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Abstract. Nonlocal Lotka-Volterra models have the property that solutions

concentrate as Dirac masses in the limit of small diffusion. Motivated by the
existence of moving Dirac-concentrations in the time-dependent problem, we

study the qualitative properties of steady states in the limit of small diffusion.

Under different conditions on the growth rate and interaction kernel as moti-
vated by the framework of adaptive dynamics, we will show that as the diffusion

rate tends to zero the steady state concentrates (i) at a single location; (ii) at
two locations simultaneously; or (iii) at one of two alternative locations. The

third result in particular shows that solutions need not be unique. This marks

an important difference of the non-local equation with its local counterpart.

1. Introduction. This paper is concerned with the following reaction-diffusion
model from evolutionary game theory: εut = ε2∂2

xu+ u
(
r(x)−

∫
Ω
K(x, y)u(y, t) dy

)
for x ∈ Ω, t > 0,

∂nu = 0 for x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x) for x ∈ Ω,

(1)

where u(x, t) represents the population with trait x ∈ Ω for some bounded domain
Ω ∈ RN with smooth boundary ∂Ω at time t. The intrinsic growth rate for indi-
viduals with trait x is given by r(x) ∈ C∞(Ω̄), and the integral term models an
additional contribution to the death rate due to competition with other phenotypes
with different traits, with competition kernel K(x, y) ∈ C∞(Ω̄ × Ω̄). Throughout
this paper, we assume

(H): min
Ω̄
r > 0, minΩ̄×Ω̄K > 0.

In this model, individuals with trait x in a population u(·, t) has fitness r(x) −∫
Ω
K(x, y)u(y, t) dy, and reproduction is asexual and is subject to mutation with

rate ε2.
Equation (1) can be viewed as a competition model of infinitely many species.

This can be seen by formally setting the mutation rate ε to be zero, while consid-

ering solutions of the form
∑N
i=1 Ui(t)δ0(x − xi), where {xi} is a set of N distinct
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strategies. Then

ε∂tUi(t) = Ui(t)

r(xi)− N∑
j=1

K(xi, xj)Uj(t)

 for 1 ≤ i ≤ N, and t > 0, (2)

which is a version of the the Lotka-Voletrra model of N competing species.
The time-dependent problem (1) was considered in [20] in case Ω = Rn. Under

convexity assumptions on the initial condition and on coefficients of the equation,
it was shown that solutions of (1) concentrates as a single moving Dirac mass, as
ε → 0. Moreover, they showed that the movement of the Dirac mass can be well
described by a form of canonical equation, which is connected to the framework of
adaptive dynamics [6] underlying the selection process.

Motivated by the work on the time-dependent problem, we will show in this pa-
per that (1) possesses Dirac-concentrated steady states. Furthermore, under three
different set of conditions, we will show that the steady state concentrates (i) at a
single location; (ii) at two locations simultaneously; or (iii) at two alternative loca-
tions. The third result in particular shows that solutions need not be unique. This
marks an important difference of the non-local equation (1) with its local counter-
part. The steady states in scenarios (i) and (iii) can be considered as evolutionary
endpoints corresponding to the single moving Dirac mass found in [20]. The dimor-
phic steady Dirac mass in scenario (ii) motivates the study of moving Dirac masses
supported at two points, which is currently open. We also refer the interested read-
ers to [26] where the existence and structure of positive steady states of a related
model is discussed using a bifurcation approach.

Reaction-diffusion equations modeling the evolution of a quantitative trait has
a long history (see, e.g. [3, 12, 14, 21] for the case when K ≡ 1 is constant). The
version studied in this paper, which involves a non-local interaction kernel, was
introduced by [24] in the context of competition with neighbors, with

K(x, y) =
α0√
2πσ

exp

(
− (x− y)2

2σ2

)
.

See also [1, 5, 11] for works on the pure selection case.
Furthermore, (1) can be rigorously derived from an individual-based, stochastic

model in which a finite number of individuals may randomly die or produce an
offspring with a rate depending on the competition among conspecifics. Taking the
limit of an infinite number of individuals with the correct time scale, (1) can be
obtained. We refer the interested reader to [4].

