevel set Mr = f−1(−∞, r], then we have:

• if the interval [a, b] contains no critical values of f , then there is a diffeomor-
phism Ma

∼= Mb,
• if v is the only critical value in the interval [v − ε, v + ε], with a unique

corresponding critical point of index k, then Mv+ε is diffeomorphic to the
space obtained from Mv−ε by attaching a k-handle (i.e. Dk × Dn−k attached
along ∂Dk × Dn−k), with the attaching corner “smoothed out”.

For our purposes, we will need a version of Morse theory for manifolds with boundary.
Such a theory has been studied and developed by a variety of authors, including
Baiada-Morse [BaM], Hamm [H], Hamm-Le [HL], Siersma [S], and of course, Goresky-
MacPherson [GM]. Most of these authors have focused on applications of Morse
theoretic techniques to problems in algebraic geometry (topology of Stein spaces,
Lefschetz theorems), and as such they focus primarily on “coarse” topological data
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(recognizing Betti numbers, homology, or homotopy type). In our situation, we are
seeking more refined data, as we would like to recognize the sublevel sets up to
diffeomorphism.

We were unable to locate the precise statements we needed in the literature. How-
ever, these results seem to be well-known to experts, and follows relatively easily
from the methods used in Milnor’s book [Mi]. For the convenience of the reader, we
provide a brief sketch of the proofs, leaving the details to the interested reader.

Claim 4: If the interval [a, b] contains no critical values of f , then there is a dif-
feomorphism of manifolds with corners M̃a

∼= M̃b, which furthermore preserves the
stratification of these two spaces

This is shown in a manner similar to the corresponding statement in the classical
setting, namely, the diffeomorphism is constructed as the time one flow associated
to a suitable vector field. In our situation, we first assert that there exists a smooth
vector field X defined on M̃b having the following four properties:

(1) X vanishes outside a compact neighborhood K of f−1[a, b], chosen so f has
no critical points on K,

(2) at all points p where X(p) 6= 0, we have 〈X,∇f〉 < 0,
(3) at all points in the codimension one strata X is tangential to the strata,
(4) for the associated flow ϕt : M̃b → M̃b, one has that the time one map takes

ϕ1

(
f−1(b)

)
⊂ f−1(a).

To see this, we first recall that in the classical setting, an analogous vector field is
constructed by taking the negative gradient vector field of the function f , multiplying
it by a positive function which vanishes outside of K, and then suitably renormalizing
(see e.g. [Mi, pg. 12-13]). Now the same argument almost works in the setting of
manifolds with boundary: one just starts with the vector field −∇φ. The only
subtlety lies in the fact that −∇φ, restricted to ∂M̃ , is not tangential to ∂M̃ , i.e.
fails property (3) in our Claim. But this is easy to remedy, since one can use a
partition of unity to smoothly transition from −∇φ away from ∂M̃ to −∇(∂f) along
the submanifold ∂M̃ (an illustration of the modification is given in Figure 2). One
can again multiply by a function vanishing outside of K, resulting in a vector field
satisfying conditions (1)-(3) of our Claim. Finally, at the cost of renormalizing this
new vector field we can ensure that the associated flow takes the level set f−1(b) into
the level f−1(a), giving us property (4).

Now that we have the vector field X, we proceed to show that the map ϕ1 defines
a diffeomorphism from the stratified space M̃b to the stratified space M̃a. From the
existence and uniqueness of solutions to ODEs, we know that the map ϕ1 is injective.
Since solutions depend smoothly on the initial conditions, the map ϕ1 is also smooth,
and by reversing the flow, has smooth inverse. From compactness of M̃b (recall that
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Figure 2. Modifying −∇f to obtain the vector field X.

f is proper), we have that φ1 is a diffeomorphism onto its image. So we are left with
arguing that ϕ1(M̃b) = M̃a.

First we argue that ϕ1(M̃b) ⊂ M̃a. Property (2) of the vector field X ensures that
f is strictly decreasing along flow lines, so that we clearly have ϕ1(M̃a) ⊂ M̃a. For
points x ∈ M̃b − M̃a, we note that property (3) ensures that x lies on the flow line
of a well defined p ∈ f−1(b), i.e. there exists a 0 ≤ t < 1 with ϕt(p) = x. Since
ϕ1(p) ∈ M̃a, and f is strictly decreasing along flow lines, we get that

f
(
ϕ1(x)

)
= f

(
ϕ1+t(p)

)
≤ f

(
ϕ1(p)

)
= a ⇒ ϕ1(x) ∈ M̃a

This gives the desired containment ϕ1(M̃b) ⊂ M̃a. For later use, we also point out
that the argument above establishes that f−1[a, b] is diffeomorphic, as a stratified
manifold with corners, to the manifold f−1(b) × [0, 1] (where the codimension one
strata is given by ∂

(
f−1(b)

)
× [0, 1]).

Next, to see that ϕ1(M̃b) = M̃a, we need to argue surjectivity of the map ϕ1 :
M̃b → M̃a. This is achieved as follows: forgetting the stratification and the corner
structure, we can view M̃b, M̃a as a pair of oriented manifolds with boundary. We first
argue that ϕ1 restricts to a homeomorphism between the boundaries. As we discussed
earlier, there are natural decompositions: M̃b = (∂f)−1(−∞, b] ∪ f−1(b), and M̃a =
(∂f)−1(−∞, a]∪f−1(a). By construction, we see that ϕ1, restricted to ∂M̃ , coincides
with the diffeomorphism from the classical Morse setting (see [Mi, pgs. 12-13]) from
(∂f)−1(−∞, b] to (∂f)−1(−∞, a]. Property (4) of the vector field X tells us that
ϕ1 maps the manifold with boundary f−1(b) into f−1(a). These are manifolds with
boundary, and ϕ1 restricts to a diffeomorphism between their boundaries (as these
coincide with (∂f)−1(b), (∂f)−1(a) respectively). A degree argument now tells us that
ϕ1 maps f−1(b) onto f−1(a). This now tells us that ϕ1 restricts to a homeomorphism
from ∂M̃b to ∂M̃a, and again, a degree argument allows us to conclude that ϕ1 is
surjective. The fact that ϕ1 is strata preserving follows immediately from property
(3) of the vector field X. We furthermore observe that the collection of maps ϕt,
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0 ≤ t ≤ 1, define a smooth, strata preserving, deformation retraction from M̃b to M̃a.
This concludes the sketch of our proof of Claim 4.

