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Abstract

This paper presents a PDE system modeling the growth of a single species

population consuming inorganic carbon that is stored internally in a poorly

mixed habitat. Inorganic carbon takes the forms of “CO2” (dissolved CO2

and carbonic acid) and “CARB” (bicarbonate and carbonate ions), which are

substitutable in their effects on algal growth. We first establish a threshold

type result on the extinction/persistence of the species in terms of the sign of

a principal eigenvalue associated with a nonlinear eigenvalue problem. If the

habitat is the unstirred chemostat, we add biologically relevant assumptions

on the uptake functions and prove the uniqueness and global attractivity of

the positive steady state when the species persists.
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1 Introduction and the model

Resource competition theory is an important topic concerning the interaction be-

tween the limiting resource(s) and the species. The most basic limiting resources for

growth include nutrients (e.g., nitrogen and phosphorus), light, and inorganic car-

bon. Several previous works have considered the competition between the species

for nutrients (e.g., nitrogen and phosphorus), or light, or both of them. However,

the competition for inorganic carbon have received very little attention. The main

difficulty is the biochemistry of inorganic carbon, which is much more complicated

than that of nutrients and light [46]. The detailed mechanism of chemical inter-

actions involved in the competition for inorganic carbon can be found in [37, 46].

The authors in [46] proposed a system of ODEs modeling the competition of the

species for inorganic carbon that is stored internally in a well-mixed chemostat, in

which dissolved CO2 and carbonic acid are regarded as one resource (denoted as

“CO2” ), and bicarbonate and carbonate ions are regarded as another (denoted as

“CARB”). The resources “CO2” and “CARB” are substitutable in their effects on

algal growth [37, 46].

To make the mathematics more tractable, we will follow the ideas used in the

recent work [37] to simplify the complex processes of “CO2” and “CARB” involved,

and modify the ODE system proposed in [46]. In order to model the interactions

between the limiting resource(s) and the species, we need to specify the amount

of resource(s) consumed in the growth of one new individual [18]. Assuming that

all individuals have the same quota of resource(s) at any instant, we consider the

following variable-internal-storage model in a well-mixed chemostat [18, 37, 46]:

dR
dt

= (R(0) −R)D − fR(R,Q)u− ωrR + ωsS,
dS
dt

= (S(0) − S)D − fS(S,Q)u+ ωrR− ωsS,
dQ
dt

= fR(R,Q) + fS(S,Q)− µ(Q)Q,
du
dt

= [µ(Q)−D]u,

R(0) ≥ 0, S(0) ≥ 0, Q(0) ≥ Qmin, u(0) ≥ 0.

(1.1)

Here, R(t) represents the total concentration of “CO2” (i.e., dissolved CO2 and

carbonic acid); S(t) represents the total concentration of “CARB” (i.e., bicarbon-

ate and carbonate ions); u(t) denotes the population density of the species; Q(t)

stands for the cellular carbon content. The fourth equation in (1.1) describes the

population density of the species, where µ(Q) is the specific growth rate of the
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species, and Qmin denotes the threshold cell quota below which no growth of the

species occurs. The third equation in (1.1) describes the cellular carbon content

of the species, which increases through uptake of “CO2” (fR(R,Q)) and “CARB”

(fS(S,Q)), and decrease through consumption of cellular carbon for growth. We

ignore the effect of respiration in system (1.1). The first two equations of system

(1.1) describe changes in dissolved inorganic carbon in the environment. The first

equation represents the changes in the concentration of dissolved “CO2” through

the influx R(0) and efflux of water containing dissolved “CO2”, through gas ex-

change with atmospheric CO2, and through the chemical reaction from dissolved

“CO2” to “CARB” and vice versa, and through uptake of “CO2” (fR(R,Q)u) by

the species; the second equation describes changes in the total concentration of

“CARB” through the influx S(0) and efflux of water containing these inorganic car-

bon species, through the chemical reaction from “CARB” to dissolved “CO2” and

vice versa, and through uptake of “CARB” (fS(S,Q)u) by the species [46]. We

further assume that carbonic acid loses a proton to become bicarbonate at the rate

ωr, and the rate of the reverse reaction is denoted by ωs [37]. All the parameters

depend on the physical and chemical conditions of natural waters (e.g., tempera-

ture, pH and alkalinity) [37, 46]. The chemostat is supplied with inorganic carbon

at constant concentrations (R(0), S(0)) at dilution rate D. In [30, 32], the authors

investigated models of two complementary/essential resources with internal stor-

age in which growth rate for species is determined by the minimum of two Droop

functions. This type of growth rate reflects that the two resources are complemen-

tary/essential, not substitutable. Two mass conservation laws can be derived for

the models in [30, 32], and hence, the authors in [30, 32] can reduce their systems to

monotone systems. We point out that only one mass conservation can be obtained

for system (1.1), and it can not be reduced into a monotone system without im-

posing extra assumptions on the uptake functions. Thus, the arguments in [30, 32]

can not be applied to system (1.1). We will summarize the results of system (1.1)

in the Discussion section.

In [8, 9, 10, 46], the growth rate µ(Q) was taken to be

µ(Q) = µ∞

(
1− Qmin

Q

)
, ∀ Q ≥ Qmin, (1.2)

or

µ(Q) = µmax
Q−Qmin

Qmax −Qmin

, ∀ Qmin ≤ Q ≤ Qmax,
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where µ∞ is the maximal growth rate at infinite quotas (i.e., as Q → ∞) of the

species; µmax is the maximum specific growth rate of the species; Qmin is its min-

imum cellular carbon content required for growth; Qmax is its maximum cellular

carbon content. According to Grover [14], for N = R, S, the uptake rate fN(N,Q)

takes the form:

fN(N,Q) = ρN(Q)
N

kN +N
. (1.3)

The function ρN(Q) is defined as follows:

ρN(Q) = ρhigh
max,N − (ρhigh

max,N − ρ
low
max,N)

Q−Qmin

Qmax −Qmin

, (1.4)

or

ρN(Q) = ρmax,N
Qmax −Q
Qmax −Qmin

, (1.5)

where Qmin ≤ Q ≤ Qmax. The authors in [4, 5, 30] took ρN(Q) to be a constant,

ρN(Q) = ρN . (1.6)

Motivated by the above practical examples, we assume that for each N = R, S,

the functions µ(Q) and fN(N,Q) satisfy the following assumptions:

(H1) µ(Q) is Lipschitz continuous for Q ≥ 0. Moreover, µ′(Q) > 0 for a.e. Q ≥ 0,

and there exists Qmin > 0 such that µ(Qmin) = 0.

(H2) (i) fN(N,Q) and ∂fN (N,Q)
∂N

are Lipschitz continuous in N ≥ 0 and Q ≥ 0;

(ii) ∂fN (N,Q)
∂N

≥ 0, ∂fN (N,Q)
∂Q

≤ 0 and fN(N,Q) ≥ 0 for a.e. N ≥ 0 and Q ≥ 0;

(iii) there exists QB ∈ (Qmin,+∞] such that

fN(N,Q) > 0,
∂fN(N,Q)

∂N
> 0 in {(N,Q) ∈ R2

+ : N > 0 and Q ∈ [0, QB)},

fN(N,Q) = 0 in {(N,Q) ∈ R2
+ : N = 0 or Q ≥ QB}.

(When QB = +∞, it is understood that fN(N,Q) = 0 if and only if N = 0.)

One can easily use a natural way to extend the functions µ(Q) and fN(N,Q) in

previous examples to be defined in R+ and R2
+, respectively, while satisfying (H1)

and (H2).
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There have been several works investigating populations and dissolved nutrients

that are poorly/partially mixed in spatially variable habitats [2, 3, 15, 16, 17, 20, 25,

33]. One simple, spatially distributed habitat is the unstirred chemostat [3, 25, 41],

which was introduced as a poorly/partially mixed analog of the chemostat with

transport of nutrients and organisms by diffusion. An advantage for the species

with quota variation in spatially variable habitats is that individuals could obtain

nutrients in a rich zone of a habitat and for their later use to survive when they

travel to a poor zone [15, 16]. Thus, the ecological model systems with variable

quotas in a spatially variable habitat are important and significant. However, such

topics have received very little attention, perhaps due to the complexities and dif-

ficulties in modeling as well as mathematical analysis. In the previous works, there

are three approaches of modeling to this issue. The first approach is to incorporate

the physical transport equations governing spatial distributions of populations and

resources into equations for population structured proposed in [6, 7]. We will give

detailed descriptions about this approach in the Discussion section. The second

approach is the individual-based computational model proposed in [15], where the

author utilized the Lagrangian framework developed in [45] to divide the population

of each species into a large number of subpopulations. Each subpopulation moves

around the habitat, and its dynamics is governed by ordinary differential equa-

tions in relation to intracellular stored nutrient [10, 14], and the available nutrient

satisfies a partial differential equation with a simple diffusive transport process

and a consumption term. The Lagrangian/computational approach in [15, 45] can

have higher accuracy for some results [16], but it requires extensive computation to

achieve predictions and it cannot be analyzed mathematically. The third approach

is the reaction-diffusion system [20] or the reaction-diffusion-advection system [16],

which describes the dynamics of dissolved nutrient concentration, the total con-

centration of stored nutrient by a species at a given point, and the corresponding

population density. Then the ratio of the total concentration of stored nutrients by

a species at a given point and the corresponding population density can be regarded

as the average quota of individuals at a location [16]. This approach may risk er-

rors since population growth at each location is assumed to depend on this average

quota [16]. Recently, the author in [16] compared the second approach with the

third one, and he concluded that errors caused by the averaging approach were

relatively modest since both approaches can have similar predictions concerning

persistence/coexistence of species.

The averaging approach can be used to establish more tractable PDEs [20], and
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it can be regarded as an approximation of the Lagrangian/computational approach

since both approaches have similar results [16]. Inspired by this fact, we intend

to adopt the averaging approach in [16, 20] to incorporate spatial variations into

system (1.1). For this purpose, we assume U(t) = u(t)Q(t) to be the total amount

of stored inorganic carbon at time t. Then (1.1) becomes

dR
dt

= (R(0) −R)D − fR(R, U
u

)u− ωrR + ωsS,
dS
dt

= (S(0) − S)D − fS(S, U
u

)u+ ωrR− ωsS,
dU
dt

= fR(R, U
u

)u+ fS(S, U
u

)u−DU,
du
dt

=
[
µ(U

u
)−D

]
u,

R(0) ≥ 0, S(0) ≥ 0, U(0) ≥ 0, u(0) ≥ 0,

(1.7)

where the initial value (u(0), U(0)) satisfies U(0) ≥ Qminu(0). We propose the

following “unstirred chemostat model” of system (1.1) (or (1.7)):

Rt = dRxx − fR(R, U
u

)u− ωrR + ωsS, x ∈ (0, 1), t > 0,

St = dSxx − fS(S, U
u

)u+ ωrR− ωsS, x ∈ (0, 1), t > 0,

Ut = dUxx + fR(R, U
u

)u+ fS(S, U
u

)u, x ∈ (0, 1), t > 0,

ut = duxx + µ(U
u

)u, x ∈ (0, 1), t > 0,

Nx(0, t) = −N (0), Nx(1, t) + γN(1, t) = 0, N = R, S, t > 0,

wx(0, t) = 0, wx(1, t) + γw(1, t) = 0, w = U, u, t > 0,

w(x, 0) = w0(x) ≥ (6≡)0, w = R, S, U, u, x ∈ (0, 1),

(1.8)

where the initial value functions u0(x), and U0(x) satisfy

U0(x) ≥ Qminu
0(x), on [0, 1].

It is worth mentioning that we consider a tubular chemostat so that the spatial

dimension equals one in (1.8). The constants d and γ represent the diffusion coeffi-

cient and the washout constant, respectively. Here we calculate the average quota

carbon at the location x and time t as Q(x, t) := U(x,t)
u(x,t)

, and apply the functions

µ and fN with the functions µ and fN satisfying (H1) and (H2) respectively, for

N = R, S.

Another natural habitat is the water column of lakes and oceans. In the

poorly/partially mixed water column, the phytoplankton, which is relatively ho-

mogeneously distributed horizontally, may be moved up or down by turbulence dif-

fusion. In addition, it also has a tendency to sink or float. Hence, our model in the
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water column will be a reaction-advection-diffusion system [15, 16, 24, 29, 37, 47].

The spatial coordinate x ∈ [0, L] represents the depth of a water column, with

x = 0 being the surface and x = L the bottom. Concerning the model of phy-

toplankton in a water column, we shall first discuss the corresponding boundary

conditions before displaying the full equation. Assuming that “CO2” (R) enters

via the water-atmospheric interface (x = 0), whereas “CARB” (S) enters via the

sedimentary interface (x = L), we propose the following boundary conditions for

resources in the water column:{
γRR(0, t)−Rx(0, t) = γRR

(0), Rx(L, t) = 0, t > 0,

Sx(0, t) = 0, Sx(L, t) + γSS(L, t) = γSS
(0), t > 0.

(1.9)

Assume that DR(x) and DS(x) are the vertical turbulent diffusion coefficients of

the resources R and S, respectively; γR represents the transfer velocity of nutrients

relative to DR(0) at the surface; γS represents the transfer velocity of nutrients

relative to DS(L) at the sediment interface [47]. The following is another type of

boundary conditions for “CO2” and “CARB” used in the model of [37]:{
γRR(0, t)−Rx(0, t) = γRR̂, R(L, t) = R(0), t > 0,

Sx(0, t) = 0, S(L, t) = S(0), t > 0,
(1.10)

where the positive constant R̂ is the thermodynamic equilibrium concentration of

“CO2” in water, whose biological explanations can be found in the introduction

of [37]; R(0) and S(0) are the source concentration of “CO2” and “CARB” at the

bottom of the water column, respectively [37]. We assume no boundary flux for

the species u and the total stored resource U , that is, u and U do not leave or enter

the water column at x = 0 and x = L:

d(x)wx(x, t)− ν(x)w(x, t) = 0, for w ∈ {u, U}, x ∈ {0, L}, and t > 0. (1.11)

Here d(x) are the vertical turbulent diffusion coefficient of u and U ; ν(x) is the

sinking velocity (ν(·) > 0) or the buoyant velocity (ν(·) < 0) of u and U .

We first propose general boundary conditions that can include models in the

chemostat (see (1.8)) and the water column (see (1.9), (1.10), and (1.11)) as special

cases. Define the following operators: for N = R, S,

BN,x[N ] =

{
−aN,0Nx(0, t) + bN,0N(0, t), x = 0, t > 0,

aN,LNx(L, t) + bN,LN(L, t), x = L, t > 0,
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and for w = U, u,

Bx[w] =

{
−a0[d(0)wx(0, t)− ν(0)w(0, t)] + b0w(0, t), x = 0, t > 0,

aL[d(L)wx(L, t)− ν(L)w(L, t)] + bLw(L, t), x = L, t > 0,

where aN,x, bN,x, a
x, and bx are non-negative, for all N ∈ {R, S} and x ∈ {0, L}.

In this paper, we shall study the general model that includes the habitats in the

unstirred chemostat (see (1.8)) and in the water column (see (1.9), (1.10), and

(1.11)):

Rt = (DR(x)Rx)x − fR(R, U
u

)u− ωrR + ωsS, x ∈ (0, L), t > 0,

St = (DS(x)Sx)x − fS(S, U
u

)u+ ωrR− ωsS, x ∈ (0, L), t > 0,

Ut = (d(x)Ux − ν(x)U)x + fR(R, U
u

)u+ fS(S, U
u

)u−mU, x ∈ (0, L), t > 0,

ut = (d(x)ux − ν(x)u)x + µ(U
u

)u−mu, x ∈ (0, L), t > 0,

BN,x[N ] = cN,x ≥ 0, N = R, S, x = 0 or L, t > 0,

Bx[w] = 0, w = U, u, x = 0 or L, t > 0,

w(x, 0) = w0(x) ≥ (6≡)0, w = R, S, U, u, x ∈ (0, L),

(1.12)

where m ≥ 0. We will impose some assumptions on the boundary conditions in

system (1.12) as follows:

(H3) aN,x, bN,x ≥ 0 and aN,x + bN,x > 0 for all (N, x) ∈ {R, S} × {0, L}; also,

bN,x > 0 for some (N, x) ∈ {R, S} × {0, L}.

(H4) m, ax, bx ≥ 0 and ax + bx > 0 for all x ∈ {0, L}. One of m, b0, bL is positive.

(H5) DR(x) ≡ DS(x) ≡ D(x) ∀ x ∈ [0, L], and aR,x = aS,x, bR,x = bS,x, ∀ x ∈
{0, L} .