In the model of this paper, the growth rate r(x) and interaction kernel K(x, y) are
prescribed rather than derived from density- and frequency-dependent interactions
among phenotypes. In general, the relative advantage of a trait x against a different
trait y depends on the context of their interaction. For instance, in [8, 10, 16, 27] the
invasion fitness between phenotypes with different dispersal strategies is obtained in
the context of reaction-diffusion equations modeling the two competiting species in
a bounded spatial domain. Those results has implications in the mutation-selection
framework [9, 17, 18, 23], which concerns populations structured by space and trait.

The remainder of this paper is organized as follows: The mathematical statement
of the main results are presented in Section 2. Apriori estimates and the WKB
transform are presented in Section 3. In Section 4, Theorems 1 and 2 are proved by
the constrained Hamilton-Jacobi equation method pioneered by [7]. In Section 5,
the existence of positive steady states and Theorem 3 are proved using a dynamical
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approach based on persistence theory and the construction of two forward-invariant
regions of (1). Finally, the assumptions of our main results and their relation to
the framework of adaptive dynamics are discussed in Section 6.

2. Main Results. In this paper, we focus on the existence, and multiplicity of
steady states of (1) when the trait space is one-dimensional, i.e. Ω = (−1, 1).
When there is no ambiguity, we suppress the upper and lower limits in the integral

and write, for ρ(y) ∈ L1((−1, 1)),
∫
ρ(y) dy =

∫ 1

−1
ρ(y) dy. In such case, the steady

state ũε(x) satisfies{
ε2∂xxũε + ũε

(
r(x)−

∫
K(x, y)ũε(y) dy

)
= 0 for x ∈ (−1, 1),

∂xũε = 0 for x = ±1.
(3)

In the following we state our three main results.

Theorem 1. Assume

(A): ∂2

∂x2

[
K(x,y)
r(x)

]
> 0 for all x, y ∈ [−1, 1], and there exists x̂ ∈ (−1, 1) such

that

∂

∂x

[
K(x, y)

r(x)

]
x=x0,y=x0

=

 < 0 for x0 ∈ [−1, x̂),
0 for x0 = x̂,
> 0 for x0 ∈ (x̂, 1].

(4)

Then, as ε→ 0, every positive solution ũε(x) of (3) satisfies

ũε(x)→ r(x̂)

K(x̂, x̂)
δ0(x− x̂) in distribution.

Theorem 2. Assume

(B): ∂2

∂x2

[
K(x,y)
r(x)

]
< 0 for all x, y ∈ [−1, 1], and there exists x̂ ∈ (−1, 1) such

that

∂

∂x

[
K(x, y)

r(x)

]
x=x0,y=x0

=

 < 0 for x0 ∈ [−1, x̂),
0 for x0 = x̂,
> 0 for x0 ∈ (x̂, 1].

(5)

Then, as ε→ 0, every positive solution ũε(x) of (3) satisfies

ũε(x)→ Aδ0(x+ 1) +Bδ0(x− 1) in distribution,

where the positive constants A and B are unqiuely determined by(
K(1,−1) K(1, 1)
K(−1,−1) K(−1, 1)

)(
A
B

)
=

(
r(1)
r(−1)

)
.

Theorem 3. Assume

(C): sup
−1<x<1

∂

∂x

[
K(x, 1)

r(x)

]
< 0 and that inf

−1<x<1

∂

∂x

[
K(x,−1)

r(x)

]
> 0.

Then, for all ε sufficiently small, (3) has at least two positive solutions ũε,+(x) and
ũε,−(x). Moreover, as ε→ 0, we have

ũε,+(x)→ r(1)

K(1, 1)
δ0(x−1) and ũε,−(x)→ r(−1)

K(−1,−1)
δ0(x+1) in distribution.

For the ease of exposition, we will postpone the proof for the existence of steady
state to Corollary 5.3 in Section 5.
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Figure 1. The left, center and right panels illustrate the sign of
K(x,y)
r(x) −

K(y,y)
r(y) as a function of x and y, under the assumptions of

Theorems 1, 2 and 3 respectively. Here x and y are the strategy of

the invader and resident species respectively. K(x,y)
r(x) −

K(y,y)
r(y) < 0

(resp. > 0) means invasion of resident with strategy ”y” by invader
with strategy ”x” is a success (resp. failure).