Our next goal is to relate the diffeomorphism type of M̃v+ε with that of M̃v−ε,
when the interval [v− ε, v+ ε] contains the single critical value v. This is the content
of our:

Claim 5: if v is the only critical value in the interval [v − ε, v + ε], with a unique
corresponding critical point x lying on ∂M̃ , then M̃v+ε is diffeomorphic to the strat-
ified manifold with corners obtained from M̃v−ε by attaching the stratified mani-
fold with corners [0, 1] × Dn−1 along an embedding of the subspace {1} × Dn−1 ↪→
Int

(
f−1(v − ε)

)
, with the attaching corner “smoothed out”. The codimension one

strata of [0, 1]× Dn−1 consists of the set {0} × Dn−1.

We now sketch out how this result can be deduced from the analogous statement
in the classical form of Morse theory. Let N denote the boundary component of
M̃ containing the critical point x. Take a second copy of M̃ , which we denote
M̃ ′. Corresponding to the boundary component N , we have a boundary component
N ′ ⊂ M̃ ′. We define M̄ to be the smooth manifold obtained by gluing together M̃
and M̃ ′, where the gluing is obtained by identifying N with N ′. Observe that there
is a natural Z2-action on M̄ , which interchanges the two copies of M̃ ; if w ∈ M̄ , we
will denote by w′ ∈ M̄ the image of w under the canonical involution. We can now
define a natural Z2-invariant function f ∪ f ′ on M̄ , defined by:

(f ∪ f ′)(w) =

{
f(w) w ∈ M̃
f(w′) w ∈ M̃ ′.

Note that the function f ∪ f ′ is smooth on the complement of N ⊂ M̄ . We can now
equivariantly smooth f ∪ f ′ in an arbitrarily small neighborhood of N , resulting in
a Z2-equivariant, smooth function f̄ : M̄ → R. This smoothing can also be chosen
so as to not introduce any new critical points in the subset M̃ ⊂ M̄ (and hence, by
equivariance, inside M̃ ′ ⊂ M̄). We now have the following three observations:

• the sublevel set M̄v−ε := f̄−1(−∞, v− ε] is diffeomorphic to the disjoint union
of two copies of the sublevel set M̃v−ε,

• the sublevel set M̄v+ε := f̄−1(−∞, v+ ε] is diffeomorphic to two copies of the
sublevel set M̃v+ε, with the two copies glued together along the two copies of
N ∩ M̃v+ε,

• the function f̄ contains a single critical value in the interval [v− ε, v+ ε], with
the unique corresponding critical point x ∈ N ⊂ M̄ having index =1.

The first two observations are obtained by suitably choosing the smoothing f̄ (close
enough to f ∪ f ′ and having the same critical points). The third observation can be
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Figure 3. Change of topology across a boundary critical point.

seen as follows: since no new critical points are introduced, we know that the only
potential critical point in the set f̄−1[v − ε, v + ε] occurs at the point x ∈ N ⊂ M̄
(which we recall was the unique critical point of f located on the boundary component
N). On the other hand, we know that their is a change in the topology of the sublevel
sets, and hence there must exist a critical point in the set f̄−1[v− ε, v+ ε] (by Claim
4), telling us that x is indeed a critical point. Since x lies in the interior of the
manifold with boundary M̄ , we find ourselves back in the classical setting. Now the
sublevel sets for f̄ go from being disconnected (at height v − ε) to being connected
(at height v + ε), so we conclude that the critical point x must have index =1.

Classical Morse theory tells us that there is a diffeomorphism between M̄v+ε and
the space obtained from M̄v−ε by attaching a 1-handle (see [Mi, pgs. 14-17]. More
precisely, the classical proof constructs a submanifold of M̄v+ε which is (1) a smooth
deformation retract, and (2) diffeomorphic to M̄v−ε along with a 1-handle attached.
Now from the fact that f̄ is Z2-equivariant, each sublevel set is automatically Z2

invariant. But now we observe that the proof given in Milnor [Mi, pgs. 14-17], when
applied to our equivariant function, actually guarantees Z2-equivariance of the smooth
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deformation retraction, as well as Z2-invariance of the submanifold. To achieve this,
we merely need to ensure that the local coordinate chart chosen in [Mi, pg. 15]
satisfies the obvious Z2-invariance, i.e. in terms of the local coordinates {u1, . . . , un},
the involution takes the form u1 7→ −u1. With such a choice of local coordinate
chart, it is easy to verify that equivariance is preserved throughout the rest of the
argument.

Finally, to conclude our sketch, we note that we can recover M̃v+ε from M̄v+ε, since
the Z2-action merely interchanges the two copies of M̃v+ε inside M̄v+ε by reflecting
across the fixed set N ∩ M̄v+ε. But the sublevel set M̃v+ε can be Z2-equivariantly
smoothly retracted onto a subset diffeomorphic to two copies of M̃v−ε, joined by a
1-handle D1 × Dn−1. Recall that in terms of the local coordinate system, the D1

factor corresponds to the u1-coordinate. In particular, we see that the Z2-action on
this subset interchanges the two copies of M̃v−ε, and on the 1-handle, acts via a flip
(u1 7→ −u1) on the D1-factor. The fixed set of the involution is thus the subset
{0}×Dn−1 ⊂ D1×Dn−1, and the two half spaces determined by the reflection across
this fixed set are each diffeomorphic to M̃v−ε with a “half” 1-handle attached, as
asserted in our Claim.

An illustration of this retraction is given in Figure 3. The shaded region represents
the “half” 1-handle [0, 1]× Dn−1, attached to the sublevel set M̃v−ε, all lying within
the ambient sublevel set M̃v+ε. The codimension one strata (corresponding to ∂M̃) is
indicated in a heavier shade. Finally, the arrows indicate the deformation retraction
from the sublevel set M̃v+ε to the set M̃v−ε with the “half” 1-handle attached.

At this point, we have an efficient way to describe the diffeomorphism type of M̃
via the Morse function f . We now return to our original purpose: given two manifolds
M1,M2 satisfying the hypotheses of our Theorem, with M̃1 having the same number
of boundary components as M̃2, we want to establish a diffeomorphism between the
universal covers.