(H6) cN,x > 0, for some (N, x) ∈ {R, S}×{0, L}. Moreover, if for some (N0, x0) ∈
{R, S} × {0, L} such that cN0,x0 > 0, then bN0,x0 > 0.

We point out the main distinction between this paper and the previous works

in [20, 22]. The main difficulties in mathematical analysis for the system (1.12) and

models in [20, 22] are caused by the singularity in the ratio U/u at the extinction

steady state (R, S, U, u) = (R∗, S∗, 0, 0). Thus, standard techniques such as lin-

earization and bifurcation are not applicable. In [20], strictly positive upper/lower
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solutions are constructed by exploiting the underlying monotonicity of the limiting

system. However, the construction requires the diffusion rate to be relatively large

or small, and the question of extinction/persistence is left open for intermediate

diffusion rates. The authors in [22] pushed further the results in [20] and obtained

a threshold result by defining, in an abstract way, the threshold diffusion rate to be

“the supremum of diffusion rates where a lower solution can be constructed”. In

both works [20, 22], it was essential that the limiting system is monotone, as they

are based on upper/lower solution arguments. Since the general system (1.12) can

not be reduced to a monotone system, the arguments developed in [20, 22] can not

be applied to (1.12).

By contrast, we pursue a more fundamental approach here by studying the non-

linear eigenvalue problem in the special positive cones of functions motivated by

the ratio dependence. The principal eigenvalue, given by a recent Krein-Rutman

type theorem involving two separate cones C ⊂ D due to [35], is shown to char-

acterize the threshold for persistence/extinction of the general system (1.12). We

also note that the previous constructions of upper/lower solution in [20, 22] are

based on some scalar eigenvalue problems, which are defined technically. Actually,

one can construct another upper/lower solution for the limiting system in [20, 22]

using a nonlinear eigenvalue problem similar to (2.8) in this paper, and one can

easily obtains the threshold dynamics of the model in [20], and same conclusions

in [22]. Although homogeneous eigenvalue problems have been used before to find

threshold parameters for the dynamics of PDE models [27, 28], this is the first

application of the Krein-Rutman Theorem involving two cones to study popula-

tion dynamics. Furthermore, unlike previous works in phytoplankton models the

mass conservation is not assumed for the general system (1.12), and as a result the

boundedness of solution is proved in this paper separately. This paper is one of

the the first attempts in characterizing the threshold dynamics in ratio-dependent

PDE systems and we expect the methods in this paper to be applied to other PDE

models with ratio-dependence.

2 Main results of system (1.12)

In this section, we state the main theorems of this paper, the proofs of which will

be given in the subsequent sections. Consider first the following linear cooperative
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system modeling the available resources in a phytoplankton-free environment:
Rt = (DR(x)Rx)x − ωrR + ωsS, x ∈ (0, L), t > 0,

St = (DS(x)Sx)x + ωrR− ωsS, x ∈ (0, L), t > 0,

BN,x[N ] = cN,x ≥ 0, N = R, S, x = 0 or L, t > 0,

w(x, 0) = w0(x), w = R, S, x ∈ (0, L).

(2.1)

The following result concerning the dynamics of the phytoplankton-free system

(2.1) is proved in section 3.

Proposition 2.1. Suppose (H3), and one of (H5)-(H6) hold. Then system (2.1)

admits a unique positive steady-state solution (R∗(x), S∗(x)) which is globally asymp-

totically stable among solutions with initial data in C([0, L];R2
+). Furthermore,

there exists C ≥ 1 independent of initial conditions (R0(x), S0(x)) such that

‖(R(·, t), S(·, t))‖ ≤ C(1 + ‖R0(·), S0(·)‖) for all t ≥ 0.

Let X = C([0, L];R4
+), D = C0([0, L],R2

+), and ≤D be the partial order in

C0([0, L];R2) generated by the cone D (see, e.g., [40, Section 1.1]), i.e.

(R1(·), S1(·)) ≤D (R2(·), S2(·)) if R1(x) ≤ R2(x) and S1(x) ≤ S2(x)∀x ∈ [0, L].

(2.2)

From now on, (R∗(x), S∗(x)) stands for the unique positive steady-state solution

of system (2.1). We define next Q∗ to be the unique positive number so that

Q∗ = inf{Q > 0 : fR(R∗(x), Q) + fS(S∗(x), Q)− µ(Q)Q ≤ 0 in [0, L]}. (2.3)

Remark 2.1. (i) Qmin < Q∗ < QB, where Qmin and QB are given by (H1) and

(H2) respectively.

(ii) By (H2), for any 0 < ε0 < QB/Q
∗ − 1, and for N = R, S,

fN(N,Q) > 0 for all N > 0 and 0 ≤ Q ≤ (1 + ε0)Q∗.

(iii) The definition of Q∗ in (2.3) is motivated by the ODE system (1.1). For sys-

tem (1.1), its phytoplankton-free equilibrium is (R, S,Q, u) = (R∗, S∗, Q∗, 0),

where

(R∗, S∗) := (
DR(0) + ωsR

(0) + ωsS
(0)

D + ωr + ωs
,
DS(0) + ωrS

(0) + ωrR
(0)

D + ωr + ωs
), (2.4)
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and Q∗ is uniquely determined by

fR(R∗, Q∗) + fS(S∗, Q∗)− µ(Q∗)Q∗ = 0. (2.5)

Biologically, Q∗ represents the quota that a species can obtain when the re-

sources concentration is at its long-term upper bound (R∗, S∗).

Theorem 2.1. Assume (H1), (H2), (H3), (H4) and one of (H5), (H6) hold. Then

(i) System (1.12) generates a semiflow in

Y = {(R0, S0, U0, u0) ∈ X : ∃Q̃ > 0 s.t. U0(x) ≤ Q̃u0(x) ∀x ∈ [0, L]}, (2.6)

in the sense that for each initial condition in Y, system (1.12) has a unique

classical solution (R, S, U, u) that exists for all t > 0. Moreover, the solution

satisfies (R(·, t), S(·, t), U(·, t), u(·, t)) ∈ Y for all t > 0.

(ii) For each Q̄ > 0, the solution depends continuously on initial data in

YQ̄ := {(R0, S0, U0, u0) ∈ Y : U0(x) ≤ Q̄u0(x) for all x ∈ [0, L]}.

(iii) Let Q∗ ∈ (Qmin, QB) be given by (2.3). Then the subset

Y1 = {(R0, S0, U0, u0) ∈ X : Qminu
0(·) ≤ U0(·) ≤ Q∗u0(·),

and (R0(·), S0(·)) ≤D (R∗(·), S∗(·)) in [0, L]}. (2.7)

attracts all trajectories in Y.

(iv) The steady state (R∗(x), S∗(x), 0, 0) ∈ X attracts all trajectories in

{(R0, S0, U0, u0) ∈ Y : u0 ≡ 0}.

Here (R∗(x), S∗(x)) is given in Proposition 2.1.

We further show the eventual boundedness of trajectories, which is essential for

the application of persistence theory.

Proposition 2.2. Suppose (H1)-(H4), and one of (H5)-(H6) hold. There exists a

constant C > 0 independent of initial conditions in Y such that for any solution

(R, S, U, u) of system (1.12), we have

lim sup
t→∞

‖(R(·, t), S(·, t), U(·, t), u(·, t))‖ ≤ C.
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The boundedness of trajectories enables the use of persistence theory. It turns

out that the persistence/extinction of the phytoplankton species is characterized

by the principal eigenvalue Λ0 ∈ R of the following nonlinear eigenvalue problem:

(d(x)ϕ′(x)− ν(x)ϕ(x))′ + fR

(
R∗(x), ϕ(x)

φ(x)

)
φ(x)

+fS

(
S∗(x), ϕ(x)

φ(x)

)
φ(x) + Λϕ(x) = 0, x ∈ (0, L),

(d(x)φ′(x)− ν(x)φ(x))′ + µ
(
ϕ(x)
φ(x)

)
φ(x) + Λφ(x) = 0, x ∈ (0, L),

Bx[w] = 0, for w = ϕ, φ, and x = 0, L.

(2.8)

The existence of the principal eigenvalue Λ0 of the nonlinear eigenvalue problem

(2.8) will be proved in section 5.

Theorem 2.2. Under the hypothesis of Theorem 2.1, (2.8) has a principal eigen-

value Λ0, characterized as the unique eigenvalue of (2.8) with a strictly positive

eigenfunction. Furthermore, −Λ0 is the critical death rate of system (1.12) in the

sense that

(i) If m ≥ −Λ0, then (R∗(·), S∗(·), 0, 0) attracts all trajectories in Y.

(ii) If m < −Λ0, then there exists σ > 0 independent of initial conditions in Y

so that whenever u0 6≡ 0,

lim inf
t→∞

[
inf

0≤x≤L
U(x, t)

]
≥ σ, and lim inf

t→∞

[
inf

0≤x≤L
u(x, t)

]
≥ σ, (2.9)

and (1.12) has at least one positive steady state.

Finally, we have the following result if we specialize to system (1.8), i.e. the

model of an unstirred chemostat.

Theorem 2.3. Assume (H1) and (H2). System (1.8) generates a semiflow in Y

with a critical diffusion rate d0 > 0 such that

(i) If d ∈ [d0,+∞) then the steady state (R∗(·), S∗(·), 0, 0) attracts all trajectories

in Y.

(ii) If d ∈ (0, d0), then there exists σ > 0 independent of initial conditions in Y

so that any solution of (1.8) with u0 6≡ 0 satisfies

lim inf
t→∞

[
inf

0≤x≤L
U(x, t)

]
≥ σ, and lim inf

t→∞

[
inf

0≤x≤L
u(x, t)

]
≥ σ.

12



If we assume in addition that

(H7) ωs + ∂fR
∂Q

(R,Q) ≥ 0, and ωr + ∂fS
∂Q

(S,Q) ≥ 0, for a.e. R ≥ 0, S ≥ 0, Q ≥ 0.

Then (ii) can be strengthened to

(ii’) If d ∈ (0, d0), then (1.8) has a unique positive steady state (R̂, Ŝ, Û , û) that

attracts all trajectories in Y such that u0 6≡ 0.

Remark 2.2. (i) Using m = 0 here and Theorem 2.2, we comment that in

Theorem 2.3 (i), Λ0 ≥ 0, and in Theorem 2.3 (ii), Λ0 < 0. In fact, Λ0 :=

Λ0(d) depends on the diffusion coefficient d. We will show that Λ0 > 0 for

d ∈ (d0,+∞), and Λ0 < 0 for d ∈ (0, d0) (see Lemma 7.1).

(ii) In the Discussion section, we will give practical examples of fR(R,Q) and

fS(S,Q) such that the inequalities in (H7) hold, where the parameters are in

a realistic parameter range.

We outline the rest of the paper as follows: In Section 3, we discuss the chemical

dynamics of the phytoplankton-free system and prove Proposition 2.1. In Section 4,

we prove the well-posedness results of Theorem 2.1. In Section 5, we adapt a non-

linear version of Krein-Rutman Theorem, due to Mallet-Paret and Nussbaum [35],

to study the local stability of phytoplankton-free steady state (R∗(·), S∗(·), 0, 0). In

Section 6, we prove the eventual boundedness of trajectories (Subsection 6.1) and

apply persistence theory to prove the threshold dynamics contained in Theorem

2.2. In Section 7, we specialize to the unstirred chemostat system (1.8) and prove

Theorem 2.3. We close with some discussion in Section 8.

3 Dynamics of the phytoplankton-free system (2.1)

Recall that D = C0([0, L],R2
+) and ≤D is the partial order in C0([0, L];R2) defined

in (2.2). We first consider a slightly more general version of the phytoplankton-free

system (2.1):


Rt = (DR(x)Rx)x − FR(x,R)− ωrR + ωsS, x ∈ (0, L), t > 0,

St = (DS(x)Sx)x − FS(x, S) + ωrR− ωsS, x ∈ (0, L), t > 0,

BN,x[N ] = cN,x ≥ 0, N = R, S, x = 0 or L, t > 0,

N(x, 0) = N0(x), N = R, S, x ∈ (0, L).

(3.1)
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Lemma 3.1. Suppose (H3), and one of (H5)-(H6) hold. For N = R, S, assume

that

FN(·, 0) = 0 and
∂

∂N
FN(·, N) ≥ 0 ∀N ≥ 0. (3.2)

Then the following statements are valid.

(i) System (3.1) admits a unique positive steady-state solution (R∗∗F (x), S∗∗F (x)),

which is globally asymptotically stable among all non-negative solutions. Fur-

thermore, there exists a number C ≥ 1 independent of initial data (R0, S0) ∈
C([0, L];R2

+) such that

‖(R(·, t), S(·, t))‖ ≤ C(1 + ‖(R0(·), S0(·))‖) for t ≥ 0.

(ii) If GN(·, N) satisfies a similar condition as (3.2) for N = R, S, and

(GR(x,R), GS(x, S)) ≥D (FR(x,R), FS(x, S)), for all x ∈ [0, L], R, S ≥ 0,

then

(R∗∗G (x), S∗∗G (x)) ≤D (R∗∗F (x), S∗∗F (x)), for every x ∈ [0, L], (3.3)

where (R∗∗G (x), S∗∗G (x)) is the unique steady-state solution of system (3.1)

with the the replacement of F by G. Additionally, if we further assume

that (GR(·, R), GS(·, S)) ≥D, 6≡ (FR(·, R), FS(·, S)), then (R∗∗G (·), S∗∗G (·)) �D

(R∗∗F (·), S∗∗F (·)).

Proof. From the assumptions in (3.2), it is easy to see that system (3.1) is a coop-

erative system. Let (R, S) = (0, 0), and

(R, S) =

{
CΦ0(x) (ωs, ωr) if (H3) and (H5) hold,

C max(N,x)∈Γ{ cN,xbN,x
} (ωs, ωr) if (H3) and (H6) hold,

where C ≥ 1
ωs

+ 1
ωr

, and Γ = {(N, x) ∈ {R, S} × {0, L}| bN,x > 0} is nonempty,

due to assumption (H3); Φ0(x) being the unique positive solution to
(DR(x)Φ0

x)x = 0, x ∈ (0, L),

−aR,0Φ0
x(0) + bR,0Φ0(0) = max{cR,0, cS,0},

aR,LΦ0
x(L) + bR,LΦ0(L) = max{cR,L, cS,L}.

(3.4)
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To show the existence of Φ0(x), we apply Fredholm’s alternative. It remains to

show that Φ0(x) is uniquely determined by system (3.4) under the assumptions

(H3) and (H5). To this end, we assume that Φ0
1(x) and Φ0

2(x) solve system (3.4).

Let Φ̄0(x) := Φ0
1(x)− Φ0

2(x). Then Φ̄0(x) satisfies{ (
DR(x)Φ̄0

x

)
x

= 0, x ∈ (0, L),

−aR,0Φ̄0
x(0) + bR,0Φ̄0(0) = 0, aR,LΦ̄0

x(L) + bR,LΦ̄0(L) = 0.
(3.5)

Multiply (3.5) by Φ̄0 and integrate by parts, we have∫ L

0

DR(x)(Φ̄0
x)

2 = [DR(x)Φ̄0
x(x)Φ̄0(x)] |L0≤ 0.

This implies that Φ̄0
x ≡ constant. By the assumption (H3), (H5) and the boundary

condition of Φ̄0 in (3.4), we conclude that either Φ̄0(0) = 0 or Φ̄0(L) = 0, which

ensures that Φ̄0 ≡ 0. Thus, Φ0(x) is uniquely determined by system (3.4). It is

not hard to see that for all C ≥ 1
ωs

+ 1
ωr

, (R, S) and (R, S) forms a pair of strict

sub- and supersolutions of (3.1). We can then conclude that the minimal and

maximal steady states of system (3.1) (with respect to ≤D) exist, which we denote

by (Rmin
F (x), Smin

F (x)) and (Rmax
F (x), Smax

F (x)) respectively. It remains to prove that

(Rmin
F (x), Smin

F (x)) ≡ (Rmax
F (x), Smax

F (x)). (3.6)

To this end, we let RF (x) = Rmax
F (x)−Rmin

F (x), SF (x) = Smax
F (x)−Smin

F (x). Then

(RF (x), SF (x)) ≥D (0, 0), and (RF (x), SF (x)) satisfies
(DR(x)(RF )x)x − hR(x)RF (x)− ωrRF (x) + ωsSF (x) = 0, x ∈ (0, L),

(DS(x)(SF )x)x − hS(x)SF (x) + ωrRF (x)− ωsSF (x) = 0, x ∈ (0, L),

BN,x[NF ] = 0, N = R, S, x = 0 or L,

(3.7)

where

hR(x) =

∫ 1

0

∂FR
∂R

(
x, τRmax

F (x) + (1− τ)Rmin
F (x)

)
dτ ≥ 0,

hS(x) =

∫ 1

0

∂FS
∂S

(
x, τSmax

F (x) + (1− τ)Smin
F (x)

)
dτ ≥ 0,

and

BN,x[NF ] =

{
−aN,0(NF )x(0, t) + bN,0NF (0, t), x = 0, t > 0,

aN,L(NF )x(L, t) + bN,LNF (L, t), x = L, t > 0.