3. WKB-Ansatz and Apriori Estimates. Consider the WKB transform

ṽε(x) = ε log ũε(x), i.e. ũε(x) = exp

(
ṽε(x)

ε

)
,

then ṽε(x) satisfies the equation{
−ε∂2

xṽε − |∂xṽε|2 = H̃ε(x) := r(x)−
∫
K(x, y)ũε(y) dy for − 1 < x < 1,

∂xṽε = 0 for x = ±1.
(6)

We first develop some apriori estimates of ũε and ṽε.

Lemma 3.1. Let ũε be a positive solution of (3), then

r∗
K∗
≤
∫
ũε(y) dy ≤ r∗

K∗
,

where the positive constants r∗, r∗,K
∗,K∗ are given respectively by

r∗ = sup
(−1,1)

r(x), r∗ = inf
(−1,1)

r(x), K∗ = sup
(−1,1)2

K(x, y), K∗ = inf
(−1,1)2

K(x, y).

(7)

Proof. Integrating (3) over x ∈ (−1, 1), we obtain∫
r(x)ũε(y) dy =

∫∫
K(x, y)ũε(x)ũε(y) dxdy .

Then we have

r∗

∫
ũε(y) dy ≤ K∗

(∫
ũε(y) dy

)2

from which the lower bound follows. The upper bound of
∫
ũε dy can be derived

analogously.

Lemma 3.2. There exists C independent of ε > 0, such that ‖H̃ε(x)‖C3([−1,1]) ≤ C.
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Proof. Fix k = 0, 1, 2, or 3. By definition of H̃ε, we have∣∣∣∂kxH̃ε(x)
∣∣∣ =

∣∣∂kxr(x)
∣∣+

∣∣∣∣∫ ∂kxK(x, y)ũε(y) dy

∣∣∣∣
≤ ‖r‖Ck([−1,1]) + C‖K‖Ck([−1,1]2)

∫
ũε(y) dy.

In view of the L1 bound of ũε (Lemma 3.1), the right hand side is bounded inde-
pendent of ε > 0 and x ∈ (−1, 1).

Lemma 3.3. There exists C independent of ε > 0 such that sup
(−1,1)

|∂xṽε(x)| ≤ C.

In particular, the family {ṽε} is equicontinuous in the variable x ∈ [−1, 1].

Proof. If ∂xṽε(x) ≡ 0, there is nothing to prove. Otherwise, there exists xε ∈ (−1, 1)
such that sup |∂xṽε| = |∂xṽε(xε)| > 0, then ∂2

xṽε(xε) = 0, and by equation (3), we
have

|∂xṽε(xε)|2 = |H̃ε(xε)| ≤ ‖H̃ε‖C([−1,1]).

In view of Lemma 3.2, the right hand side of the above equation is bounded inde-
pendent of ε. This proves the lemma.

Lemma 3.4. lim
ε→0

[
sup

−1<x<1
ṽε

]
= 0.

Proof. Suppose to the contrary that there exists εk → 0 such that

lim
εk→0

[
sup

−1<x<1
ṽεk

]
> 0 or lim

εk→0

[
sup

−1<x<1
ṽεk

]
< 0.

Since ũεk = exp(ṽεk/εk) and since {ṽε} is equicontinuous (Lemma 3.4), we have∫
ũεk dy → +∞ or

∫
ũεk dy → 0.

But both cases are impossible, in view of Lemma 3.1.

Corollary 3.5. The families {ṽε} and {H̃ε} are precompact in C([−1, 1]) and
C2([−1, 1]) respectively.

Proof. By Lemmas 3.3 and 3.4, the family {ṽε} ⊂ C([−1, 1]) is equibounded and
equicontinuous. By Arzelà-Ascoli Theorem, it is precompact in C([−1, 1]). Sim-

ilarly, the precompactness of {H̃ε} in C2([−1, 1]) follows from its boundedness in
C3([−1, 1]) (Lemma 3.2).

Proposition 1. By passing to a subsequence εk → 0, there exists ṽ(x) ∈ C([−1, 1])

and H̃(x) ∈ C2([−1, 1]) such that

ṽεk(x)→ ṽ(x) in C([−1, 1]), and H̃εk(x)→ H̃(x) in C2([−1, 1]).