To start out, we note that we can choose points pi ∈ M̃i so that the corresponding
Morse functions fi have precisely the same number of critical points (by hypothesis,
combined with Claim 3). In particular, since the set of critical values for each of the
two functions fi is a discrete subset of [0,∞) (Claim 2), one can choose a diffeomor-
phism r : [0,∞) → [0,∞) with the property that x ∈ [0,∞) is a critical value of f1

if and only if r(x) ∈ [0,∞) is a critical value of f2. We let 0 = λ0 < λ1 < λ2 < . . . be
the sequence of critical values of the Morse function f1, and let µi = (λi + λi+1)/2.
We denote by (M̃1)i the stratified manifold with corners f−1

1 [0, µi], and by (M̃2)i the
stratified manifold with corners f−1

2 [0, r(µi)]. Note that we have that the collection
of codimension zero submanifolds {(M̃1)i} form an exhaustion of M̃1, and likewise
for M̃2. Our main result will now follow from:
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Claim 6: For each value of i ≥ 0, there is a diffeomorphism ψi between the stratified
manifolds with corners (M̃1)i and (M̃2)i. Furthermore, for i ≥ 1, the diffeomorphism
ψi can be chosen to coincide with ψi−1 on the submanifold (M̃1)i−1 ⊂ (M̃1)i.

In order to do this, we first observe that this is clearly true for i = 0, since in
this case, both (M̃1)0 = f−1

1 [0, µ0] and (M̃2)0 = f−1
2 [0, r(µ0)] are diffeomorphic to

a standard closed disk Dn (with empty codimension one strata). Inductively, let us
now assume that we have a diffeomorphism ψi : (M̃1)i → (M̃2)i, and we would now
like to extend it to a diffeomorphism ψi+1 in order to obtain a commutative diagram:

(M̃1)i+1

ψi+1 // (M̃2)i+1

(M̃1)i
ψi //

OO

(M̃2)i

OO

where the vertical maps are the obvious inclusions. But recall that the change of
topology of sublevel sets of a Morse function as one transits through a critical value
are well understood. In our setting, since there is a unique critical value in the
interval (µi, µi+1), with a unique corresponding critical point, the manifold (M̃1)i+1 =
f−1

1 [0, µi+1] is diffeomorphic to (M̃1)i = f−1
1 [0, µi] with a “half 1-handle” attached (see

Claim 5). Using the Morse function f2, we have that a similar statement holds for
the corresponding exhaustion of the manifold M̃2.

Concretely, we have that (M̃)i+1 = f−1
1 [0, µi+1] is diffeomorphic (see Claim 5) to

the stratified manifold with corners obtained from (M̃)i = f−1
1 [0, µi] by attaching

a copy of the stratified space [0, 1] × Dn−1 via a diffeomorphism ρ : {1} × Dn−1 →
Int(f−1

1 (µi)), and “smoothing out” the attaching map. Now note that the image
of the attaching map ρ(Dn−1) ⊂ Int(f−1

1 (µi)) is a smoothly embedded codimension
zero submanifold in the interior of the compact manifold with boundary f−1(µi).
Similarly, (M̃2)i+1 is diffeomorphic to the stratified manifold with corners obtained
from (M̃2)i by smoothly attaching [0, 1]×Dn−1 via a diffeomorphism ρ̂ : {1}×Dn−1 →
Int

(
f−1

2 (r(µi))
)
.

If the attaching map ρ̂ coincided with the composite ψi ◦ ρ, then one could imme-
diately extend the diffeomorphism ψi : (M̃1)i → (M̃2)i to a diffeomorphism:

ψi+1 : (M̃1)i
⋃
ρ

([0, 1]× Dn−1) → (M̃2)i
⋃
ψi◦ρ

([0, 1]× Dn−1)

by setting ψi+1
∼= ψi on (M̃1)i, setting ψi+1 to be the identity on the [0, 1] × Dn−1

term, and using the same smoothing map on both gluings. Of course, in general the
maps ρ̂ and ψi ◦ ρ define distinct smooth embeddings of Dn−1 into Int

(
f−1

2 (r(µi))
)
.

We now proceed to reduce the general case to the special case where ρ̂ = ψi ◦ ρ



A BOUNDARY VERSION OF CARTAN-HADAMARD AND APPLICATIONS TO RIGIDITY. 19

In order to do this, we recall that fundamental work of Palais [P] (see also Cerf
[Ce, Ch. II]) implies that the two embeddings given above are smoothly isotopic
(rel. boundary), i.e. that there exists a diffeomorphism H : f−1

2 (r(µi)) × [0, 1] →
f−1

2 (r(µi))× [0, 1], with the property that

(1) each Ht : f−1
2 (r(µi))× {t} → f−1

2 (r(µi))× {t} is a diffeomorphism,
(2) H0 is the identity, and
(3) H1 ◦ ψi ◦ ρ = ρ̂.

Choosing a real number µ′i lying in the interval µi < µ′i < λi+1, we have that there are
no critical values of f1 in a neighborhood of the interval [µi, µ

′
i], and similarly that f2

has no critical values in a neighborhood of the corresponding interval [r(µi), r(µ
′
i)].

In particular, from Claim 4 we see that there are diffeomorphisms f−1
1 [µi, µ

′
i]
∼=

f−1
1 (µi)×[0, 1] and f−1

2 [r(µi), r(µ
′
i)]
∼= f−1

2 (r(µi))×[0, 1]. Using this product structure,
we can now extend the diffeomorphism ψi : f−1

1 (µi) → f−1
2 (r(µi)) to a diffeomorphism

ψ1 × Id : f−1
1 [µi, µ

′
i] → f−1

2 [r(µi), r(µ
′
i)]. Finally, we can compose this map with the

smooth isotopy H, resulting in a new diffeomorphism H ◦ (ψ × Id) from f−1
1 [µi, µ

′
i]

to f−1
2 [r(µi), r(µ

′
i)]. Now observe that, since H0 is the identity, we have that this new

map restricted to f−1
1 (µi)× {0} = f−1

1 (µi) coincides with ψi, hence we can glue this
map to the previously defined ψi. This gives us a diffeomorphism ψ′ : (M̃1)

′
i → (M̃2)

′
i,

where the two spaces are defined by (M̃1)
′
i := f−1

1 [0, µ′i], and (M̃2)
′
i := f−1

2 [0, r(µ′i)].
Now since (M̃1)

′
i
∼= (M̃1)i, we can think of the space (M̃1)i+1 as being obtained

by attaching [0, 1]× Dn−1 to (M̃1)
′
i rather than to (M̃1)i, and likewise with (M̃2)i+1.