15



Claim 3.1. The following results are valid:

(i) If maxx̃=0,L{bR,x̃} > 0, then either RF ≡ 0 or maxx̃=0,L(−1)x̃/LR′F (x̃) > 0.

(ii) If maxx̃=0,L{bS,x̃} > 0, then either SF ≡ 0 or maxx̃=0,L(−1)x̃/LS ′F (x̃) > 0.

(iii) (−1)x̃/LN ′F (x̃) = 0 for all (N, x̃) ∈ {R, S} × {0, L}.

First we show Claim 3.1(i). Suppose bR,x̃ > 0 for some x̃ ∈ {0, L}, and RF 6≡ 0.

Let minx∈[0,L] RF (x) = RF (x0). If x0 ∈ (0, L), then we may apply the strong

maximum principle to the equation{
(DR(x)(RF )x)x + [−hR(x)− ωr]RF (x) = −ωsSF (x) ≤ 0, x ∈ (0, L),

BR,x[RF ] = 0, x = 0 or L,

to conclude that RF (·) is constant on [0, L]. Since bR,x̃ > 0 for some x̃ ∈ {0, L}, we

deduce from the boundary conditions that in fact RF (·) ≡ 0, contradiction. Hence

if RF (·) 6≡ 0, then we must have x0 ∈ {0, L}. But then by Hopf’s Lemma [13, Sect.

2.5, Theorem 14], we have (−1)x̃/LR′F (x0) > 0 for some x0 ∈ {0, L}. This proves

Claim 3.1(i). The proof of Claim 3.1(ii) is analogous and is skipped.

Before proving (iii), we first show that

(−1)x̃/LN ′F (x̃) ≥ 0 for all (N, x̃) ∈ {R, S} × {0, L}. (3.8)

If aN,x̃ > 0, for some (N, x̃) ∈ {R, S}×{0, L}, then (−1)x̃/LN ′F (x̃) =
bN,x̃
aN,x̃

NF (x̃) ≥ 0.

Alternatively, if aN,x̃ = 0, then NF (x̃) = 0 is a boundary minimum so that again

(−1)x̃/LN ′F (x̃) ≥ 0. Thus, (3.8) holds. For Claim 3.1(iii), we add the first two

equations in (3.7) and integrate over x ∈ [0, L] to obtain

0 ≤
∫ L

0

[hR(x)RF (x) + hS(x)SF (x)]dx =
∑

N=R,S

∑
x̃=0,L

−DN(x̃)(−1)x̃/LN ′F (x̃).

By (3.8), each term on the right is non-positive and thus identically zero. This

yields (iii) and finishes the proof of Claim 3.1.

Now, by assumption (H3), either maxx̃=0,L{bR,x̃} > 0 or maxx̃=0,L{bS,x̃} > 0.

By Claim 3.1, either RF (·) ≡ 0 or SF (·) ≡ 0. Plugging into (3.7) we must have

RF (·) ≡ SF (·) ≡ 0. This proves (3.6). By the compactness of forward trajectories,

we see that the unique steady state (R∗∗F (·), S∗∗F (·)) of system (3.1) is globally asymp-

totically stable among all non-negative solutions [26, Theorem D]. This proves Part

(i).
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For Part (ii), let (R∗∗G , S
∗∗
G ) be the unique steady state of (3.1) with FR, FS being

replaced with GR, GS. Then (R∗∗G , S
∗∗
G ) is a strict subsolution of (3.1). Since the

latter has a unique, globally asymptotically stable steady state (R∗∗F , S
∗∗
F ), it follows

by comparison that (3.3) holds.

Proof of Proposition 2.1. This is a special case of Lemma 3.1(i), when FR ≡ FS ≡
0.

4 Well-posedness Results

In this section, we shall provide the proof of Theorem 2.1.

4.1 Estimates

Recall that X = C0([0, L];R4
+), Y and Y1 are defined in (2.6) and (2.7). Also Q∗ is

given in (2.3) and (R∗(·), S∗(·)) is the unique steady state of (2.1) (see Proposition

2.1). Note that Y1 ⊆ Y ⊆ X.

Lemma 4.1. Suppose (H3), and one of (H5)-(H6) hold. Let

(R(x, t), S(x, t), U(x, t), u(x, t))

be a solution of (1.12) for t ∈ [0, τ). Then

(i) If (R0(·), S0(·)) ≤D (R∗(·), S∗(·)), then (R(·, t), S(·, t)) ≤D (R∗(·), S∗(·)) for

all t ∈ [0, τ).

(ii) There exists a constant C ≥ 1 independent of τ and initial conditions

(R0(·), S0(·), U0(·), u0(·)) ∈ Y

such that

sup
t∈[0,τ)

‖(R(·, t), S(·, t))‖ ≤ C(1 + ‖(R0(·), S0(·))‖).

Moreover, if τ = +∞, then

lim sup
t→∞

(R(x, t), S(x, t)) ≤D (R∗(x), S∗(x))
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uniformly for x ∈ [0, L]. i.e. for each ε > 0 there exists t0 > 0 such that

R(x, t) ≤ R∗(x) + ε and S(x, t) ≤ S∗(x) + ε

for x ∈ [0, L] and t ≥ t0.

Proof. Let (R, S, U, u) be a solution of (1.12) for t ∈ [0, τ) with initial data

(R0, S0, U0, u0) ∈ Y. By comparison principle, we have

(R(x, t), S(x, t)) ≤D (R̂(x, t), Ŝ(x, t)),

where (R̂(x, t), Ŝ(x, t)) is the unique solution to (2.1) with initial conditions (R0(x), S0(x)).

The rest follows from Proposition 2.1.

Lemma 4.2. Suppose the hypotheses of Theorem 2.1 hold. Let

(R(x, t), S(x, t), U(x, t), u(x, t))

be a solution of (1.12) for t ∈ [0, τ), with initial data (R0, S0, U0, u0) ∈ Y. Then

(i) It holds that

inf
x∈[0,L]

U(x, t)

u(x, t)
≥ min

{
Qmin , inf

[0,L]

U0(x)

u0(x)

}
for all t ∈ [0, τ). (4.1)

(ii) There exists Q ∈ [Q∗,+∞) depending on ‖(R0, S0)‖ and ‖U0/u0‖ such that

sup
x∈[0,L]

U(x, t)

u(x, t)
≤ Q for all t ∈ [0, τ). (4.2)

Moreover, if τ = +∞, then

lim inf
t→∞

[
inf

x∈[0,L]
(U(x, t)−Qminu(x, t))

]
≥ 0 (4.3)

and for each Q > Q∗,

lim sup
t→∞

[
sup
x∈[0,L]

(U(x, t)−Qu(x, t))

]
≤ 0. (4.4)

Furthermore, if ‖u(·, t)‖ is bounded uniformly in t > 0, then (4.4) holds for Q = Q∗.
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Proof of Lemma 4.2. The following arguments are motivated by [16] and [33]. Let

Q be a number in [0, Qmin] to be specified later. Then one can write

µ

(
U(x, t)

u(x, t)

)
= µ(Q) + ξ(x, t;Q)

(
U(x, t)

u(x, t)
−Q

)
where for each Q ≥ 0,

ξ(x, t;Q) =

∫ 1

0

µ′
(
s
U(x, t)

u(x, t)
+ (1− s)Q

)
ds > 0. (4.5)

Let H(x, t) = U(x, t)−Qu(x, t). Then µ

(
U

u

)
= µ(Q) + ξ(x, t;Q)

H

u
, and

Ht − (d(x)Hx − ν(x)H)x + ξ(x, t;Q)QH +mH

= −µ(Q)Q u+ fR
(
R, U

u

)
u+ fS

(
S, U

u

)
u ≥ 0, for x ∈ [0, L], t ∈ [0, τ),

Bx[H] = 0, x = 0 or L, for t ∈ [0, τ),

where we used the fact that fN ≥ 0 for N = R, S and µ(Q) ≤ 0 since Q ∈ [0, Qmin].

Taking

Q := min

{
Qmin , inf

[0,L]

U0(x)

u0(x)

}
.

Then H(x, 0) = U0(x)−Qu0(x) ≥ 0 and we have, by maximum principle for linear

parabolic equations, H(·, t) ≥ 0 in [0, L] for all t ∈ [0, τ). This proves (4.1).

Consider the case where τ =∞. We are going to show (4.3). For this purpose,

we take Q = Qmin. Let

ρ0(x, t) = exp

(
−(m+ σ0)t+

∫ x

0

ν(y)

d(y)
dy

)
,

where σ0 satisfies

0 < σ0 < ξ(x, t;Qmin)Qmin, ∀ x ∈ [0, L], t ∈ [0,∞).

Define H(x, t) = −Bρ0(x, t), where B > 0 is chosen such that H(x, 0) =

−Bρ0(x, 0) ≤ H(x, 0), for x ∈ [0, L]. Then H(x, t) satisfies
H t − (d(x)Hx − ν(x)H)x + ξ(x, t;Qmin)QminH +mH

= [ξ(x, t;Qmin)Qmin − σ0]H(x, t) ≤ 0, for x ∈ [0, L], t > 0,

Bx[H] = bxH(x, t) ≤ 0, x = 0 or L, for t > 0,

H(x, 0) ≤ H(x, 0) = U0(x)−Qminu
0(x), for x ∈ [0, L].
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By comparison principle, H(x, t) ≥ H(x, t). Using the fact that H(·, t) → 0 uni-

formly in x as t→∞, we obtain (4.3). It remains to show (4.2) and (4.4).

Next, we show (4.2). Fix a solution (R, S, U, u) of (1.12) that exists up to time

τ ∈ (0,∞]. By Lemma 4.1, there exists a number Q ≥ sup[0,L]
U0(x)
u0(x)

depending

possibly on initial data (R0, S0), such that

fR(R(x, t), Q) + fS(S(x, t), Q)− µ(Q)Q ≤ 0 for x ∈ [0, L], t ∈ [0, τ). (4.6)

Then one can write

fN

(
N(x, t),

U(x, t)

u(x, t)

)
= fN(N(x, t), Q) + ϑN(x, t;Q)

(
U(x, t)

u(x, t)
−Q

)
for N = R, S, where

ϑN(x, t;Q) =

∫ 1

0

∂fN
∂Q

(
N(x, t), s

U(x, t)

u(x, t)
+ (1− s)Q

)
ds ≤ 0;

and also

µ

(
U(x, t)

u(x, t)

)
= µ(Q) + ξ(x, t;Q)

(
U(x, t)

u(x, t)
−Q

)
,

where ξ(x, t;Q) is given in (4.5). Then H̃ := U − Qu satisfies the differential

inequality

H̃t −
(
d(x)H̃x − ν(x)H̃

)
x

+mH̃

= fR

(
R,

U

u

)
u+ fS

(
S,
U

u

)
u− µ

(
U

u

)
Q u

= [ϑR(x, t;Q) + ϑS(x, t;Q)− ξ(x, t;Q)Q]

(
U(x, t)

u(x, t)
−Q

)
u

+[fR(R,Q) + fS(S,Q)− µ(Q)Q]u

≤ Ẽ(x, t)H̃,

where we used (4.6), and

Ẽ(x, t) = ϑR(x, t;Q) + ϑS(x, t;Q)− ξ(x, t;Q)Q < 0,

due to (H1) and (H2). Since H̃ also satisfies the homogeneous boundary condition

Bx[H̃] = 0, for x = 0 or L, t ∈ [0, τ),
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and, by our choice of Q, H̃(x, 0) ≤ 0, we deduce by comparison that U(x, t) −
Qu(x, t) = H̃(x, t) ≤ 0 for all x ∈ [0, L] and t ∈ [0, τ). This proves (4.2).

Finally, we prove (4.4). From (2.3), it follows that for each η > 0, there exists

an ε > 0 such that

fR(R∗(x)+ε, Q∗+η)+fS(S∗(x)+ε, Q∗+η)−µ(Q∗+η)(Q∗+η) ≤ 0 for x ∈ [0, L].

(4.7)

By Lemma 4.1, we may assume without loss (by translation in t) that

R(x, t) ≤ R∗(x) + ε and S(x, t) ≤ S∗(x) + ε for all x ∈ [0, L], t ≥ 0. (4.8)

Given a solution (R, S, U, u), define by Mean Value Theorem the functions

ϑN(x, t;Q∗ + η) =

∫ 1

0

∂fN
∂Q

(
N(x, t), s

U(x, t)

u(x, t)
+ (1− s)(Q∗ + η)

)
ds ≤ 0,

and

ξ(x, t;Q∗ + η) =

∫ 1

0

µ′
(
s
U(x, t)

u(x, t)
+ (1− s)(Q∗ + η)

)
ds > 0,

so that

fN

(
N,

U

u

)
= fN(N,Q∗ + η) + ϑN(x, t;Q∗ + η)

(
U

u
−Q∗ − η

)
for N = R, S, and

µ

(
U

u

)
= µ(Q∗ + η) + ξ(x, t;Q∗ + η)

(
U

u
−Q∗ − η

)
.

Then Hη := U − (Q∗ + η)u satisfies

(Hη)t − (d(x)(Hη)x − ν(x)Hη)x +mHη

= fR

(
R,

U

u

)
u+ fS

(
S,
U

u

)
u− µ

(
U

u

)
(Q∗ + η)u

= [ϑR(x, t;Q∗ + η) + ϑS(x, t;Q∗ + η)− ξ(x, t;Q∗ + η)(Q∗ + η)]

(
U

u
−Q∗ − η

)
u

+[fR(R,Q∗ + η) + fS(S,Q∗ + η)− µ(Q∗ + η)(Q∗ + η)]u

≤ E(x, t)Hη,
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where

E(x, t) = ϑR(x, t;Q∗ + η) + ϑS(x, t;Q∗ + η)− ξ(x, t;Q∗ + η)(Q∗ + η) < 0

by (4.7) and (4.8). Hence we may once again conclude by comparison withH(x, t) =

Bρ0(x, t) that

lim sup
t→∞

{
sup
x∈[0,L]

[U(x, t)− (Q∗ + η)u(x, t)]

}
≤ 0, for all η > 0.

This proves that (4.4) hols for all Q > Q∗. The last claim follows by letting η ↘ 0,

which is possible if ‖u(·, t)‖ is bounded uniformly in t.

Corollary 4.1. Suppose the hypothesis of Theorem 2.1 hold. Let

(R(x, t), S(x, t), U(x, t), u(x, t))

be a solution of (1.12) for t ∈ [0, τ). If the initial data satisfies (R0, S0, U0, u0) ∈ Y

(resp. Y1), then (R(·, t), S(·, t), U(·, t), u(·, t)) ∈ Y (resp. Y1) for all t ∈ [0, τ).

Proof. It suffices to show that if (R0, S0, U0, u)) ∈ Y1, then (R, S, U, u) ∈ Y1

for all t > 0, for the rest of the corollary follows immediately from Lemma 4.2.

Note that (R0, S0) ≤D (R∗, S∗) and U0 − Q∗u0 ≤ 0, and Lemma 4.1 says that

(R(·, t), S(·, t) ≤D (R∗, S∗) for all t > 0. Hence one may actually take η = 0 in the

proof of (4.4) to show that H0 := U −Q∗u ≤ 0 for all x and t.

4.2 Proof of Theorem 2.1

Proof of Theorem 2.1. We rewrite µ, fN (N = R, S) as follows:

µ̃(U, u) =

{
0 when u = 0,

µ(U/u)u when u > 0,
(4.9)

and

f̃N(N,U, u) =

{
0 when u = 0,

fN(N,U/u)u when u > 0,
(4.10)
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Then (1.12) can be written as

Rt = (DR(x)Rx)x − f̃R(R,U, u)− ωrR + ωsS, x ∈ (0, L), t > 0,

St = (DS(x)Sx)x − f̃S(S, U, u) + ωrR− ωsS, x ∈ (0, L), t > 0,

Ut = (d(x)Ux − ν(x)U)x + f̃R(R,U, u) + f̃S(S, U, u)−mU, x ∈ (0, L), t > 0,

ut = (d(x)ux − ν(x)u)x + µ̃(U, u)u−mu, x ∈ (0, L), t > 0,

BN,x[N ] = cN,x ≥ 0, N = R, S, x = 0 or L, t > 0,

Bx[w] = 0, w = U, u, x = 0 or L, t > 0,

w(x, 0) = w0(x) ≥ ( 6≡)0, w = R, S, U, u, x ∈ (0, L).