Moreover,

(i) sup
−1<x<1

ṽ(x) = 0;

(ii) ṽ(x) is a viscosity solution of

− |∂xṽ|2 = H̃(x) for − 1 < x < 1; (8)

(iii) max
−1≤x≤1

H̃(x) = 0;

(iv) If sup
−1<x<1

ṽεk(x) = ṽεk(xk) for each k, then dist
(
xk,
{
x : H̃(x) = 0

})
→ 0.
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Proof. By Corollary 3.5, we may pass to a subsequence so that the solution (ṽεk , H̃εk)

of (6) converges to some (ṽ, H̃) in C([−1, 1]) × C2([−1, 1]). Assertion (i) follows
from Lemma 3.4. Since ṽε is a classical solution of (6), we may apply the stability
theorem (see, e.g. [2, Theorem 4.1]) to conclude that the limit function ṽ(x) is a
viscosity solution of the Hamilton-Jacobi equation (8). This proves assertion (ii).

We next prove (iv). By assumption, xk is a local maximum point of ṽεk , so that

∂2
xṽεk(xk) ≤ 0 = ∂xṽεk(xk) =⇒ H̃εk(xk) ≥ 0.

Since, by the equation (8), we also have H̃(x) ≤ 0 for all x, we see that

0 ≤ lim inf
k→∞

H̃εk(xk) ≤ lim sup
k→∞

H̃εk(xk) ≤ 0.

It follows from the uniform convergence of H̃εk → H̃ in [−1, 1] that any limit point

x0 of {xk} satisfies H̃(x0) = 0. This proves (iv). Since H̃(x) ≤ 0 and the nodal set
of H is nonempty, (iii) is also proved.

Next, we prove a result in the special case when H̃(x) has a unique maximum
point.

Proposition 2. Suppose, in addition to the hypotheses of Proposition 1, that for
some x′ ∈ [−1, 1],

H̃(x) ≤ 0 in [−1, 1], and equality holds if and only if x = x′.

Then

ũεk(x)→ r(x′)

K(x′, x′)
δ0(x− x′) in distribution sense, (9)

and H̃(x) = r(x)− K(x,x′)r(x′)
K(x′,x′) for −1 ≤ x ≤ 1.

Proof. We first show a property of the limit function ṽ(x).

Claim 1. ṽ(x′) = 0, and ṽ < 0 for x ∈ [−1, x′) ∪ (x′, 1].

Let the maximum of ṽεk be attained at xk ∈ [−1, 1]. Then, by Proposition 1(iv),
xk → x′, so that

ṽ(x′) = lim
k→∞

ṽεk(xk) = lim
k→∞

[
max
−1≤x≤1

ṽεk

]
= 0,

where we used Lemma 3.4 for the last equality. Next, suppose to the contrary that
ṽ(x′′) = 0 for some x′′ ∈ [−1, 1] \ {x′}. The fact that ṽ ≤ 0 implies that x′′ is a
local maximum of ṽ. We discuss the two cases separately: (i) x′′ ∈ (−1, 1) \ {x′};
(ii) x′′ ∈ {−1, 1} \ {x′} and that ṽ(x) < 0 for x ∈ (−1, 1) \ {x′}. In case (i) x′′

is an interior local maximum point of ṽ. Since ṽ is viscosity solution of (8), we
have H(x′′) ≥ 0. But this can only happen if x′′ = x′, which is a contradiction.
In case (ii), ṽ attains a strict local maximum at x′′ = ±1 and there is a sequence

x′′k → x′′ such that ṽεk attains a local max at x′′k . This implies that H̃εk(x′′k) ≥ 0.

Letting k → ∞, we have H̃(x′′) ≥ 0 for some x′′ ∈ {1,−1} \ {x′}. This again is a

contradiction to the assumption on H̃. Claim 1 is proved.
By Claim 1 and Lemma 3.1, we may pass to a subsequence and assume that

ũεk(x) = exp (ṽεk(x)/εk)→ C ′δ0(x− x′) in distribution sense for some C ′ > 0. By
integrating (3), and letting εk → 0, we have

r(x′)C ′ = lim
k→∞

∫
r(x)ũεk(x) dx = lim

k→∞

∫∫
K(x, y)ũεk(x)ũεk(y) dxdy = K(x′, x′)(C ′)2.
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Since C ′ > 0, we deduce that C ′ = r(x′)/K(x′, x′). Since the limit is independent

of subsequences of {εk}, the convergence ũε(x) → r(x′)
K(x′,x′)δ0(x − x′) holds for the

full sequence εk → 0. Finally,

H̃(x) = lim
k→∞

[
r(x)−

∫
K(x, y)uεk(y) dy

]
= r(x)− K(x, x′)r(x′)

K(x′, x′)
.