Furthermore, by construction we have that the diffeomorphism ψ′ : (M̃1)
′
i → (M̃2)

′
i

satisfies ρ̂ = ψ′ ◦ ρ. But this now reduces the general case to the special case we had
previously discussed. We conclude that there exists a map ψi+1 : (M̃1)i+1 → (M̃2)i+1

having the property that ψi+1, when restricted to (M̃1)
′
i, coincides with the map ψ′.

In particular, the further restriction of ψi+1 to (M̃1)i ⊂ (M̃1)
′
i coincides with the

restriction of ψ′ to (M̃1)i, and hence is just the map ψi. This concludes the proof of
Claim 6.

Finally, we obtain a globally defined map Ψ : M̃1 → M̃2 in the obvious manner:
given x ∈ M̃1, the fact that {(M̃1)i} form an exhaustion of M̃1 guarantees that there
exists an i such that x ∈ (M̃1)i. We now define the image of x to be the point
Ψ(x) := ψi(x) ∈ (M̃2)i ⊂ M̃2. The compatibility condition on the collection of maps
{ψi} ensures that this is well-defined. Furthermore, since each ψi is a diffeomorphism
onto its image, and since {(M̃2)i} form an exhaustion of M̃2, we conclude that the
map Ψ must likewise be a diffeomorphism. Finally, by construction, it is clear that
each of the ψi preserves the induced stratification of the sublevel sets, hence the
globally defined map Ψ will also preserve the stratification. This concludes the proof
of the first part of Theorem 1.2, giving us a characterization of the diffeomorphism
type of the universal cover M̃ in terms of the number of components of ∂M̃ .
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Remark. At the end of the previous section, the author sketched out how one could
obtain a somewhat weaker form of this theorem. The argument, relying on our
Theorem 1.1, required the stronger hypothesis of strictly negative curvature, as well
as requiring that the dimension n ≥ 3, and n 6= 5. The conclusion was the a priori
weaker statement that, if the boundary was non-empty, then the universal covers
had to be homeomorphic. We remark that, in principle, we could in fact conclude
directly from that argument that the universal covers were diffeomorphic. Indeed,
the work of Kirby-Siebenmann (see [KS]) translates the smoothing problem in high
dimensions (≥ 5) into a homotopy lifting problem. But the universal covers M̃i are
contractible, which immediately implies that the obstructions to lifting (and hence
to smoothing) vanish.

The main subtlety in this approach is that the work in [KS] seems to focus exclu-
sively on the case of manifolds without boundary. While we certainly believe that
(analogues of) these results hold for manifolds with boundary (perhaps at the cost
of requiring dimension ≥ 6 rather than ≥ 5), we were unable to locate a reference
discussing this case. Rather than trying to extend [KS] to cover the boundary case,
we chose to give the argument in the present section for three reasons: (1) it is prob-
ably accessible to a broader audience (having some familiarity with Morse theory),
(2) it works even in dimensions ≤ 5, and (3) it gives information in the non-positively
curved setting as well.

3.2. Number of boundary components. We now have a Riemannian manifold
M of non-positive curvature, and would like to identify the number of boundary
components of the universal cover M̃ . It is clear that if M is closed, the universal
cover will have no boundary component, so let us assume that ∂M 6= ∅. Let N ⊂M
be a connected component of ∂M ; our first step will be to analyze the number of
connected components in the full lift of N to M̃ . Let Γ = π1(M), Λ = π1(N), and
recall that the map induced by inclusion Λ → Γ is an embedding (since N is totally
geodesic in M , and M has non-positive curvature). We will identify Λ with its image
in Γ. Now note that the number of connected components in the full pre-image of N
in M̃ coincides with the index [Γ : Λ] of the group Λ in the group Γ. In particular, if
[Γ : Λ] = ∞, then we immediately obtain that the number of connected components
of ∂∞M̃ is infinite. To establish our result, we first make:

Assertion 1: If [Γ : Λ] <∞, then [Γ : Λ] ≤ 2.

To see the Assertion, let us assume that the full lift of N ≤M in the universal cover
M̃ has finitely many connected components Ñ1, . . . Ñk, with k > 1. Without loss of
generality, we may assume that the subgroup of Γ that stabilizes Ñ1 is precisely Λ.
Letting g ∈ Γ be an element satisfying gÑ1 = Ñ2, we have that the stabilizer of Ñ2

is precisely gΛg−1. But we have that both Λ and gΛg−1 are finite index subgroups of



A BOUNDARY VERSION OF CARTAN-HADAMARD AND APPLICATIONS TO RIGIDITY. 21

the group Γ, hence the intersection Λ∩ gΛg−1 has finite index in both Λ and gΛg−1.
Furthermore the intersection Λ ∩ gΛg−1 stabilizes both Ñ1 and Ñ2.

Now consider the two boundary components Ñ1, Ñ2, and observe that there exists
at least one geodesic segment γ : [0, D] → M̃ satisfying γ(0) ∈ Ñ1, γ(1) ∈ Ñ2, and
realizing the distance between Ñ1 and Ñ2. Indeed, take any curve joining Ñ1 to Ñ2,
and consider the projection α to the compact manifold M . Now take a sequence of
curves, within the homotopy class of α (rel ∂M) whose length tends to the infimum
within the homotopy class. Since M is compact, Arzela-Ascoli implies that there is
a curve realizing this minimum, and it is immediate that such a curve is a geodesic
in M . The lift will give the desired γ.

Next, observe that for all h ∈ Λ∩gΛg−1, we have that h ·γ is also a geodesic joining
Ñ1 to Ñ2 (since Λ stabilizes both these subspaces) having the same length as γ (since
we have an isometric action). But Λ ∩ gΛg−1 acts cocompactly on Ñ1, and hence
we see that d(−, Ñ2) : Ñ1 → R+ is a bounded function on Ñ1. Since Ñ1 and Ñ2 are
both totally geodesic in M̃ , the function d(−, Ñ2) is convex on Ñ1, and hence must
be constant. The flat strip theorem (see [BH]) now implies that M̃ is isometric to
Ñ1× [0, D], where D = d(Ñ1, Ñ2). In particular, we see that ∂M̃ consists of precisely
the disjoint union of Ñ1 and Ñ2, forcing k = 2, as desired.