(4.11)

Observe that µ̃ and f̃N (N = R, S), when regarded as mappings in Y, are

Lipschitz continuous. It follows from Lemma 4.2 and [19, Thm 3.3.3] that for each

initial condition (R0, S0, U0, u0) ∈ Y, there exists τ > 0 and a unique solution

(R, S, U, u) of (4.11) in [0, τ) satisfying (R(·, t), S(·, t), U(·, t), u(·, t)) ∈ Y. Next we

claim that every solution of (1.12) with initial condition in Y exists for all time,

i.e. τ = +∞. Observe that by Lemmas 4.1 and 4.2, ‖(R, S)‖ and the ratio ‖U/u‖
remains bounded uniformly in t ∈ [0, τ). Therefore if τ < +∞, then we must have

limt↗τ ‖(U(·, t), u(·, t))‖ = +∞. However, by regarding the equations for (U, u) in

(1.12) as a linear equation with bounded coefficients, we deduce that

sup
[0,τ)

‖(U(·, t), u(·, t))‖ < +∞ if τ < +∞.

This contradiction proves that τ = +∞, i.e., solutions to system (1.12) exists for

all time. This proves (i).

For (ii), fix Q̄ > Q∗ and C0 > 0, then there is Q̂ � 1 such that any initial

condition in {(R, S, U, u) ∈ YQ̄ : ‖(R, S)‖ ≤ C0} determines uniquely a trajectory

(R(·, t), S(·, t), U(·, t), u(·, t)) in YQ̂, where YQ̄ is defined in Theorem 2.1 (ii). So

that we may use the Lipschitz dependence of µ̃, f̃N defined at the beginning of

the proof to show that solutions depends continuously in their initial conditions in

{(R, S, U, u) ∈ YQ̄ : ‖(R, S)‖ ≤ C0}. Since C0 > 0 is arbitrary, we have proved

(ii).

Finally, (iii) and (iv) follow from (4.3) and Proposition 2.1 respectively.
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5 A nonlinear eigenvalue problem

We will use a recent generalization of Krein-Rutman Theorem involving two dif-

ferent cones due to Mallet-Paret and Nussbaum [35]. We start by giving some

notations.

Let (X̃, ‖·‖) be a normed linear space (or NLS) over R. We call a subset C ⊂ X̃

a cone if (i) C is convex, (ii) tC ⊂ C for all t ≥ 0, and (iii) C ∩ (−C) = {0}. A

cone C is said to be solid if it has non-empty interior. It is normal if there exists

M > 0 such that ‖x‖ ≤M‖y‖ whenever x ≤C y.

If C is a cone and also a complete metric space in the metric induced by the

norm on X̃, we call C a complete cone. A cone C in an NLS (X̃, ‖ · ‖) induces a

partial ordering ≤C on X̃ by x ≤C y if and only if y − x ∈ C. If C is a solid cone,

we say that x�C y if and only if y − x ∈ IntC. Observe that if C is a solid cone,

0�C x and 0�C y, then tx�C y for some t > 0.

A mapping T : C → C is homogeneous of degree one if, for each t ≥ 0 and each

x ∈ C,

T(tx) = tT(x).

Let D ⊂ X̃ be another cone such that C ⊂ D. A mapping T : C → C is D-

order-preserving if T(x) ≤D T(y) whenever x, y ∈ C satisfy x ≤D y. Here ≤D is

the partial order generated by the cone D. If D is a solid cone, we say that T is

D-strongly-order-preserving if T(x) �D T(y) whenever x, y ∈ C satisfy x ≤D y

and x 6= y. Recall also the Bonsall cone spectral radius (see [34, 35, 44])

r̃C(T) := lim
m→∞

‖Tm‖1/m
C = inf

m≥1
‖Tm‖1/m

C ,

where ‖Tm‖C := sup{‖Tm(x)‖ : x ∈ C and ‖x‖ ≤ 1}. We impose the following:

(C) Let C ⊂ D be complete cones in an NLS (X̃, ‖ · ‖), D be normal, and T :

C → C be (i) continuous, (ii) compact, (iii) homogeneous of degree one, and

(iv) D-order-preserving.

Theorem 5.1 ([35, Theorem 4.9]). Assume (C) holds. If the Bonsall cone spectral

radius satisfies r̃C(T) > 0, then there is v ∈ C \ {0} such that Tv = r̃Cv.

Proof. This is a special case of [35, Theorem 4.9], by setting the operator g in the

statement of the theorem to be zero.

Corollary 5.2. Assume (C) holds. If, in addition, D is a solid cone and T is

D-strongly-order-preserving, then
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(a) r̃ = r̃C(T) > 0 and there is a non-zero eigenvector x̃ ∈ C ∩ intD such that

Tx̃ = r̃x̃.

(b) If x′ ∈ C is an eigenvector of T, then x′ ∈ span{x̃} and Tx′ = r̃x′.

Proof. Take any y0 ∈ C \ {0}, then Ty0 �D 0 and hence Ty0 ≥D r0y0 for some

r0 > 0 and hence r̃ = r̃C(T) ≥ r0 > 0. It then follows from Theorem 5.1 that

T x̃ = r̃x̃ for some non-zero eigenvector x̃ ∈ C \ {0}. Moreover, x̃ ∈ C ∩ IntD since

T is D-strongly-order-preserving. This proves (a).

Next, we show (b). First, let x′ ∈ C \{0} be an eigenvector of r̃, i.e. Tx′ = r̃x′.

We have c1 := inf{c > 0 : x′ ≤D cx̃} is positive. By monotonicity of T,

x′ =
1

r̃
Tx′ ≤D

1

r̃
T(c1x̃) = c1x̃ (5.1)

By definition of c1, we see that Tx′ �D T(c1x̃) is impossible. Hence, byD-strongly-

order-preserving property of T, equality holds in (5.1). In particular, x′ = c1x̃. This

proves that r̃ is simple.

It remains to show that r̃ is the unique eigenvalue of T corresponding to an

eigenvector in C \ {0}. Suppose Tx′ = r′x′, for some r′ ∈ C and x′ ∈ C \ {0}. By

definition of T and the cone C, it must be the case that r′ ∈ R. As Tx′, x′ ∈ C\{0}
and C ∩ (−C) = {0}, we must have r′ ≥ 0. Also, T is D-strongly-order-preserving,

so that r′ > 0 and x′ ∈ C ∩ IntD. In particular x̃, x′ ∈ C ∩ IntD and there are

positive constants c2, c3 such that c2x̃�D x′ �D c3x̃. Applying Tn, we have

c2r̃
nx̃ ≤D (r′)nx′ ≤D c3r̃

nx̃ for all n ≥ 1.

This proves that r′ = r̃ and completes the proof of assertion (b).

The following result is concerned with the existence of the principal eigenvalue

of the nonlinear eigenvalue problem (2.8). From this point onwards, let D =

C0([0, L],R2
+) and

C = {(U, u) ∈ D : Qminu(x) ≤ U(x) ≤ Q∗u(x) for x ∈ [0, L]},

where Q∗ is given in (2.3). It is clear that both are complete cones and that D is

both normal and solid.

Lemma 5.1. Suppose the hypotheses of Theorem 2.1 hold. For each d(x) > 0

and ν(x) ≥ 0, the eigenvalue problem (2.8) admits a principal eigenvalue Λ0 cor-

responding to which there is a strongly positive eigenfunction (ϕ0(x), φ0(x))�D 0.
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Proof of Lemma 5.1. We first consider the following system
Ut = (d(x)Ux − ν(x)U)x + fR(R∗(x), U

u
)u+ fS(S∗(x), U

u
)u, x ∈ (0, L), t > 0,

ut = (d(x)ux − ν(x)u)x + µ(U
u

)u, x ∈ (0, L), t > 0,

Bx[w] = 0, w = U, u, x = 0 or L, t > 0,

w(x, 0) = w0(x) ≥ (6≡)0, w = U, u, x ∈ (0, L),

(5.2)

where (R∗(x), S∗(x)) is given by Proposition 2.1. Substituting U(x, t) = e−Λtϕ(x),

and u(x, t) = e−Λtφ(x) into (5.2), we obtain the associated nonlinear eigenvalue

problem (2.8).

By an argument analogous to Theorem 2.1, one may deduce that (5.2) generates

a semiflow Φt on C. It is easy to see that for all t > 0, Φt is continuous, compact

and homogeneous of degree one. To apply Corollary 5.2, we need to show that for

each t > 0, Φt : C → C is D-strongly-order-preserving. For this purposes, suppose

(U1, u1) <D (U2, u2) (i.e. (U1, u1) ≤D (U2, u2) but (U1, u1) 6= (U2, u2)). Then by

rewriting fR, fS, µ as in (4.9) and (4.10), one can deduce that (U2 − U1, u2 − u1)

satisfies a linear cooperative system, whose coefficients are L∞ bounded by the

fact that (Ui, ui) ∈ C for i = 1, 2. By the (strong) maximum principle for linear

cooperative system [38], the semiflow is D-strongly-order-preserving. Hence for

each t > 0, we may apply Corollary 5.2 to the operator Φt : C → C to obtain r̃(t)

and (ϕ(t), φ(t)) ∈ C ∩ IntD with ‖(ϕ(t), φ(t))‖ = 1 such that

Φt(ϕ(t), φ(t)) = r̃(t)(ϕ(t), φ(t)).

Claim 5.1. t−1 log r̃(t) and (ϕ(t), φ(t)) are independent of t > 0.

To this end, we take tn = 2−n. Now, for any 0 ≤ n ≤ m, observe that

Φtn(ϕ(tm), φ(tm)) = (r̃(tm))tn/tm(ϕ(tm), φ(tm))

so that (ϕ(tm), φ(tm)) is an eigenfunction of Φtn in C as well. As Corollary 5.2

asserts that there is only one possible normalized eigenfunction in C, we must then

have (ϕ(tm), φ(tm)) = (ϕ(tn), φ(tn)) and r̃(2−n) = [r̃(2−m)]2
m−n

. Thus Claim 5.1

holds for all dyadic numbers t = k2−n for k, n ∈ N. Finally, Claim 5.1 follows by

continuity.

Finally, we define

Λ0 := −t−1 log r̃(t) ≡ − log r̃(1),
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where r̃(1) is the Bonsall cone spectral radius of Φ1 : C → C, so that Λ0 ∈ R is

the principal eigenvalue of (2.8).

6 Threshold Dynamics of System (1.12)

In Subsection 6.1, we prove the eventual boundedness of trajectories for system

(1.12). In Subsection 6.2, we apply the results of Section 5 and persistence theory

to prove Theorem 2.2.

6.1 Eventual Boundedness of Solutions

In this subsection we give a proof of Proposition 2.2.

Proof of Proposition 2.2. For each (ΘR(x), ΘS(x)) ∈ C([0, L];R2
+), consider the

following eigenvalue problem

(d(x)ϕ′(x)− ν(x)ϕ(x))′ + fR

(
ΘR(x), ϕ(x)

φ(x)

)
φ(x)

+fS

(
ΘS(x), ϕ(x)

φ(x)

)
φ(x)−mϕ(x) + Λϕ(x) = 0, x ∈ (0, L),

(d(x)φ′(x)− ν(x)φ(x))′ + µ
(
ϕ(x)
φ(x)

)
φ(x)−mφ(x) + Λφ(x) = 0, x ∈ (0, L),

Bx[w] = 0, w = ϕ, φ, x = 0 or L.

(6.1)

Let (R∗(x), S∗(x)) be given by Proposition 2.1. We recall the definition of Q∗ from

(2.3).

Claim 6.1. Let condition (H4) hold, and σ1 be the principal eigenvalue of the

eigenvalue problem{
(d(x)φ′(x)− ν(x)φ(x))′ −mφ(x) + σφ(x) = 0, x ∈ (0, L),

Bx[φ] = 0, x = 0 or L.
(6.2)

Then σ1 > 0.

It is easy to see that φ0(x) = exp
(∫ x

0
ν(y)
d(y)

)
dy > 0 satisfies{

(d(x)φ′0(x)− ν(x)φ0(x))′ −mφ0(x) = −mφ0(x) ≤ 0, x ∈ (0, L),

Bx[φ0] = bxφ0(x) ≥ 0, x = 0 or L,
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such that one of the inequalities is strict (due to (H4)), i.e. φ0 is a strict superso-

lution. Then Claim 6.1 follows from [1, Theorem 2.4].

Claim 6.2. There exists (ΘR(x),ΘS(x)) ∈ C([0, L];R2
+) satisfying{

(0, 0)�D (ΘR(x),ΘS(x))�D (R∗(x), S∗(x)), ∀ x ∈ [0, L],

BN,x[ΘN(x)] = cN,x, N = R, S, x = 0 or L.

such that if we denote the corresponding principal eigenvalue and eigenfunction of

(6.1) by Λ̄Θ
0 and (ϕ̄Θ

0 , φ̄
Θ
0 ) respectively, then Λ̄Θ

0 > 0.

For (ΘR(·),ΘS(·)) ≤D (R∗(·), S∗(·)), ∀ x ∈ [0, L], we can use the same argu-

ments in Lemma 5.1 to show that the eigenvalue problem (6.1) admits a principal

eigenvalue Λ̄Θ
0 := Λ̄0(ΘR(x),ΘS(x)) corresponding to which there is a strongly posi-

tive eigenfunction (ϕ̄Θ
0 (x), φ̄Θ

0 (x)) satisfyingQminφ̄
Θ
0 (x) ≤ ϕ̄Θ

0 (x) ≤ Q∗φ̄Θ
0 (x) for x ∈

[0, L]. Further, we can use compactness arguments to show that

Λ̄0(ΘR(x),ΘS(x))→ σ1 > 0 as (ΘR(x),ΘS(x))→ (0, 0) in C([0, L];R2
+),

where σ1 is the principal eigenvalue of (6.2). This proves Claim 6.2.

By Theorem 2.1(iii), Y1 is globally attracting, so given a solution (R, S, U, u)

of (1.12), we may assume without loss (by replacing t with t+ C) that

(R(x, t), S(x, t)) ≤D 2(R∗(x), S∗(x)), ∀ x ∈ [0, L], t ≥ 0, (6.3)

and that

Qminu(x, t)− 1 ≤ U(x, t) ≤ 2Q∗u(x, t) +Q∗, ∀ x ∈ [0, L], t ≥ 0, (6.4)

where Q∗ is given in (2.3). Let

M(t) = max{‖U(·, t)‖, ‖u(·, t)‖}.

Claim 6.3. There exists M1 > 1 such that if M(t1) = M1, then

(R(x, t), S(x, t)) ≤D (ΘR(x),ΘS(x)), ∀ x ∈ [0, L], t ∈ [t1 + 2, t1 + 3].

We will specify M1 later. To prove Claim 6.3, we first note that if M(t1) = M1,

then

either ‖U(·, t1)‖ = M1 or ‖u(·, t1)‖ = M1.
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Regarding fN(N, U
u

) and µ(U
u

) as the given functions, and using the boundedness

of U
u

, R, and S, we may apply the parabolic Harnack inequality [31, Theorem 7.36]

to deduce that

inf
0<x<L, t1+1<t<t1+3

U(x, t) ≥ C1M1 or inf
0<x<L, t1+1<t<t1+3

u(x, t) ≥ C1M1, (6.5)

for some C1 > 0 independent of M1. By (6.4) and (6.5), it follows that

inf
[0,L]×[t1+1,t1+3]

U(x, t) ≥ C2M1 − 1 and inf
[0,L]×[t1+1,t1+3]

u(x, t) ≥ C2M1 − 1,

where C2 = C1 min{Qmin, 1/(2Q
∗)} is again independent of M1.

Fix a smooth function 0 ≤ ζ(t) ≤ 1 satisfying

ζ(t) =

{
1, for t ≤ t1 + 1,

0, for t ≥ t1 + 2,

and define

(R̄(x, t), S̄(x, t)) := ζ(t) · 2(R∗(x), S∗(x)) + (1− ζ(t))(ΘR(x),ΘS(x)).