So we are now left with considering the case where [Γ : Λ] ≤ 2. We analyze each
of the two possibilities separately. Note that the argument given in the proof of
Assertion 1 immediately implies:

Assertion 1′: If [Γ : Λ] = 2, then M̃ is isometric to Ñ × [0, D] for a suitable D > 0.
In particular, M̃ has two boundary components, each of which is a connected lift of
the single boundary component of M .

Hence we are merely left with establishing:

Assertion 2: If [Γ : Λ] = 1, then M̃ is isometric to Ñ × [0, D] for a suitable
D > 0, and M itself is isometric to N × [0, D]. In particular, M̃ has two boundary
components.

In order to see this, we first note that from the compactness of M , we have the
existence of a constant K such that every point in M̃ lies at distance ≤ K from a
point on a lift of N . Furthermore, since Γ = Λ, we have that the lift of N has a single
connected component Ñ . Combining the two observations above, we see that M̃ lies
in the K-neighborhood of Ñ ⊂ M̃ .

Next we recall that since M̃ is non-positively curved, and Ñ ⊂ M̃ is totally ge-
odesic, there is a projection map π : M̃ → Ñ sending each point p ∈ M̃ to the
unique point π(p) ∈ Ñ which satisfies d(p, π(p)) = d(p, Ñ). Note that the pre-image
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of a point q ∈ M̃ under the map π is precisely the geodesic ηq satisfying ηq(0) = q,

η̇q(0) ⊥ TqÑ . From the observation in the previous paragraph, we have that for each

q ∈ Ñ the geodesic ηq is actually a geodesic segment of length ≤ K, joining Ñ to a

unique second component Ñ ′ of ∂M̃ . Now focusing on the convexity of the distance
function from Ñ to Ñ ′ as in the previous claim, we see that M̃ splits isometrically
as a product M̃ = Ñ × [0, D], with D = d(Ñ , Ñ ′). Furthermore, since Γ = Λ acts
isometrically and stabilizes Ñ , we immediately obtain that M itself is isometric to
N × [0, D], concluding the proof of Assertion 2.

Putting all this together, we see that the number of boundary components of M̃
is either:

• 0: corresponding to the case where M is a closed manifold,
• 2: corresponding to the non-generic case where M̃ splits isometrically as a

product with an interval, or
• ∞: the generic case corresponding to all other M̃ .

In dimension two, these three possibilities are illustrated by taking, for instance: a
flat torus, a flat cylinder, and a torus with an open disc removed. By taking products
with S1, we obtain corresponding examples in all dimensions ≥ 2.

4. Topological rigidity and applications.

A key aspect in the study of non-positively curved Riemannian manifolds is the
large number of rigidity theorems known to hold for these spaces. Two outstanding
such theorems are (1) Mostow rigidity [Mo], stating that in dimension ≥ 3, homo-
topy equivalence of irreducible locally symmetric spaces of non-compact type implies
isometry of the spaces, and (2) Farrell-Jones topological rigidity [FJ], stating that in
dimension ≥ 5, homotopy equivalence of non-positively curved Riemannian manifolds
implies homeomorphism of the spaces.

A natural question is how to extend these theorems to the context of singular spaces
satisfying a metric analogue of “non-positive curvature”. In some earlier papers ([L1],
[L2]), the author introduced the class of hyperbolic P-manifolds, which one can view
as some of the simplest non-manifold CAT(-1) spaces, and established Mostow rigidity
within this class of spaces. In the present section, we establish Theorem 1.3, showing
topological rigidity for negatively curved P-manifolds. The key point is that our
Theorem 1.1 allows the arguments given in [L2] to extend verbatim to the present
setting. For the convenience of the reader, we first review the terminology we use,
then provide a proof of the various corollaries, and finally outline the proof of Theorem
1.1 (referring the interested reader to [L2] for more details).

4.1. Basic definitions. Let us recall the definition of a P-manifold:
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Definition 4.1. A closed n-dimensional piecewise manifold (henceforth abbreviated
to P-manifold) is a topological space which has a natural stratification into pieces
which are manifolds. More precisely, we define a 1-dimensional P-manifold to be a
finite graph. An n-dimensional P-manifold (n ≥ 2) is defined inductively as a closed
pair Xn−1 ⊂ Xn satisfying the following conditions:

• Each connected component ofXn−1 is either an (n−1)-dimensional P-manifold,
or an (n− 1)-dimensional manifold.

• The closure of each connected component of Xn−Xn−1 is homeomorphic to a
compact orientable n-manifold with boundary, and the homeomorphism takes
the component of Xn−Xn−1 to the interior of the n-manifold with boundary;
the closure of such a component will be called a chamber.

Denoting the closures of the connected components of Xn−Xn−1 by Wi, we observe
that we have a natural map ρ :

∐
∂Wi −→ Xn−1 from the disjoint union of the

boundary components of the chambers to the subspace Xn−1. We also require this
map to be surjective, and a homeomorphism when restricted to each component of∐
∂Wi. The P-manifold is said to be thick provided that each point in Xn−1 has at

least three pre-images under ρ. We will henceforth use a superscript Xn to refer to
an n-dimensional P-manifold, and will reserve the use of subscripts Xn−1, . . . , X1 to
refer to the lower dimensional strata. For a thick n-dimensional P-manifold, we will
call the Xn−1 strata the branching locus of the P-manifold.

Intuitively, we can think of P-manifolds as being “built” by gluing manifolds with
boundary together along lower dimensional pieces. Examples of P-manifolds include
finite graphs and soap bubble clusters. Observe that compact manifolds can also be
viewed as (non-thick) P-manifolds. Less trivial examples can be constructed more
or less arbitrarily by finding families of manifolds with homeomorphic boundary and
glueing them together along the boundary using arbitrary homeomorphisms. We now
define the family of metrics we are interested in.

Definition 4.2. A Riemannian metric on a 1-dimensional P-manifold (finite graph)
is merely a length function on the edge set. A Riemannian metric on an n-dimensional
P-manifold Xn is obtained by first building a Riemannian metric on the Xn−1 sub-
space, then picking for each chamber Wi a Riemannian metric with non-empty totally
geodesic boundary satisfying that the gluing map ρ is an isometry when restricted
to each component of ∂Wi. We say that a Riemannian metric on a P-manifold is
negatively curved if at each step, the metric on each Wi is negatively curved.

Observe that, at the cost of scaling the metric of the P-manifold X by a constant,
one can assume that the metric on each Wi has sectional curvature bounded above
by −1. Such a metric on the P-manifold will automatically be locally CAT(-1), and
hence the fundamental group of a negatively curved P-manifold is a δ-hyperbolic
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group. In particular, the universal cover X̃ has a well-defined boundary at infinity,
denoted ∂∞X̃.

Definition 4.3. We say that an n-dimensional P-manifold Xn is simple provided
its codimension two strata is empty. In other words, the (n − 1)-dimensional strata
Xn−1 consists of a disjoint union of (n− 1)-dimensional manifolds.

We now recall the statement of our Theorem 1.3:

Theorem 4.1 (Topological rigidity of negatively curved P-manifolds). Let X1, X2 be
a pair of simple, thick, negatively curved P-manifolds, of dimension ≥ 6. If π1(X1)
is isomorphic to π1(X2), then X1 is homeomorphic to X2.

We note that, corresponding to the stratification of a negatively curved P-manifold,
there is a natural diagram of groups having the property that the direct limit of the
diagram is precisely the fundamental group of the P-manifold (by the generalized
Seifert-Van Kampen theorem).

Remark. We note that topological rigidity fails (trivially) in dimension n = 1. In
dimension n = 2, topological rigidity was proved in [L3]. In dimension n = 3, the
argument given in the present paper could be extended, provided one had an analogue
of Farrell-Jones [FJ] for 3-dimensional manifolds. This analogue is a well-known
consequence of Thurston’s hyperbolization conjecture. A proof of the hyperbolization
conjecture is expected to follow from G. Perelman’s work on the Ricci flow method.
In dimension n = 4, topological rigidity for negatively curved P-manifolds reduces to
topological rigidity for negatively curved 4-manifolds with totally geodesic boundary.
In dimension n = 5, we are additionally lacking a characterization of the boundary at
infinity, due to the dimension hypothesis in Cannon’s characterization of Sierpinski
curves [Ca].

4.2. Consequences of topological rigidity. Assuming for the time being our The-
orem 1.3, let us first establish Corollaries 1.1 to 1.3. For the convenience of the reader,
we restate each corollary before explaining it’s proof.

Corollary 4.1 (Diagram rigidity). Let D1,D2 be a pair of diagrams of groups, corre-
sponding to a pair of negatively curved, simple, thick P-manifolds of dimension n ≥ 6.
Then lim−→D1 is isomorphic to lim−→D2 if and only if the two diagrams are isomorphic.

Proof. To obtain Corollary 1.1, we merely note that the generalized Seifert-Van Kam-
pen theorem implies that both π1(Xi) can be expressed as the direct limit of a diagram
of groups, with vertex groups given by the fundamental groups of the chambers (and
of the components of the branching locus), and edge morphisms induced by the in-
clusion of the components of the branching locus into the incident chambers. Now an
abstract isomorphism between the direct limits corresponds to an isomorphism from
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π1(X1) to π1(X2). From Theorem 1.3, this isomorphism is induced by a homeomor-
phism from X1 to X2, and hence must take chambers to chambers and components of
the branching locus to components of the branching locus. This implies the existence
of isomorphism between the groups attached to the vertices in the diagram for π1(X1)
to the groups attached to the corresponding vertices in the diagram for π1(X2). Fur-
thermore, these isomorphisms commute (up to inner automorphisms, due to choice
of base points) with the corresponding edge morphisms. But this is precisely the
definition of diagram rigidity. This concludes the sketch of Corollary 1.1.

Corollary 4.2 (Weak Co-Hopf property). Let X be a simple, thick, negatively curved
P-manifold of dimension n ≥ 6, and assume that at least one of the chambers has
a non-zero characteristic number. Then Γ = π1(X) is weakly co-Hopfian, i.e. every
injection Γ ↪→ Γ with image of finite index is in fact an isomorphism.

Proof. Since the space X is a K(Γ, 1), any injection i : Γ ↪→ Γ with image of finite

index yields a finite cover î : X̄ → X with π1(X̄) ∼= Γ, and î(π1(X̄)) = i(Γ). Now
Theorem 1.3 implies that X̄ is homeomorphic to X, so this yields a covering map
î : X → X, whose degree coincides with the index of the group i(Γ) in Γ. Hence
it is sufficient to show that this covering has degree one. But we know that X
contains a chamber with a non-zero characteristic number. Since there are finitely
many chambers, consider a chamber W for which this characteristic number has the
largest possible magnitude |r| 6= 0. Then we know that under a covering of degree
d, characteristic numbers scale by the degree, so we conclude that the pre-image
chamber î−1(W ) has characteristic number of magnitude d · |r|. By maximality of
the characteristic number of W , we conclude that d = 1, as desired.

Corollary 4.3 (Nielson realization problem). Let X be a simple, thick, negatively
curved P-manifold of dimension n ≥ 6, and Γ = π1(X). Then the canonical map
Homeo(X) → Out(Γ) is surjective.

Proof. Take any element α ∈ Out(Γ). Then there exists an element ᾱ ∈ Aut(Γ)
which projects to α under the canonical map Aut(Γ) � Out(Γ). From Theorem
1.3, we have a self-homeomorphism φ ∈ Homeo(X) with the property that φ∗ = α,
concluding the proof of Corollary 1.3.

Remark. Concerning the hypothesis in Corollary 4.2 on the existence of a non-zero
characteristic number for one of the chambers, we point out that the famous Hopf
Conjecture on the sign of the Euler characteristic asserts that for a closed, negatively
curved, even dimensional manifold M2n, we have the inequality (−1)nχ(M2n) > 0. It
is easy to see (using a doubling argument) that the Hopf Conjecture, if true, implies
that for any compact negatively curved manifold M with non-empty totally geodesic
boundary, we have χ(M) 6= 0. In particular, the validity of the Hopf Conjecture
would yield the desired non-zero characteristic number. We also point out that a
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much stronger result is known, namely Sela [Se] has shown that a non-elementary
δ-hyperbolic group is co-Hopfian if and only if if is freely indecomposable.