We claim that, if M1 is sufficiently large (affecting U, u which are regarded as given

functions), then (R̄, S̄) is a supersolution of
Rt = (DR(x)Rx)x − fR(R, U

u
)u− ωrR + ωsS, x ∈ (0, L), t1 + 1 ≤ t ≤ t1 + 3,

St = (DS(x)Sx)x − fS(S, U
u

)u+ ωrR− ωsS, x ∈ (0, L), t1 + 1 ≤ t ≤ t1 + 3,

BN,x[N ] = cN,x, N = R, S, x = 0 or L, t > 0.

To this end, we fix by Remark 2.1(ii) a constant ε0 > 0 so that for N = R, S,

fN(N,Q) > 0 for 0 < N ≤ 2 sup
x∈(0,L)

N∗(x) and Q ∈ [0, Q∗(1 + ε0)]. (6.6)

Next, observe that for N = R, S,

BN,x[N̄(x, t)] = 2ζ(t)BN,x[N∗(x)] + (1− ζ(t))BN,x[ΘN(x)]

= 2ζ(t)cN,x + (1− ζ(t))cN,x ≥ cN,x.

Using (6.4),

U

u
≤ Q∗

(
1 +

1

u

)
≤ Q∗(1 + ε0) in (0, L)× (t1 + 1, t1 + 3),
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provided that M1 ≥ 1
C2

(
1
ε0

+ 1
)

, where ε0 is given in (6.6). Since (R∗(x), S∗(x))

satisfies (2.1), we have

R̄t −
(
DR(x)R̄x

)
x

+ fR(R̄,
U

u
)u+ ωrR̄− ωsS̄

= ζ ′(t)(2R∗(x)−ΘR(x)) + fR(R̄,
U

u
)u

+(1− ζ(t))[(−DR(x)Θ′R(x))′ + ωrΘR(x)− ωsΘS(x)]

≥ −C3 + fR(ΘR(x), Q∗(1 + ε0))) · [ inf
[0,L]×[t1+1,t1+3]

u(x, t)]

≥ −C3 + C4M1 ≥ 0,

where C3 > 0 is some constant independent of M1, and, by (6.6),

C4 := C2 inf
x∈(0,L)

fR(ΘR(x), Q∗(1 + ε0))

is positive and independent of M1 ≥ 1
C2

(
1
ε0

+ 1
)

; and we have chosen M1 larger so

that M1 ≥ C3/C4. Similarly,

S̄t −
(
DS(x)S̄x

)
x

+ fS(S̄,
U

u
)u− ωrR̄ + ωsS̄

≥ −C5 + C6M1 ≥ 0,

for some C5 > 0 and C6 > 0 and by choosing M1 ≥ C5/C6. By Comparison

Principle, it follows that

(R(x, t), S(x, t)) ≤D (R̄(x, t), S̄(x, t)), ∀ x ∈ [0, L], t ∈ [t1 + 1, t1 + 3].

In particular,

(R(x, t), S(x, t)) ≤D (ΘR(x),ΘS(x)), ∀ x ∈ [0, L], t ∈ [t1 + 2, t1 + 3].

This proves Claim 6.3.

Claim 6.4. Let M1 be given by Claim 6.3.

(i) There exists t′k →∞ such that M(t′k) < M1.

(ii) There exists T1 > 0 (depending on M1 only) such that if for some t1 < t2,

M(t1) = M(t2) = M1 and M(t) > M1 for t ∈ (t1, t2), then t2 − t1 < T1.
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Let Λ̄Θ
0 > 0 and (ϕ̄Θ

0 (x), φ̄Θ
0 (x)) be given by Claim 6.2. First we show Claim

6.4(i). Assume to the contrary that M(t) ≥M1 for all t ≥ t1. Then by Claim 6.3,

it follows that (R(x, t), S(x, t)) ≤D (ΘR(x),ΘS(x)), ∀ x ∈ [0, L], t ≥ t1 + 2. By

(6.3) and (6.4), we see that U, u satisfies a linear system with bounded coefficients,

so that there is a constant C7 such that M(t1 + 2) ≤ C7M(t1). Now, if we choose

C8 such that (1, 1) ≤D C8(ϕ̄Θ
0 , φ̄

Θ
0 ), then

(U(·, t1 + 2), u(·, t1 + 2))) ≤D M(t1 + 2)(1, 1) ≤D C9M(t1)(ϕ̄Θ
0 , φ̄

Θ
0 ).

for some constant C9 = C7C8 independent of initial condition. Hence,

(Ū(x, t), ū(x, t)) := C9M(t1)e−Λ̄Θ
0 (t−t1−2)(ϕ̄Θ

0 (x), φ̄Θ
0 (x))

satisfies the following inequalities:

U t =
(
d(x)Ux − ν(x)U

)
x

+ fR(ΘR(x), U
u

)u+ fS(ΘS(x), U
u

)u−mU
≥
(
d(x)Ux − ν(x)U

)
x

+ fR(R(x, t), U
u

)u+ fS(S(x, t), U
u

)u−mU, x ∈ (0, L),

ut = (d(x)ux − ν(x)u)x + µ(U
u

)u−mu, x ∈ (0, L),

Bx[w] = 0, w = U, u, x = 0 or L,

(Ū(·, t1 + 2), ū(·, t1 + 2)) ≥D (U(·, t1 + 2), u(·, t1 + 2)).

for the time interval t ≥ t1 +2. Therefore, by comparison, we have (U, u) ≤D (U, u)

for t ≥ t1 + 2, i.e.

M(t) ≤ C9M(t1)e−Λ̄Θ
0 (t−t1−2) for t ≥ t1 + 2.

This contradicts M(t) ≥M1 for all t ≥ t1, and proves Claim 6.4(i). To prove Claim

6.4(ii), let M(t1) = M(t2) = M1 and M(t) > M1 in (t1, t2). If t2 − t1 ≤ 2, then we

are done. If t2 − t1 > 2, then from the preceding arguments we have

M1 = M(t2) ≤ C9M1e
−Λ̄Θ

0 (t2−t1−2),

i.e.

t2 − t1 ≤ T1 := 2 +
logC9

Λ̄Θ
0

.

This proves Claim 6.4(ii).

Claim 6.5. There exists M2 > 0 such that lim supt→∞M(t) ≤ M2, regardless of

initial condition.
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If M(t) ≤M1 for all t, then there is nothing to prove. If M(t0) > M1 for some

t0, then by Claim 6.4, we can find a finite (maximal) interval (t1, t2) 3 t0 such that

M(t1) = M(t2) = M1, M(t) > M1 in (t1, t2) and t2 − t1 < T1. Since M1 is fixed

(Claim 6.3), T1 > 0 is independent of initial data (Claim 6.4(ii)). One can define a

constant M2 = M2(M1, T1) by M2 := supM(t), where the supremum is taken over

0 ≤ t ≤ T1 and initial condition satisfying

(0, 0) ≤D (R0, S0) ≤D 2(R∗(·), S∗(·)), ‖U0‖ ≤M1 and ‖u0‖ ≤M1.

By assumption, M(t1) ≤ M1, t2 − t2 ≤ T1 and 0 ≤D (R(·, t1), S(·, t1)) ≤D
2(R∗(·), S∗(·)). Hence we conclude, by the fact that the semiflow is autonomous,

that sup(t1,t2) M(t) ≤M2. This proves Claim 6.5.

6.2 Proof of Theorem 2.2

Recall the definition of Y in (2.6), and define Y0 := {(R, S, U, u) ∈ Y : u 6≡
0 in [0, L]}, and the complementary set

∂Y0 := Y −Y0 = {(R, S, U, u) ∈ Y : u ≡ 0 in [0, L]}
= {(R, S, U, u) ∈ Y : U ≡ u ≡ 0 in [0, L]},

so that Y = Y0 ∪ ∂Y0. Next, we define the function p : Y → [0,∞) by

p(P 0) = p(R0, S0, U0, u0) = min
[0,L]

u0(·).

It is easy to see that p is continuous, and satisfies p(Ψt(P
0)) > 0 for t > 0 if

either p(P 0) > 0, or p(P 0) = 0 with P 0 ∈ Y0, where Ψt : Y → Y is the semiflow

associated with system (1.12). (Here we emphasize the distinction of p : X → R
from the distance function of X = C([0, L];R4

+).) We will prove the persistence

result (Theorem 2.2(ii)) before the extinction results (Theorem 2.2(i)).

Since the proof of Theorem 2.2(ii) is quite lengthy, we provide a brief outline

here. The goal here is to show that the semiflow is uniformly persistent with respect

to the distance function p, i.e. lim inft→∞ p(Ψt(P
0)) ≥ η̃ for some η̃ independent of

P 0 ∈ Y0. (Step 1; Claim 6.7(i)) Show that {(R∗, S∗, 0, 0)} is the global attractor

on the invariant set ∂Y0. (Step 2; Claim 6.7(ii)) Show acyclicity in ∂Y0. (Step

3; Claim 6.8) Show that, for each P 0 ∈ Y0, the omega limit set (which is neces-

sarily chain transitive) ω(P 0) 6⊂ {(R∗, S∗, 0, 0)}. (Step 4; Claim 6.9) Show that
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{(R∗, S∗, 0, 0)} is isolated in Y = Y0 ∪ ∂Y0. The above four steps allows us to

apply [42, Theorem 3] (see also [39, 48]) to show that that for each compact chain

transitive set L such that L 6⊂ {(R∗, S∗, 0, 0)} (such as ω(P 0), see Step 3), there

exists η̃ such that minx∈L p(x) ≥ η̃. Finally, by [36, Theorem 3.7 and Remark 3.10],

there is a global attractor bounded away from ∂Y0, which implies the existence of

a positive steady state.

Proof of Theorem 2.2(ii). By Lemma 4.2 (ii), sup(x,t)∈[0,L]×[0,∞)
U(x,t)
u(x,t)

< ∞ for any

given trajectory. It follows then by eventual boundedness (Proposition 2.2) and

standard parabolic estimates [31, Section VII.8] that system (1.12) generates a

semiflow Ψt on Y with precompact trajectories in X.

Claim 6.6. (i) If P 0 = (R0, S0, U0, u0) ∈ Y0, then U(x, t) > 0 and u(x, t) > 0

for all x ∈ [0, L] and t > 0. i.e. Y0 is positively invariant for Ψt.

(ii) ∂Y0 is closed and positively invariant.

Claim 6.6 (i) follows from strong maximum principle for linear cooperative

systems, and Claim 6.6 (ii) is obvious. Next, define

M = {(R∗(·), S∗(·), 0, 0)}, and M∂ = {P 0 ∈ ∂Y0 : Ψt(P
0) ∈ ∂Y0 ∀t ≥ 0},

where (R∗(·), S∗(·)) is the unique positive steady state of (2.1) (Proposition 2.1).

By the above discussion, we see that

M∂ = ∂Y0.

Claim 6.7. (i) ∪P 0∈M∂
ω(P 0) = M.

(ii) There is no homoclinic cycle from M to M.

Claim 6.7 is a direct consequence of the fact that (R∗(·), S∗(·), 0, 0) is globally

asymptotically stable among all solutions of (1.12) in M∂ = ∂Y0 (Proposition 2.1).

By assumption, the principal eigenvalue Λ0 of (2.8) satisfies Λ0 + m < 0. So

there is 0 < ε̄� 1 such that the principal eigenvalue Λ̄ of the following problem is
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negative.

(d(x)ϕ′(x)− ν(x)ϕ(x))′ + fR

(
R∗(x)− ε̄, ϕ(x)

φ(x)

)
φ(x)

+fS

(
S∗(x)− ε̄, ϕ(x)

φ(x)

)
φ(x)−mϕ(x) + Λ̄ϕ(x) = 0, x ∈ (0, L),

(d(x)φ′(x)− ν(x)φ(x))′ + µ
(
ϕ(x)
φ(x)

)
φ(x)−mφ(x) + Λ̄φ(x) = 0, x ∈ (0, L),

Bx[w] = 0, w = ϕ, φ, x = 0 or L.

(6.7)

Claim 6.8. There exists η1 > 0 such that for any P 0 ∈ Y0,

lim sup
t→∞

dist(Ψt(P
0),M) ≥ η1

where dist((R0(·), S0(·), U0(·), u0(·)),M) := max{‖R0−R∗‖, ‖S0−S∗‖, ‖U0‖, ‖u0‖}
is the usual distance function in Y. In particular, W s(R∗(·), S∗(·), 0, 0) ∩Y0 = ∅,
where W s(R∗(·), S∗(·), 0, 0) is the stable set of (R∗(·), S∗(·), 0, 0) (see [42]).

Suppose to the contrary that for some P 0, the corresponding solution Ψt(P
0) =

(R, S, U, u) satisfies limt→∞ dist(Ψt(P
0),M) = 0. In particular, there exists t̄ > 0

such that

R(x, t) ≥ R∗(x)− ε̄ and S(x, t) ≥ S∗(x)− ε̄

for all x ∈ [0, L] and t ≥ t̄. By Claim 6.6, there exists δ̄ > 0 such that

δ̄ϕ̄(x) ≤ U(x, t̄), and δ̄φ̄(x) ≤ u(x, t̄) for x ∈ [0, L].

where (ϕ̄, φ̄) ∈ C ∩ (intD) is the principal eigenfunction of (6.7). Then

(U(x, t), u(x, t)) := δ̄e−Λ̄(t−t̄)(ϕ̄(x), φ̄(x)) (6.8)

satisfies the following linear cooperative system

U t = (d(x)Ux − ν(x)U)x + fR(R∗(x)− ε̄, U
u

)u

+fS(S∗(x)− ε̄, U
u

)u−mU, x ∈ (0, L), t ≥ t̄,

ut = (d(x)ux − ν(x)u)x + µ(U
u

)u−mu, x ∈ (0, L), t ≥ t̄,

Bx[w] = 0, w = U, u, x = 0 or L, t ≥ t̄,

(U(x, t̄), u(x, t̄)) ≤D (U(x, t̄), u(x, t̄)), x ∈ (0, L),
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for which (U(x, t), u(x, t)) is a supersolution in [0, L] × [t̄,∞). Therefore by com-

parison,

(U(·, t), u(·, t)) ≥D (U(·, t), u(·, t)) for all t ≥ t̄.

This is a contradiction as (U, u) needs to stay close to (0, 0), yet Λ̄ < 0 in (6.8).

This proves Claim 6.8.

Claim 6.9. M is isolated in Y. i.e. there exists a neighborhood of M in Y in

which M is the maximal invariant subset.

To see Claim 6.9, it remains to show that M is maximal invariant in some

neighborhood. Suppose there exists a bounded total trajectory N near to M. By

Claim 6.8, N ∩Y0 = ∅ and hence N ⊂ ∂Y0 and Ψt(N) = N for all t > 0, but this

contradicts the fact that dist (Ψt(N),M) → 0 as t → ∞ (Proposition 2.1). This

proves Claim 6.9.

Finally, by the precompactness of trajectories of the semiflow Ψt, together with

Claims 6.6, 6.7, 6.8 and 6.9, we may apply the uniform persistence results of [42,

Theorems 3 and 4] to show the existence of η̃ > 0 such that

min
P ′∈ω(P 0)

p(P ′) ≥ η̃ for all P 0 ∈ Y0.

i.e. there exists some η̃ > 0 independent of initial condition P 0 ∈ Y0 such that

lim inft→∞ u(·, t) ≥ η̃. By Theorem 2.1(iii), every trajectory approaches Y1, where

Y1 is defined in (2.7). Hence,

lim inf
t→∞

U(x, t) ≥ Qmin lim inf
t→∞

u(x, t) ≥ Qminη̃, ∀ x ∈ [0, L].

Therefore, (2.9) holds for σ = min{η̃, Qminη̃}.
By [36, Theorem 3.7 and Remark 3.10], it follows that Ψ(t) : Y0 → Y0 has a

global attractor A0 ⊂ Y0. It then follows from [36, Theorem 4.7] that Ψ(t) has a

steady-state solution

(Rc(·), Sc(·), Uc(·), uc(·)) ∈ Y0.

By (2.9), it follows that uc(·) > 0 and Uc(·) > 0. It follows from (4.3) that

Uc(·) ≤ Q∗uc(·). Then FN(·, N) := fN(N, Uc(·)
uc(·) )uc(·) > 0. We may then apply

Lemma 3.1 to deduce that Rc(·) > 0 and Sc(·) > 0. Theorem 2.2(ii) is proved.
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We supply a brief outline for the proof of Theorem 2.2(i). (Step 1) Suppose

there exists P 0 ∈ Y0 such that for some ε0 > 0, xk ∈ [0, L] and tk →∞, Ψt(P
0) =

(R, S, U, u) satisfies

u(xk, tk + 1) ≥ ε0 for all k. (6.9)

(Step 2) Claim 6.10 allows one to assume without loss of generality that (R0, S0)�D

(R∗, S∗). (Step 3) Define

c(t) := inf{τ > 0 : (U(x, t), u(x, t)) ≤D τ(ϕ0(x), φ0(x)), x ∈ [0, L]}, (6.10)

where (ϕ0(x), φ0(x)) � 0 is the eigenfunction corresponding to Λ0, which is the

principal eigenvalue of (2.8). One can then show by comparison that c(t) is strictly

decreasing for all t ≥ 0. In particular c0 := limt→∞ c(t) exists. By (6.9), c0 > 0.