4.3. Proof of topological rigidity. Let us now sketch out the proof of Theorem
1.3 from the introduction. We first start with a definition:

Definition 4.4. Define the 1-tripod T to be the topological space obtained by taking
the join of a one point set with a three point set. Denote by ∗ the point in T
corresponding to the one point set. We define the n-tripod (n ≥ 2) to be the space
T ×Dn−1, and call the subset ∗×Dn−1 the spine of the tripod T ×Dn−1. The subset
∗ × Dn−1 separates T × Dn−1 into three open sets, which we call the open leaves of
the tripod. The union of an open leaf with the spine will be called a closed leaf of
the tripod. We say that a point p in a topological space X is n-branching provided
there is a topological embedding f : T × Dn−1 −→ X such that p ∈ f(∗ × Dn−1

◦ ).

It is clear that the property of being n-branching is invariant under homeomor-
phisms. Note that, in a simple, thick P-manifold of dimension n, points in the
codimension one strata are automatically n-branching. One can ask whether this
property can be detected at the level of the boundary at infinity. This is the content
of the following:

Proposition 4.1 (Characterization of branching points). Let X be an n-dimensional,
simple, thick, negatively curved P-manifold, and p ∈ ∂∞X̃. Then p is (n − 1)-
branching if and only if there exists a geodesic ray γ, entirely contained in the lift of
the branching locus, and satisfying γ(∞) = p.

Proof. First observe that if p ∈ ∂∞X̃ coincides with γ(∞), for some γ entirely con-
tained in a connected component B of the lift of the branching locus, then from the
thickness hypothesis, there exist ≥ 3 lifts of chambers that contain γ in their com-
mon intersection B. Focusing on three such lifts of chambers, call them Y1, Y

′
1 , Y

′′
1 ,

we can successively extend each of these in the following manner: form subspaces
Yi+1, Y

′
i+1, Y

′′
i+1 from the subspaces Yi, Y

′
i , Y

′′
i by choosing, for each boundary com-

ponent of Yi, Y
′
i , Y

′′
i distinct from B, an incident lift of a chamber (note that each

boundary component is a connected component of the lift of the branching locus).
Finally, set Y∞ := ∪iYi, and similarly for Y ′

∞, Y
′′
∞. Now observe that, by construction,

the three subsets Y∞, Y
′
∞, Y

′′
∞ have the following properties:

• they are totally geodesic subsets of X̃,
• their pairwise intersection is precisely B, their (common, totally geodesic)

boundary component,
• doubling them across their boundary B results in a simply connected, nega-

tively curved, complete Riemmanian manifold.

The first property ensures that the boundary at infinity of the space Y∞ ∪ Y ′
∞ ∪ Y ′′

∞
embeds in ∂∞X̃. The third property ensures that ∂∞Y∞ ∼= ∂∞Y ′

∞
∼= ∂∞Y ′′

∞
∼= Dn−1.
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The second property ensures that Sn−2 ∼= ∂∞B ⊂ ∂∞X̃ coincides with the boundary
of the three embedded Dn−1. Since p ∈ ∂∞B, this immediately implies that p is
(n− 1)-branching, yielding one of the two desired implications.

Conversely, assume that p ∈ X̃ is not of the form γ(∞), where γ is contained
entirely in a connected component of the lift of the branching locus. Consider a
geodesic ray γ satisfying γ(∞) = p, and note that there are two possibilities:

• there exists a connected lift W of a chamber with the property that γ even-
tually lies in the interior of W , and is not asymptotic to any boundary com-
ponent of W , or

• γ intersects infinitely many connected lifts of chambers.

In both these cases, we would like to argue that p cannot be (n− 1)-branching.
Let us consider the first of these two cases, and assume that there exists an em-

bedding f : T × Dn−2 → ∂∞X̃ satisfying p ∈ f({∗} × Dn−2
◦ ). Picking a point x in

the interior of W , one can consider the composition πx ◦ f : T ×Dn−2 → lkx ∼= Sn−1,
where lkx denotes a small enough ε-sphere centered at the point x, and the map πx
is induced by geodesic retraction. Note that the map πx is not injective: the points
in lkx where πx is injective coincides with πx(∂

∞W ) (i.e. for every q ∈ ∂∞W , we
have π−1

x (πxq) = {q}, and the latter are the only points in ∂∞X̃ with this property).
Note that, from Theorem 1.1, along with part (2) of Cannon’s theorem (see Theorem
2.1), this subset of injective points I ⊂ lkx is an (n−2)-dimensional Sierpinski curve.
Furthermore, the hypothesis on the point p ensures that πxp does not lie on one of
the boundary spheres of the (n− 2)-dimensional Sierpinski curve I. But now in [L2,
Section 3.1] the following result was established:

Theorem: Let F : T × Dn−2 → Sn−1 be a continuous map, and assume that
the sphere Sn−1 contains an (n − 2)-dimensional Sierpinski curve I. Let {Ui} be
the collection of embedded open (n − 1)-cells whose complement yield I, and let
Inj(F ) ⊂ Sn−1 denote the subset of points in the target where the map F is injective.
Then F ({∗} × Dn−2

◦ ) ∩ [I − ∪i(∂Ui)] 6= ∅, implies that [∪i(∂Ui)] − Inj(F ) 6= ∅. In
other words, this forces the existence of a point in some ∂Ui which has at least two
pre-images under F .

Actually, in [L2] this Theorem was proved using purely topological arguments under
some further hypotheses on the open cells Ui. But parts (1) and (3) of Cannon’s
Theorem allows the exact same proof to apply in the more general setting, just by
composing with a homeomorphism taking the arbitrary Sierpinski curve to the one
used in the proof in [L2].

To conclude, we apply the Theorem above to the composite map F := πx ◦ f :
T × Dn−2 → lkx. The point f−1(p) ∈ {∗} × Dn−2

◦ has image lying in I − ∪i(∂Ui),
which tells us that F ({∗} × Dn−2

◦ ) ∩ [I − ∪i(∂Ui)] 6= ∅. The Theorem implies that
there exists a point q in some ∂Ui ⊂ I which has at least two pre-images under the
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composite map F = πx ◦ f . Since the map πx is actually injective on the set I, this
implies that the map f had to have two pre-images at the point π−1

x (q) ∈ ∂∞X̃,
contradicting the fact that f was an embedding. This resolves the first of the two
possible cases.

For the second of the two cases (where the geodesic ray γ passes through infinitely
many lifts of chambers), a simple separation argument (see Sections 3.2, 3.3 in [L2])
shows that if there exists a branching point of the second type, there must also exist
a branching point of the first type. But we saw above that there cannot exist any
branching points of the first type. This concludes the proof of Proposition 3.1.

Now given the characterization of branching points, let us see how to show The-
orem 1.3. So assume that we are given a pair X1, X2 of simple, thick, negatively
curved P-manifolds of dimension n ≥ 6, and that we are told that π1(X1) ∼= π1(X2).
This immediately implies that X̃1 is quasi-isometric to X̃2, and hence that ∂∞X̃1

is homeomorphic to ∂∞X̃2. Let Bi denote the union, in each respective ∂∞X̃i, of
the boundaries at infinity of the individual connected components of the lift of the
branching locus. Note that each Bi is a union of countably many, pairwise disjoint,
embedded Sn−2 inside ∂∞X̃i (each Sn−2 arising as the boundary at infinity of a single
connected component of the lift of the branching locus). Now the characterization of
branching points in Proposition 4.1 implies that, under the homeomorphism between
∂∞X̃1 and ∂∞X̃2, we have that B1 must map homeomorphically to B2.

In particular, connected components of B1 must map homeomorphically to con-
nected components of B2. A result of Sierpinski [Si] implies that the connected com-
ponents in each case are precisely the individual Sn−2 in the countable union. This
yields a bijection between connected components of the lift of the branching locus in
the respective X̃i. Furthermore, the homeomorphism must restrict to a homeomor-
phism between the complements of the Bi in the respective ∂∞X̃i. The connected
components of this complement are either:

• isolated points, corresponding to γ(∞), where γ is a geodesic ray passing
through infinitely many connected lifts of chambers, and

• components with ≥ 2 points, which are in bijective correspondance with con-
nected lifts of chambers in the respective X̃i (see [L2, Section 3.2]).

This yields a bijective correspondence between lifts of chambers in X̃1 and lifts of
chambers in X̃2. Furthermore, the closure of the components containing ≥ 2 points
correspond canonically with ∂∞Wi, where Wi is the bijectively associated connected
lift of a chamber.

Now recall that the homeomorphisms between ∂∞X̃1 and ∂∞X̃2 has the additional
property that it is equivariant with respect to the respective π1(Xi) actions on the
∂∞X̃i. We also have the following Lemma relating the action on ∂∞X̃ with the action
on X̃ (the argument is identical to that given in [L1, pg. 212]) :
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Lemma 4.1. Let Bi be a connected component of the lift of the branching locus in
X̃, and let Wi be a connected lift of a chamber in X̃. Then we have:

• Stabπ1(X)(Bi) = Stabπ1(X)(∂
∞Bi), and

• Stabπ1(X)(Wi) = Stabπ1(X)(∂
∞Wi).

where the action on the left hand side is the obvious action of π1(X) on X̃ by deck
transformations, and the action on the right hand side is the induced action of π1(X)
on ∂∞X̃.

Observe that equivariance of the homeomorphism implies that the bijective corre-
spondence between connected lifts of chambers descends to a bijective correspondence
between the chambers in X1 and the chambers in X2 (since two connected lifts of
chambers cover the same chamber in Xi if and only if the two lifts have stabiliz-
ers which are conjugate in π1(Xi)). Similarly, the bijective correspondance between
connected components of the lifts of the branching loci descends to a bijective cor-
respondence between the connected components of the branching loci in X1 with
those in X2. Furthermore, by equivariance of the homeomorphism, we have that
chambers (or connected components of the branching loci) that are bijectively iden-
tified have isomorphic fundamental groups. Separation arguments identical to the
ones in [L1, Lemmas 2.1-2.4] ensures that the bijective correspondence also preserves
the incidence relation between chambers and components of the codimension one
strata (and that the isomorphisms between the various fundamental groups respect
the incidence structure).

To conclude, we apply the celebrated Farrell-Jones topological rigidity theorem
for non-positively curved manifolds [FJ]. This implies that, corresponding to the
bijections between chambers (and components of the branching loci), one has homeo-
morphisms between the corresponding chambers that induce the isomorphisms on the
level of the fundamental groups. Note that, a priori, the various homeomorphisms
between chambers might not be compatible with the gluing maps. But by construc-
tion, the attaching maps all induce the same maps on the fundamental group π1(Bi)
of each individual component Bi of the branching locus. By Farrell-Jones, this im-
plies that the restriction to Bi of the maps induced by the various homeomorphisms
of incident chambers are all pairwise pseudoisotopic. Hence at the cost of deforming
the homeomorphism in a collared neighborhood of the boundary of each chamber, we
may assume that the homeomorphisms respect the gluing maps. But attaching to-
gether these individual homeomorphisms on chambers now induces a globally defined
homeomorphism from X1 to X2. This concludes the sketch of Theorem 1.3.
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[HL] H. Hamm and D.T. Lê, ‘Un théorème de Zariski du type de Lefschetz’, Ann. Sci. Ecole

Norm. Sup. (3) 6 (1973), pp. 317-355.
[KS] R.C. Kirby and L.C. Siebenmann, Foundational essays on topological manifolds, smooth-

ings, and triangulations (Princeton University Press, New Jersey, 1977).
[L1] J.-F. Lafont, ‘Rigidity result for certain 3-dimensional singular spaces and their funda-

mental groups’, Geom. Dedicata 109 (2004), pp. 197–219.
[L2] J.-F. Lafont, ‘Strong Jordan separation and applications to rigidity’, J. London Math.

Soc. 73 (2006), pp. 681–700.
[L3] J.-F. Lafont, ‘Rigidity of geometric amalgamations of free groups’, J. Pure App. Alg.

209 (2007), pp. 771–780.
[Mi] J. Milnor, Morse theory (Princeton University Press, Princeton, N.J., 1963).
[Mo] G.D. Mostow, Strong rigidity of locally symmetric spaces (Princeton University Press,

Princeton, N.J., 1973).
[P] R. Palais, ‘Extending diffeomorphisms’, Proc. Amer. Math. Soc. 11 (1960), pp. 274–277.
[R] K. Ruane, ‘CAT(0) boundaries of truncated hyperbolic space’, Topology Proc. 29 (2005),

pp. 317–331
[Se] Z. Sela, ‘Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in

rank 1 Lie groups. II.’, Geom. Funct. Anal. 7 (1997), pp. 561-593.
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