(Step 4) Passing to a sequence tk → ∞, there exists an entire solution P̃ (t) =

limtk→∞Ψt+tk(P
0) ∈ ω(P 0) such that the corresponding c∞(t) ≡ c0 > 0. This can

only happen when

P̃ (t) = (R̃(·, t), S̃(·, t), c0ϕ
0(·), c0φ

0(·)) for all t ∈ R.

(Step 5) Upon examining the third and fourth equation of (1.12), this implies that

m+ Λ0 = 0 and

P̃ (t) = (R∗(·), S∗(·), c0ϕ
0(·), c0φ

0(·))

i.e. the entire solution P̃ (t) is actually an equilibrium, which is possible only if

c0 = 0. This is in contradiction with c0 > 0 and proves the theorem.

Proof of Theorem 2.2(i). Assume that Λ0+m ≥ 0. By Theorem 2.1(iii) and Propo-

sition 2.2, for any P 0 ∈ Y, the omega limit set ω(P 0) ⊂ Y1, where Y1 is defined

in (2.7). It is enough to show that for any P 0 ∈ Y0, u(·, t)→ 0 uniformly in [0, L]

as t→∞.

Fix some initial data (R0(·), S0(·), U0(·), u0(·)) ∈ Y0. Suppose to the contrary

that there exists ε0 > 0, a sequence {tk} ↗ ∞ and a sequence {xk} → x0 ∈ [0, L]

such that (6.9) holds.

Claim 6.10. There exists T0 > 0 such that (R(·, T0), S(·, T0))�D (R∗(·), S∗(·)).

For each positive integer k, we define

(Rk(x, t), Sk(x, t), Uk(x, t), uk(x, t)) = (R(x, tk+t), S(x, tk+t), U(x, tk+t), u(x, tk+t)).
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Then for each k, (Rk(x, t), Sk(x, t), Uk(x, t), uk(x, t)) satisfies system (1.12). We

are in a position to apply the Lp estimates and Embedding Theorems [31, Section

VI.3 and VII.8] to the sequence (Rk(x, t), Sk(x, t), Uk(x, t), uk(x, t)). By Lemma

4.2, there exists Q > 0 independent of k such that

sup
k
‖Uk/uk‖L∞((0,L)×(0,∞)) ≤ Q.

Hence fR(Rk, Uk/uk), fS(Sk, Uk/uk) and µ(Uk/uk) are uniformly bounded in L∞((0, L)×
(0,∞)). Therefore, we may pass to a subsequence and assume

fR(Rk, Uk/uk) ⇀ FR(x, t), fS(Sk, Uk/uk) ⇀ FS(x, t), µ(Uk/uk) ⇀ g(x, t)

weakly in Lp((0, L)× (0, T )) for all p > 1 and all T > 0. Moreover, we may apply

the parabolic Lp estimate to deduce that for each p > 1, and T > 0, we have ‖
(Rk, Sk, Uk, uk) ‖W 2,1,p((0,L)×(0,T ))≤ C2. Then ‖ (Rk, Sk, Uk, uk) ‖

C1+α, 1+α
2 ([0,L]×[0,T ])

≤
C3, for some α ∈ (0, 1). Passing to a further “diagonal” subsequence, still denoted

by (Rk, Sk, Uk, uk), we have

(Rk, Sk, Uk, uk)→ (R̃, S̃, Ũ , ũ),

in C
1+α, 1+α

2
loc ([0, L]× [0,∞)) as k →∞. Moreover, ũ is a solution to

ũt = (d(x)ũx − ν(x)ũ)x + g(x, t)ũ−mũ, x ∈ (0, L), t > 0,

Bx[ũ] = 0, x = 0 or L, t > 0,

ũ(x0, 1) > 0 for some x0.

By strong maximum principle, we have ũ(x, t) > 0 for all x ∈ [0, L] and t ≥ 0.

This, together with the fact that (Uk, uk) → (Ũ , ũ), implies that Uk/uk → Ũ/ũ in

Cloc([0, L] × [0,∞)). Thus, (R̃, S̃, Ũ , ũ) satisfies the original equation (1.12) with

the additional properties (by Lemma 4.1)

(R̃(x, t), S̃(x, t)) ≤D (R∗(x), S∗(x)) and ũ(x, t) > 0,

for all x ∈ [0, L] and t ≥ 0. Here (R∗(·), S∗(·)) is the unique positive solution of

(2.1). Furthermore, fR(R̃, Ũ
ũ

)ũ(x, t) > 0 and fS(S̃, Ũ
ũ

)ũ(x, t) > 0 for all x and t ≥ 0

(by (6.9)), which implies by comparison (see Lemma 3.1) that (R̃(·, t), S̃(·, t))�D

(R∗(·), S∗(·)) for all t > 0. In particular

lim
k→∞

(R(x, tk + 1), S(x, tk + 1) = (R̃(·, 1), S̃(·, 1))�D (R∗(·), S∗(·))
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from which Claim 6.10 follows.

From now on, we assume without loss that (R0(·), S0(·)) �D (R∗(·), S∗(·))
(Claim 6.10) and thus (R(·, t), S(·, t)) �D (R∗(·), S∗(·)) for all t ≥ 0 (see proof of

Lemma 4.1(i)). Next, recall the definition of c(t) in (6.10). For t ≥ t0, it is not

hard to see that

c(t0)e−(Λ0+m)(t−t0)(ϕ0(x), φ0(x))

is a supersolution of
Ut = (d(x)Ux − ν(x)U)x + fR(R∗(x), U

u
)u+ fS(S∗(x), U

u
)u−mU, x ∈ (0, L), t ≥ t0,

ut = (d(x)ux − ν(x)u)x + µ(U
u

)u−mu, x ∈ (0, L), t ≥ t0,

Bx[w] = 0, w = U, u, x = 0 or L, t ≥ t0,

(6.11)

for t ≥ t0 with initial data at t = t0 being given by (U(·, t0), u(·, t0)). For the

case where Λ0 +m > 0, we can show that c(t) ≤ e−(Λ0+m)tc(0), which implies that

c(t)→ 0 as t→∞. Thus, u(·, t)→ 0 as t→∞. This contradicts (6.9).

It remains to tackle the case where Λ0 +m = 0. Given t1 ≥ 0, it is easy to see

that c(t1)(ϕ0(x), φ0(x)) is an upper solution of (6.11) for t ≥ t1. On the other hand,

using the fact that (R0(·), S0(·))�D (R∗(·), S∗(·)), we see that (U(·, t), u(·, t)) is a

strict subsolution of (6.11), for t ≥ t1. Thus, (U(·, t), u(·, t))�D c(t1)(ϕ0(·), φ0(·)),
for x ∈ [0, L], t ≥ t1. Therefore, c(t) < c(t1), for t > t1, that is, c(t) is strictly

decreasing in t.

Define c0 = lim
t→∞

c(t) = inf
t>0

c(t). By assumption (6.9), c0 > 0.

Claim 6.11. limt→∞(U(x, t), u(x, t)) = c0(ϕ0(x), φ0(x)), uniformly in x ∈ [0, L],

where c0 = lim
t→∞

c(t) > 0.

Suppose to the contrary, then there is a sequence {t̂k} ↗ ∞ such that

lim inf
k→∞

sup
x∈[0,L]

[
c(t̂k)(ϕ

0(x), φ0(x))− (U(x, t̂k), u(x, t̂k))
]
> 0. (6.12)

Furthurmore, for each t̂k, we can choose by definition of c(t̂k + 1) some x̂k ∈ [0, L]

such that

(U(x̂k, t̂k + 1), u(x̂k, t̂k + 1)) = c(t̂k + 1)(ϕ0(x̂k), φ
0(x̂k)), (6.13)

and x̂k → x̂0 as k →∞. For each positive integer k, we define

(R̂k(x, t), Ŝk(x, t), Ûk(x, t), ûk(x, t)) = (R(x, t̂k+t), S(x, t̂k+t), U(x, t̂k+t), u(x, t̂k+t)).
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We can use the similar arguments as we did before to conclude that

(R̂k(x, t), Ŝk(x, t), Ûk(x, t), ûk(x, t))→ (R̂(x, t), Ŝ(x, t), Û(x, t), û(x, t)),

uniformly in x ∈ [0, L], and locally in t ∈ [0,∞), as k → ∞. We can further

show that (R̂(x, t), Ŝ(x, t), Û(x, t), û(x, t)) is a classical solution of system (1.12) on

[0, L]× [0,∞). It follows from (6.12) and (6.13) that

(Û(·, 0), û(·, 0)) ≤D c0(ϕ0(·), φ0(·)), (Û(·, 0), û(·, 0)) 6≡ c0(ϕ0(·), φ0(·)), (6.14)

and

(Û(x̂0, 1), û(x̂0, 1)) = c0(ϕ0(x̂0), φ0(x̂0)), (6.15)

respectively. Note that c0(ϕ0(x), φ0(x)) is a supersolution of system (6.11), while

(Û(x, t), û(x, t)) is a subsolution of (6.11). Then the strong maximum principle

contradicts (6.14) and (6.15). Thus, Claim 6.11 holds.

By Claim 6.11, it follows that the equations of R and S in (1.12) are asymptotic

to the following system
Rt = (DR(x)Rx)x − fR(R, ϕ

0(x)
φ0(x)

)(c0φ
0(x))− ωrR + ωsS, x ∈ (0, L), t > 0,

St = (DS(x)Sx)x − fS(S, ϕ
0(x)
φ0(x)

)(c0φ
0(x)) + ωrR− ωsS, x ∈ (0, L), t > 0,

BN,x[N ] = cN,x ≥ 0, N = R, S, x = 0 or L, t > 0,

By the theory for asymptotically autonomous semiflows (see, e.g., [43, Corollary

4.3]) and Lemma 3.1, while making use of FN(x,N) = fN(N, ϕ
0(x)
φ0(x)

)(c0φ
0(x)) > 0,

we see that (R(·, t), S(·, t))→ (R∗∗(·), S∗∗(·)) such that

(0, 0)�D (R∗∗(·), S∗∗(·))�D (R∗(·), S∗(·)).

Thus, we see that the equations of U and u in (1.12) are asymptotic to the following

system
Ut = (d(x)Ux − ν(x)U)x + fR(R∗∗(x), U

u
)u+ fS(S∗∗(x), U

u
)u−mU, x ∈ (0, L), t > 0,

ut = (d(x)ux − ν(x)u)x + µ(U
u

)u−mu, x ∈ (0, L), t > 0,

Bx[w] = 0, w = U, u, x = 0 or L, t > 0.

(6.16)
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Finally, consider the following eigenvalue problem associated with (6.16):

(d(x)ϕ′(x)− ν(x)ϕ(x))′ + fR

(
R∗∗(x), ϕ(x)

φ(x)

)
φ(x)

+fS

(
S∗∗(x), ϕ(x)

φ(x)

)
φ(x) + Λϕ(x) = 0, x ∈ (0, L),

(d(x)φ′(x)− ν(x)φ(x))′ + µ
(
ϕ(x)
φ(x)

)
φ(x) + Λφ(x) = 0, x ∈ (0, L),

Bx[w] = 0, w = ϕ, φ, x = 0 or L.

(6.17)

We denote the principal eigenvalue of (6.17) by Λ∗∗. Then Λ∗∗ +m > Λ0 +m = 0.

By the similar arguments we did for the case where Λ0 + m > 0, it follows that

u(·, t)→ 0 as t→∞. This contradicts Claim 6.11. Thus, (6.9) is impossible. This

concludes the proof of Theorem 2.2(i).

7 The Unstirred Chemostat Model

In this section, we specialize in the chemostat model (1.8) and prove Theorem 2.3.

We will first show the existence of a critical diffusion rate in Subsection 7.1. In

Subsection 7.2, we show, under an additional assumption (H7), the existence of a

globally attracting steady state whenever the phytoplankton species persists.

7.1 Critical Diffusion Rate

By Theorem 2.2, the persistence/extinction of the chemostat system (1.8) is deter-

mined by the associated nonlinear eigenvalue problem
dϕ′′(x) + fR

(
R∗(x), ϕ(x)

φ(x)

)
φ(x) + fS

(
S∗(x), ϕ(x)

φ(x)

)
φ(x) + Λϕ(x) = 0, x ∈ (0, 1),

dφ′′(x) + µ
(
ϕ(x)
φ(x)

)
φ(x) + Λφ(x) = 0, x ∈ (0, 1),

wx(0) = 0, wx(1) + γw(1) = 0, w = ϕ, φ.

(7.1)

Here (R∗(x), S∗(x)) is the unique steady state of (2.1) (see Proposition 2.1), deter-

mined by 
dR′′ − ωrR + ωsS = 0, x ∈ (0, 1),

dS ′′ + ωrR− ωsS = 0, x ∈ (0, 1),

N ′(0) = −N (0), N ′(1) + γN(1) = 0, N = R, S.

(7.2)
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We observe that R∗ + S∗ satisfies a simplified equation, whence R∗(x) + S∗(x) =

(R(0) + S(0))
(

1+γ
γ
− x
)

(see, e.g. [25]).

By Lemma 5.1, it follows that for each d > 0, the eigenvalue problem (7.1)

admits a principal eigenvalue Λ0 := Λ0(d) corresponding to which there is a strongly

positive eigenfunction (ϕ0(x), φ0(x))�D (0, 0).

Lemma 7.1. For each d > 0, let Λ0 := Λ0(d) be the principal eigenvalue of the

eigenvalue problem (7.1). Then there is a d0 > 0 such that
Λ0(d) < 0, if 0 < d < d0,

Λ0(d) = 0, if d = d0,

Λ0(d) > 0, if d > d0.

Proof. Let (η1, w1(x)) be the principal eigenpair of following eigenvalue problem:{
w′′(x) + ηw(x) = 0, x ∈ (0, 1),

w′(0) = w′(1) + γw(1) = 0.
(7.3)

It is standard to show that η1 > 0, see e.g. proof of Lemma 3.1. Let

Q∗ = sup{Q > 0 : fR(R∗(x), Q) + fS(S∗(x), Q)− µ(Q)Q ≥ 0 in [0, 1].},

where (R∗(x), S∗(x)) is the unique positive steady-state solution of system (7.2).

It is clear that Qmin < Q∗ and

fR(R∗(x), Q∗) + fS(S∗(x), Q∗) ≥ Q∗µ(Q∗) > 0 for all x ∈ [0, 1]. (7.4)

Claim 7.1. Λ0(d) < 0 for all d ∈ (0, µ(Q∗)/η1), where η1 > 0 is the principal

eigenvalue of (7.3).

Recall from the proof of Lemma 5.1 that Λ0 = − log r̃(1), where r̃(t) is the

spectral radius of the semiflow map Φt : C → C of
Ut = dUxx + fR(R∗(x), U

u
)u+ fS(S∗(x), U

u
)u, x ∈ (0, 1), t > 0,

ut = duxx + µ(U
u

)u, x ∈ (0, 1), t > 0,

wx(0, t) = 0, wx(1, t) + γw(1, t) = 0, w = U, u, t > 0,

w(x, 0) = w0(x) ≥ (6≡)0, w = U, u, x ∈ (0, 1),

(7.5)
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Since (7.5) is a special case of (5.2), Φt is also continuous, compact, and homoge-

neous of degree one. Define

Û(x) := Q∗w1(x), and û(x) := w1(x).

It is enough to show that (Û , û) is a strict lower solution of (7.5) for all sufficiently

small d. Since then by strong-order-preserving property, Φt(Û , û)�D (Û , û). This

means Φt(Û , û) ≥D k(Û , û) for some k > 1, whence the Bonsall cone spectral radius

r̃(t) must be strictly greater than 1, and by definition Λ0 = − log r̃(1) < 0.

Now we verify that (Û , û) is a strict lower solution of (7.5) for d ∈ (0, µ(Q∗)/η1).

By computations, for d ∈ (0, µ(Q∗)/η1), we have

dÛxx + fR(R∗(x),
Û

û
)û+ fS(S∗(x),

Û

û
)û

= dQ∗w
′′
1(x) + fR(R∗(x), Q∗)w1(x) + fS(S∗(x), Q∗)w1(x)

≥ dQ∗ (−η1w1(x)) + µ(Q∗)Q∗w1(x) = (µ(Q∗)− dη1)Q∗w1(x) > 0,

(where we used (7.4)) and

dûxx + µ(
Û

û
)û = dw′′1 + µ(Q∗)w1 = (µ(Q∗)− dη1)w1 > 0.

This proves Claim 7.1.

Claim 7.2. Λ0(d) > 0 for all d ∈ (µ(Q∗)/η1,+∞), where Q∗ is given by (2.3) and

η1 > 0 is the principal eigenvalue of (7.3).

Define

Û(x) := Q∗w1(x), and û(x) := w1(x).

By an analogous argument as above, we can show that for d ∈ (µ(Q∗)/η1,+∞),

(Û , û) forms a strict upper solution of (7.5). This implies that Φt(Û , û)�D (Û , û).

We claim that this implies that the Bonsall cone spectral radius r̃(t) of Φt

is strictly less than 1 for all t > 0. Fix t > 0. By Corollary 5.2, there exists

(ϕ, φ) ∈ C \ {0} such that Φt(ϕ, φ) = r̃(t)(ϕ, φ). Since (Û , û), (ϕ, φ) ∈ intD, we

may scale the eigenvector (ϕ, φ) so that

(ϕ, φ) ≤D (Û , û), but k(ϕ, φ) 6≤D (Û , û) for all k > 1.

Then by comparison,

r̃(t)(ϕ, φ) = Φt(ϕ, φ) ≤D Φt(Û , û)�D (Û , û),
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i.e. k̃r̃(t)(ϕ, φ) ≤D (Û , û) for some k̃ > 1. Hence k̃r̃(t) ≤ 1 and r̃(t) ≤ 1/k̃ < 1. i.e.

Λ0 = − log r̃(1) > 0 for all d ∈ (µ(Q∗)/η1,+∞). This proves Claim 7.2.

By Claims 7.1 and 7.2, we see that there exists a d0 > 0 such that Λ0(d0) = 0.

It remains to show that {
Λ0(d) < 0, for all 0 < d < d0,

Λ0(d) > 0, for all d > d0.
(7.6)

Assume that Λ0(d0) = 0 is the principal eigenvalue of the eigenvalue problem (7.1)

with d = d0, that is there exists eigenfunction (ϕd0(x), φd0(x)) ∈ C∩intD satisfying
d0ϕ

′′(x) + fR

(
R∗(x), ϕ(x)

φ(x)

)
φ(x) + fS

(
S∗(x), ϕ(x)

φ(x)

)
φ(x) = 0, x ∈ (0, 1),

d0φ
′′(x) + µ

(
ϕ(x)
φ(x)

)
φ(x) = 0, x ∈ (0, 1),

wx(0) = 0, wx(1) + γw(1) = 0, w = ϕ, φ.

Claim 7.3. For each d > d0, Λ0(d) > 0.

Again, it suffices to show that (U(x),u(x)) := (ϕd0(x), φd0(x)) is a strict lower

solution, so that Φt(U,u)�D (U,u) for t > 0. Now, we verify

dUxx + fR(R∗(x),
U

u
)u + fS(S∗(x),

U

u
)u

= dϕ′′d0
(x) + fR(R∗(x),

ϕd0

φd0

)φd0(x) + fS(S∗(x),
ϕd0

φd0

)φd0(x)

=
d

d0

[
d0ϕ

′′
d0

(x) +
d0

d
fR(R∗(x),

ϕd0

φd0

)φd0(x) +
d0

d
fS(S∗(x),

ϕd0

φd0

)φd0(x)

]
<

d

d0

[
d0ϕ

′′
d0

(x) + fR(R∗(x),
ϕd0

φd0

)φd0(x) + fS(S∗(x),
ϕd0

φd0

)φd0(x)

]
= 0,

and

duxx+µ(
U

u
)u = dφ′′d0

(x)+µ

(
ϕd0

φd0

)
φd0(x) <

d

d0

[
d0φ

′′
d0

(x) + µ

(
ϕd0

φd0

)
φd0(x)

]
= 0.

This proves Claim 7.3.

Claim 7.4. For each d < d0, Λ0(d) < 0.

Claim 7.4 follows from a similar fashion as Claim 7.3, so we skip the details.

This proves Lemma 7.1.
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Here we prove parts (i) and (ii) of Theorem 2.3.

Proof of Theorem 2.3 (i) and (ii). First, it follows from Theorem 2.1 that system

(1.8) generates a semiflow in Y. Let d0 be given by Lemma 7.1. If d ∈ [d0,∞), then

Lemma 7.1 says that the principal eigenvalue Λ0 of (7.1) is non-positive. Hence,

Theorem 2.3(i) follows from Theorem 2.2(i). If d ∈ (0, d0), then Lemma 7.1 says

that Λ0 < 0. Theorem 2.3(ii) thus follows from Theorem 2.2(ii).

7.2 Global Attractivity of system (1.8)

In this subsection, we intend to investigate the uniqueness and global stability

of positive steady-state solutions of system (1.8) under the additional assumption

(H7). Note that the existence of a positive steady-state solution of system (1.8) is

obtained based on persistence theory in the previous section.

Let 
WR(x, t) = R∗(x)−R(x, t),

WS(x, t) = S∗(x)− S(x, t),

W (x, t) = WR(x, t) +WS(x, t)− U(x, t),

(7.7)

where (R∗(x), S∗(x)) is the unique steady state solution of (7.2). Then system (1.8)

is equivalent to the following system

(WR)t = d(WR)xx + fR(R∗(x)−WR,
WR+WS−W

u
)u− ωrWR + ωsWS, x ∈ (0, 1), t > 0,

(WS)t = d(WS)xx + fS(S∗(x)−WS,
WR+WS−W

u
)u+ ωrWR − ωsWS, x ∈ (0, 1), t > 0,

ut = duxx + µ(WR+WS−W
u

)u, x ∈ (0, 1), t > 0,

Wt = dWxx, x ∈ (0, 1), t > 0,

Zx(0, t) = 0, Zx(1, t) + γZ(1, t) = 0, Z = WR,WS, u,W, t > 0,

Z(x, 0) = Z0(x) ≥ (6≡)0, Z = WR,WS, u,W, x ∈ (0, 1).

(7.8)

Motivated by Theorem 2.1, the relevant domains for system (7.8) are

Y′ = {(W 0
R(·),W 0

S(·), u0(·),W 0(·)) ∈ C([0, 1],R3
+)× C([0, 1],R) : W 0

R(·) ≤ R∗(·),
W 0
S(·) ≤ S∗(·), ∃Q̃ > 0 such that 0 ≤ W 0

R(·) +W 0
S(·)−W 0(·) ≤ u0(·)Q̃}, (7.9)

and

Y′1 = {(W 0
R(·),W 0

S(·), u0(·),W 0(·)) ∈ C([0, 1],R3
+)× C([0, 1],R) : W 0

R(·) ≤ R∗(·),
W 0
S(·) ≤ S∗(·), Qminu

0(·) ≤ W 0
R(·) +W 0

S(·)−W 0(·) ≤ Q∗u0(·)},
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where Q∗ is given in (2.3).

It is easy to see that the unique steady state for the fourth equation in system

(7.8) is the trivial solution. It then follows from [13, Sect. 6.5, Theorem 5] that

lim
t→∞

W (x, t) = 0 uniformly for x ∈ [0, 1].

Thus, the limiting system of (7.8) takes the form

(WR)t = d(WR)xx + fR(R∗(x)−WR,
WR+WS

u
)u− ωrWR + ωsWS, x ∈ (0, 1), t > 0,

(WS)t = d(WS)xx + fS(S∗(x)−WS,
WR+WS

u
)u+ ωrWR − ωsWS, x ∈ (0, 1), t > 0,

ut = duxx + µ(WR+WS

u
)u, x ∈ (0, 1), t > 0,

Zx(0, t) = 0, Zx(1, t) + γZ(1, t) = 0, Z = WR,WS, u, t > 0,

Z(x, 0) = Z0(x) ≥ (6≡)0, Z = WR,WS, u, x ∈ (0, 1),

(7.10)

where the biologically relevant domains for system (7.10) are

Y′′ = {(W 0
R(·),W 0

S(·), u0(·)) ∈ C([0, 1],R3
+) : W 0

R(x) ≤ R∗(x), W 0
S(x) ≤ S∗(x),

∃Q̃ > 0 such that 0 ≤ W 0
R(x) +W 0

S(x) ≤ u0(x)Q̃ for all x ∈ [0, 1]},

and

Y′′1 = {(W 0
R(·),W 0

S(·), u0(·)) ∈ C([0, 1],R3
+) : W 0

R(x) ≤ R∗(x), W 0
S(x) ≤ S∗(x),

Qminu
0(x) ≤ W 0

R(x) +W 0
S(x) ≤ Q∗u0(x) for all x ∈ [0, 1]},

where Q∗ is given in (2.3).

For persistence result, we set Y′′0 := {(WR,WS, u) ∈ Y′′ : u 6≡ 0 in [0, 1]}, and

the complementary set

∂Y′′0 := Y′′ −Y′′0 = {(WR,WS, u) ∈ Y′′ : u ≡ 0 in [0, 1]}
= {(WR,WS, u) ∈ Y′′ : WR = WS = u ≡ 0 in [0, 1]}.

The following result is related to the global attractivity of the positive steady

state of the limiting system (7.10).

Lemma 7.2. Assume that (H1), (H2) and (H7) hold, and Λ0 := Λ0(d) is the princi-

pal eigenvalue of (7.1). If Λ0 < 0, then (7.10) admits a unique positive steady-state

solution (ŴR(x), ŴS(x), û(x)) ∈ Y′′. Moreover, any solution (WR(·, t),WS(·, t), u(·, t))
of (7.10) with initial condition (W 0

R,W
0
S , u

0) ∈ Y′′0 satisfies

lim
t→∞

(WR(x, t),WS(x, t), u(x, t)) = (ŴR(x), ŴS(x), û(x)), uniformly for x ∈ [0, 1].
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Proof. By the similar arguments in Lemma 4.2 and Theorem 2.1(i), we can show

that the set Y′′ is positively invariant under the semiflow Πt generated by sys-

tem (7.10). Theorem 2.2 (ii) guarantees the existence of a compact attractor

A′′0 ⊂Int(C([0, 1],R3
+)) for Πt, and it suffices to show that Πt is monotone and sub-

homogeneous, which imply that the attractor A′′0 is a singleton set. Fix P 0 ∈ Y′′0
and let (WR(·, t),WS(·, t), u(·, t)) = Πt(P

0), and set

R(x, t) = R∗(x)−WR(x, t), S(x, t) = S∗(x)−WS(x, t),

and

U(x, t) = WR(x, t) +WS(x, t).

Then it is not hard to see that (R(x, t), S(x, t), U(x, t), u(x, t)) ∈ Y satisfies system

(1.8), where Y is given in (2.6). By Lemma 4.2,

lim sup
t→∞

[
sup
x∈[0,L]

(U(x, t)−Q∗u(x, t))

]
≤ 0.

Since Λ0 < 0 and u0 6≡ 0, it follows from Theorem 2.2(ii) that there exists η > 0

such that lim inft→∞ u(·, t) ≥ η, so (recall that U(x, t) = WR(x, t) +WS(x, t))

lim sup
t→∞

(
U(x, t)

u(x, t)
−Q∗

)
= lim sup

t→∞

U(x, t)−Q∗u(x, t)

u(x, t)
≤ 0.

From the fact that Q∗ < QB (Remark 2.1), we have

WR(·, t) +WS(·, t)
u(·, t)

=
U(·, t)
u(·, t)

< QB, ∀ t ≥ t0. (7.11)

Note that we have also proved that Πt is uniformly persistent with respect to

(Y′′0 , ∂Y′′0) in the sense that lim inf
t→∞

dist(Πt(P
0), ∂Y′′0) ≥ η, ∀ P 0(·) ∈ Y′′0 . By

(7.11), without loss of generality, we may further assume that the initial value

(W 0
R(·),W 0

S(·), u0(·)) ∈ Y′′0 and
W 0
R(·)+W 0

S(·)
u0(·) < QB.

The Jacobian matrix of reaction terms in (7.10) with respect to (WR,WS, u) at

points (WR,WS, u) ∈ R3
+, takes the form

J =

 ∗ a12 a13

a21 ∗ a23

+ + ∗

 ,
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where

a21 = ωr +
∂fS
∂Q

(S∗(x)−WS,
WR +WS

u
),

a12 = ωs +
∂fR
∂Q

(R∗(x)−WR,
WR +WS

u
),

a13 = fR(R∗(x)−WR,
WR +WS

u
)− WR +WS

u

∂fR
∂Q

(R∗(x)−WR,
WR +WS

u
)

= fR(R∗(x)−WR,
WR +WS

u
) = 0,

a23 = fS(S∗(x)−WS,
WR +WS

u
)− WR +WS

u

∂fS
∂Q

(S∗(x)−WS,
WR +WS

u
)

= fS(S∗(x)−WS,
WR +WS

u
) = 0.

Note that µ(Q) and fN(N,Q) are Lipschitz continuous, thus the Jacobian matrix

of reaction terms, J , exists almost everywhere (WR,WS, u) ∈ R3
+. It follows from

the assumption (H7) that a21 ≥ 0 and a12 ≥ 0. Thus, the Jacobian matrix J has

nonnegative off-diagonal entries, and hence, the semiflow Πt : Y′′ → Y′′ generated

by the system (7.10) is monotone [40] under the partial order ≤D generated by the

cone D := C0([0, 1],R3
+). Furthermore, if

WR < R∗(x), WS < S∗(x) for x ∈ [0, 1], and WR +WS < uQB

where QB is given in (H2), then a13 > 0 and a23 > 0, and hence, J is irreducible

[41], which implies that such a semiflow is strongly monotone in the interior of Y′′

[40]. For convenience, we denote the reaction terms of (7.10) by
F1(WR,WS, u) = fR(R∗(x)−WR,

WR+WS

u
)u− ωrWR + ωsWS,

F2(WR,WS, u) = fS(S∗(x)−WS,
WR+WS

u
)u+ ωrWR − ωsWS,

F3(WR,WS, u) = µ(WR+WS

u
)u.

It is easy to see that the reaction terms of (7.10) are strictly subhomogeneous in

the sense that for 0 < θ < 1 and (WR,WS, u) ∈ Y′′, we have

Fi(θWR, θWS, θu) > θFi(WR,WS, u), F3(θWR, θWS, θu) = θF3(WR,WS, u), i = 1, 2.

Then we can adopt the arguments in [12, Theorem 2.2] to show that for any t > 0,

Πt : Y′′ → Y′′ is strictly subhomogeneous in the sense that for any θ ∈ (0, 1),
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(W 0
R(·),W 0

S(·), u0(·)) ∈ Y′′ with u0(·)� 0, we have

Πt(θW
0
R(·), θW 0

S(·), θu0(·))�D θΠt(W
0
R(·),W 0

S(·), u0(·)).

For t > 0, we have proved that Πt is compact, point dissipative and uniformly

persistent. It follows from [36, Theorem 3.8] that Πt : Y′′0 → Y′′0 admits a global

attractor A′′0. Since Πt is also strongly monotone, strictly subhomogeneous, A′′0 ⊂
Y′′0 and A′′0 = Πt(A

′′
0), we further have A′′0 ⊂ Int(C([0, 1],R3

+)). It then follows from

[48, Theorem 2.3.2] with K = A′′0 that in fact A′′0 = {e}, where e �D (0, 0, 0) is a

fixed point of Πt. This implies that e is globally attractive for Πt in Y′′0 , and we

finish the proof.

By appealing to Lemma 7.2 and the theory of chain transitive sets, we are able

to lift the dynamics of (7.10) to the full system (1.8). That is, Theorem 2.2(ii)

can be improved, and we further have the following result which contains Theorem

2.3(ii’) as a special case.

Theorem 7.1. Assume that (H1), (H2), and (H7) hold, and Λ0 := Λ0(d) is the

principal eigenvalue of (7.1). Let (R(·, t), S(·, t), U(·, t), u(·, t)) be the solution of

system (1.8) with initial conditon (R0, S0, U0, u0) ∈ Y.

(i) If Λ0 ≥ 0, then

lim
t→∞

(R(·, t), S(·, t), U(·, t), u(·, t)) = (R∗(·), S∗(·), 0, 0).

(ii) If Λ0 < 0, then system (1.8) admits a unique positive steady-state solution

(R̂(·), Ŝ(·), Û(·), û(·)). In addition, if the initial condition satisfies (R0, S0, U0, u0) ∈
Y0, then

lim
t→∞

(R(x, t), S(x, t), U(x, t), u(x, t)) = (R̂(x), Ŝ(x), Û(x), û(x)),

uniformly for x ∈ [0, 1], where R̂(·) = R∗(·) − ŴR(·), Ŝ(·) = S∗(·) − ŴS(·),

Û(·) = ŴR(·) + ŴS(·), and (ŴR(·), ŴS(·), û(·)) are given by Lemma 7.2.

Proof. Part (i) was proved in Theorem 2.2(i), and we only need to prove Part (ii).

Since systems (1.8) and (7.8) are equivalent, it suffices to study system (7.8) with

initial data in Y′ (see (7.9)). (Note that (R0, S0, U0, u0) ∈ Y iff (WR,WS, u,W ) =

(R∗ −R0, S
∗ − S0, u0,WR +WS − U) ∈ Y′.)

48



Define Y′0 := {(WR,WS, u,W ) ∈ Y′ : u 6≡ 0}, and the complementary set

∂Y′0 := Y′ −Y′0 = {(WR,WS, u,W ) ∈ Y′ : u ≡ 0 in [0, 1]}
= {(WR,WS, u,W ) ∈ Y′ : WR +WS −W ≡ u ≡ 0 in [0, 1]}.

We first show that Y′ is positively invariant for system (7.8). Indeed, fix P 0 :=

(W 0
R,W

0
S , u

0,W 0) ∈ Y′ and let (WR(·, t),WS(·, t), u(·, t),W (·, t)) be the solution of

system (7.8) with initial data P 0. Motivated by (7.7), we set
R(x, t) = R∗(x)−WR(x, t),

S(x, t) = S∗(x)−WS(x, t),

U(x, t) = WR(x, t) +WS(x, t)−W (x, t).

Then (R(x, t), S(x, t), U(x, t), u(x, t)) satisfies system (1.8) (by (7.9)) and R(·, 0),

S(·, 0), u(·, 0) are non-negative, and there exists Q′ > 0 such that

U(x, 0) ≤ Q′u(x, 0) for all x ∈ [0, 1].

By Corollary 4.1, it follows that R(·, t) ≥ 0, S(·, t) ≥ 0, u(·, t) ≥ 0, and there

exists Q′′ > 0 such that

U(x, t) ≤ Q′′u(x, t) for all x ∈ [0, 1] and t > 0.

This implies that

(WR(·, t),WS(·, t), u(·, t),W (·, t)) ∈ Y′ for all t ≥ 0.

Thus, we can define the solution semiflow Ψ̃t : Y′ → Y′ of (7.8) by

Ψ̃t(P
0) = (WR(·, t),WS(·, t), u(·, t),W (·, t)), ∀ t ≥ 0,

where (WR,WS, u,W ) is the solution of (7.8) with initial data

P 0 = (W 0
R,W

0
S , u

0,W 0) ∈ Y′.

Fix P 0 ∈ Y′0, and let ω̃ := ω̃(P 0) be the omega limit set of P 0 for Ψ̃t. Let

R0 = R∗ −W 0
R, S0 = S∗ −W 0

S , U0 = W 0
R +W 0

S −W 0 for x ∈ [0, L],

then

(R0, S0, U0, u0) ∈ Y0 ⇐⇒ (W 0
R,W

0
S , u

0,W 0) ∈ Y′0.

It follows from the fourth equation in system (7.8) that limt→∞W (·, t) = 0

regardless of initial condition P 0 ∈ Y′. Thus, there exists a set I ⊂ C([0, 1],R3
+)

such that ω̃ := ω̃(P 0) = I × {0}.
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Claim 7.5. I ⊂ Y′′.

For each (W 0
R,W

0
S , u

0) ∈ I, we have

(W 0
R,W

0
S , u

0, 0) ∈ ω̃ ⊂ Y′,

where the last inclusion follows from Lemma 4.2. By the definition of Y′, we deduce

(W 0
R,W

0
S , u

0) ∈ Y′′. This proves the claim.

Claim 7.6. I is compact, invariant and internal chain transitive for the semiflow

Πt : Y′′ → Y′′.

It is straight forward to see that I×{0} is compact and invariant with respect to

Ψ̃t iff I is compact and invariant with respect to Πt. In view of Lemma 4.2, it follows

that for any (WR(·),WS(·), u(·)) ∈ C([0, 1],R3
+) with (WR(·),WS(·), u(·),W (·)) ∈

ω̃, there holds

Ψ̃t |ω̃ (WR(·),WS(·), u(·),W (·)) = (Πt(WR(·),WS(·), u(·)), 0), (7.12)

where Πt is the semiflows associated with (7.10) on Y′′. Given any a, b ∈ I and

any ε, T > 0. Since (a, 0), (b, 0) ∈ I × {0} = ω̃ and ω̃ is a compact, invariant and

internal chain transitive set for Ψ̃t (see, e.g., [23] or [48, Lemma 1.2.1′]), it follows

from the definition (see, e.g., [23] or [48, page 8]) that there is a finite sequences

{ti}n−1
i=1 with ti ≥ T, ∀ 1 ≤ i ≤ n − 1, and {(χi, 0)}ni=1 ⊆ ω̃ = I × {0} with

(χ1, 0) = (a, 0), (χn, 0) = (b, 0) such that

dist
(

Ψ̃ti−1
(χi−1, 0), (χi, 0)

)
< ε, ∀ 2 ≤ i ≤ n. (7.13)

From (7.12), (7.13) as well as the above discussions, it follows that there is finite

sequences {ti}n−1
i=1 with ti ≥ T, ∀ 1 ≤ i ≤ n − 1, and {χi}ni=1 ⊆ I with χ1 = a,

χn = b such that

dist
(
Πti−1

(χi−1), χi
)
< ε, ∀ 2 ≤ i ≤ n.

This shows that I is a compact, invariant and internal chain transitive set for

Πt : Y′′ → Y′′. Thus, the proof of the claim is finished.

Thus, from Lemma 7.2 and [48, Theorem 1.2.2] we can conclude that either

I = {(0, 0, 0)} or I = {(ŴR(·), ŴS(·), û(·))}. Since Λ0 < 0, Theorem 2.2 (ii) says

that lim inft→∞ u(·, t) > 0, i.e. I 6= {(0, 0, 0)}. Therefore, we must have

I = {(ŴR(·), ŴS(·), û(·))}.

This, together with (7.7), implies that Part (ii) holds.
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Proof of Theorem 2.3(ii’). First, it follows from Theorem 2.1 that system (1.8)

generates a semiflow in Y. Let d0 be given by Lemma 7.1. If d ∈ (0, d0), then

Lemma 7.1 says that Λ0 < 0. Theorem 2.3(ii’) follows from Theorem 7.1(ii).

8 Discussion

In this paper, we study the growth of a single phytoplankton species consuming

“CO2” (dissolved CO2 and carbonic acid) and “CARB” (bicarbonate and carbon-

ate ions) in a poorly/partially mixed habitat (e.g., the unstirred chemostat, or the

water columns of lakes and oceans), where “CO2” and “CARB” can be stored

within individuals for later consumption. Our proposed system (1.8), and the gen-

eral version (1.12) are motivated by the previous works [15, 16, 20, 24, 25, 29, 33,

37, 46, 47].

For the general system (1.12), we first establish the well-posedness results (The-

orem 2.1 and Proposition 2.2), and investigate the extinction/persistence of the

phytoplankton species (Theorem 2.2). The positive constant Q∗ in (2.3) plays an

important role in proof of the well-posedness results of system (1.12). From the

assumptions (H1) and (H2), it is easy to see that Q∗ exists. Inspired by [16, equa-

tion (5)], we will provide an explicit relation between Q∗ and the parameters on

the practical examples of growth rate and uptake rates. As in [16], µ(Q) takes the

form in (1.2), fN(N,Q) takes the form in (1.3) together with (1.4), and we impose

the following condition

µ∞ ≥
ρlow

max,R + ρlow
max,S

Q∗ −Qmin

. (8.1)

Since µ(Q∗) = µ∞

(
1− Qmin

Q∗

)
, it follows that (8.1) is equivalent to

ρlow
max,R + ρlow

max,S − µ(Q∗)Q∗ ≤ 0. (8.2)

Note that

fN(N∗(x), Q∗) = ρN(Q∗)
N∗(x)

kN +N∗(x)
= ρlow

max,N ·
N∗(x)

kN +N∗(x)
≤ ρlow

max,N .

Then (8.1) or (8.2) implies that

fR(R∗(x), Q∗) + fS(R∗(x), Q∗)− µ(Q∗)Q∗ ≤ 0,
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which coincides with the definition of Q∗ in (2.3). More biological interpretations

on (8.1) can be found in [16, Section 2]. In view of Theorem 2.2, we see that

the extinction/persistence of the phytoplankton species is determined by the death

rate m, and the principal eigenvalue Λ0 of the nonlinear eigenvalue problem (2.8).

The latter depends on (R∗(x), S∗(x)), the unique positive steady-state solution

of system (2.1). The eigenvalue Λ0 depends also on the conversion rate between

“CO2” and “CARB” (ωr and ωs), the physical transport characteristics of the

habitat (i.e. the diffusivity or the advection), uptake rates, and growth rate. It

will be of practical interest to understand the dependence of Λ0 on the parameters

of the nonlinear eigenvalue problem (2.8). We leave this challenging problem for

future investigation.

When we specialize in the chemostat model (1.8), Theorem 2.3 reveals that

there is a unique critical diffusion rate d0 such that the species will go to extinct

(resp. persist) if the diffusion d is greater than or equal to d0 (resp. d is less than

d0). If we impose the additional condition (H7), then there exists a unique positive

steady state solution of system (1.8) when the species persists, and the unique

positive steady state solution is globally asymptotically stable. Next, we show that

several practical examples can satisfy assumption (H7):

• Assume that fN(N,Q) = ρN(Q) N
kN+N

takes the form (1.3) with (1.4) for all

N ≥ 0 and Qmin ≤ Q ≤ Qmax. We first extend the function fN(N,Q) in this

case to be defined in R2
+:

f̂N(N,Q) = ρ̂N(Q)
N

kN +N
,

where

ρ̂N(Q) =

{
ρ(Qmax) + ρ(Qmin)−ρ(Qmax)

Qmin−Qmax
(Q−Qmax), for 0 ≤ Q ≤ QB,

0, for Q > QB,

and

QB = Qmax + ρ(Qmax)
ρ(Qmin)− ρ(Qmax)

Qmax −Qmin

> Qmax.

Then f̂N(N,Q) satisfies (H2), and (H7) holds ifωs −
ρhigh

max,R−ρ
low
max,R

Qmax−Qmin
≥ 0,

ωr −
ρhigh

max,S−ρ
low
max,S

Qmax−Qmin
≥ 0.

52



• Assume that fN(N,Q) = ρN(Q) N
kN+N

takes the form (1.3) with (1.5) for all

N ≥ 0 and Qmin ≤ Q ≤ Qmax. For this case, Qmax = QB, where QB is given

in (H2). If {
ωs − ρmax,R

Qmax−Qmin
≥ 0,

ωr − ρmax,S

Qmax−Qmin
≥ 0,

(8.3)

then (H7) holds. Here, we can give some realistic parameters such that (8.3)

is valid, and hence, (H7) holds. For example, ωr ranges from 2000 d−1 to

4000 d−1, and ωs ranges from 15 d−1 to 25 d−1 in [37]; Qmin = 9 µmol mm−3,

Qmax = 17 µmol mm−3, ρmax,R = 8.2 µmol mm−3d−1, and ρmax,S = 7.3 µmol

mm−3d−1 in [46].

• If fN(N,Q) = ρN
N

kN+N
takes the form (1.3) with (1.6), then (H7) automati-

cally holds.

Understanding extinction/persistence of a single species is a first step to the

study of coexistence of multiple species in competition for resources. Thus, this

work paves the way for the investigation of competing system consisting of two

phytoplankton species with ratio dependence. The other extensions of the model

discussed in this paper is to include the factors of respiration and light availability

since carbon is lost by respiration and the light reaction of photosynthesis provides

the energy for carbon assimilation [46]. In the Supplementary Information of [46],

the authors assumed that the respiration rate is proportional to the size of the

transient carbon pool, and they further assumed that uptake rates include self-

shading by the phytoplankton population, that is, an increase in population density

will reduce light intensity. In order to reflect the vertical heterogeneity in the

water column, light intensity usually involves nonlocal terms in depth (see e.g.,

[24, 29, 47]), which make mathematical analysis much more complicated. We will

combine the ideas developed in this paper with those arguments in [11, 21] to study

a more realistic system that phytoplankton species compete for inorganic carbon

with internal storage, and light in a spatially variable habitat in which carbon is

lost by respiration. We also leave this interesting project for future study.

It is worth pointing out that the main ideas used in this paper are closely related

to the analysis of the ODE system (1.1) or (1.7). Recall that the phytoplankton-free

equilibrium (R, S,Q, u) = (R∗, S∗, Q∗, 0) of (1.1) is given in (2.4) and (2.5), and it

is not hard to show that its local stability is determined by the sign of µ(Q∗)−D.

In fact, we can further show that the population is washed out if µ(Q∗)−D ≤ 0,
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and persistence of the species occurs if µ(Q∗) − D > 0. Consider the eigenvalue

problem associated with the ODE system (1.1) or (1.7):fR
(
R∗, ϕ

φ

)
φ+ fS

(
S∗, ϕ

φ

)
φ−Dϕ+ Λϕ = 0,

µ
(
ϕ
φ

)
φ−Dφ+ Λφ = 0,

(8.4)

where ϕ and φ are both constants. Then it follows from the relations (2.4) and (2.5)

that Λ0 = −(µ(Q∗)−D) is the principal eigenvalue of system (8.4) corresponding

to the eigenfunction (ϕ, φ) = (Q∗, 1)� (0, 0). Thus, the extinction/persistence of

system (1.1) or (1.7) can be determined by the principal eigenvalue Λ0 = −(µ(Q∗)−
D), which is parallel to Theorem 2.2 for the PDE system. In order to obtain the

uniqueness and global stability of the positive equilibrium of (1.1) or (1.7), we

comment that a condition similar to (H7) is needed.

In closing, we describe a quota-structured system with spatial variations re-

lated to this paper. In (1.1), we have assumed that the quota per individual varies

dynamically and the dynamics of quota also satisfies an ordinary differential equa-

tion. The simplest model associated with (1.1) is under the assumption that the

consumption of resource and production of populations are directly proportional

through a quota constant q, leading to the following system:
dR
dt

= (R(0) −R)D − qfR(R)u− ωrR + ωsS,
dS
dt

= (S(0) − S)D − qfS(S)u+ ωrR− ωsS,
du
dt

= [fR(R) + fS(S)−D]u,

R(0) ≥ 0, S(0) ≥ 0, u(0) ≥ 0.

The other modeling associated with system (1.1) is to assume that quotas differ

among individuals at any instant, and the distribution of stored resource quota

over individual cells at each location is governed by a structured population model

(see, e.g., [6, 7] and section 2 of [18]). The associated system takes the forms:

dR(t)
dt

= (R(0) −R(t))D − fR(R)
∫ qmax
qmin

2
g(q)n(t, q)dq − ωrR + ωsS,

dS(t)
dt

= (S(0) − S(t))D − fS(S)
∫ qmax
qmin

2
g(q)n(t, q)dq + ωrR− ωsS,

∂n(t,q)
∂t

= [fR(R) + fS(S)]{−∂(g(q)n(t,q))
∂q

− b(q)n(t, q) + 4b(2q)n(t, 2q)} −Dn(t, q),

R(0) ≥ 0, S(0) ≥ 0, n(0, q) = n0(q),

n(t, qmin
2

) = 0.

(8.5)
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Here t denotes time, q stands for the size of an individual cell. n is the population

density function, that is,
∫ q2
q1
n(t, q)dq represents the number of cells with size be-

tween q1 and q2 at time t. The functions b(q) and g(q) are the rates at which cells

of size q divide and grow, respectively. We refer the Appendix in [6] (see also [7]

and section 2 of [18]) for detailed descriptions of the following term

−∂(g(q)n(t, q))

∂q
− b(q)n(t, q) + 4b(2q)n(t, 2q),

which is related to the population operator proposed in [6, 7]. Encouraged by the

work [18], we will also investigate a system that combines the structured population

model (8.5) with the physical transport equations governing spatial distributions

of populations and resources.
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