This concludes the proof of Proposition 2.

4. Proof of Theorems 1 and 2.

Proof of Theorem 1. By Proposition 1, we pass to a sequence εk → 0 so that ṽεk →
ṽ in C([−1, 1]) and H̃εk → H̃ in C2([−1, 1]). First, we claim that H̃(x)/r(x) is
strictly concave, since

∂2
x

(
H̃εk(x)

r(x)

)
= ∂2

x

(
1−

∫
K(x, y)

r(x)
ũεk(y) dy

)
≤ − inf

−1 < x < 1
0 < y < 1

∂2
x

[
K(x, y)

r(x)

]∫
ũεk(y) dy.

By assumption (A) and Lemma 3.1, we may let εk → 0 to conclude the strict

concavity of H̃(x)/r(x).
This, and Proposition 1(iii), implies the existence of some x′ ∈ [−1, 1], such

that H̃(x) ≤ 0 and equality holds iff x = x′. (Note that x′ may depend on the

subsequence.) By Proposition 2, we deduce that ũεk(x) → r(x′)
K(x′,x′)δ0(x − x′) in

distribution sense. Moreover,

H̃(x) = lim
k→∞

[
r(x)−

∫
K(x, y)uεk(y) dy

]
= r(x)−r(x

′)K(x, x′)

K(x′, x′)
for −1 ≤ x ≤ 1.

The fact that H̃(x) is non-positive (Proposition 1(iii)) implies that

K(x, x′)

r(x)
≥ K(x′, x′)

r(x′)
for all x ∈ [−1, 1].

By (A), we must have x′ = x̂. Since the limit point x′ = x̂ is independent of

subsequence εk → 0, we deduce that in the full limit ε→ 0, ũε(x)→ r(x̂)
K(x̂,x̂)δ0(x−x̂)

in distribution sense.

Proof of Theorem 2. By Proposition 1, we pass to a sequence εk → 0 so that ṽεk →
ṽ in C([−1, 1]) and H̃εk → H̃ in C2([−1, 1]). We claim that H̃(x)/r(x) is strictly
convex. To this end, we compute

∂2
x

(
H̃εk(x)

r(x)

)
= ∂2

x

(
1−

∫
K(x, y)

r(x)
ũεk(y) dy

)
≥ − sup

−1 < x < 1
0 < y < 1

∂2
x

[
K(x, y)

r(x)

]∫
ũεk(y) dy,

and observe that the strict convexity of H̃(x)/r(x) follows from hypothesis (B)
and Lemma 3.1. Combining with the facts that H(x) ≤ 0 and r(x) > 0 in [−1, 1],

H̃(x)/r(x), and hence H̃(x), are strictly negative in (−1, 1).

Claim 2. ṽ(x) < 0 for −1 < x < 1.

Suppose to the contrary that ṽ(x′) = 0 for some x′ ∈ (−1, 1), then x′ is an
interior local maximum point of ṽ. By the fact that ṽ is viscosity solution of (8), we

deduce that H̃(x′) ≥ 0 for the interior point x′ ∈ (−1, 1). This is a contradiction,

as H̃(x) < 0 in (−1, 1). Thus ṽ(x) < 0 for −1 < x < 1 and, by Lemma 3.1,

ũεk(x)→ Aδ0(x+ 1) +Bδ0(x− 1) in distribution sense. (10)
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Claim 3. A > 0 and B > 0.

Otherwise suppose B = 0, then ũεk → Aδ0(x + 1). By the arguments in the

proof of Proposition 2, we deduce that H̃(x) = r(x)− K(x,−1)r(−1)
K(−1,−1) . By Proposition

1(iii), H̃(x) ≤ 0 for all x ∈ [−1, 1], and hence

K(−1,−1)

r(−1)
≤ K(x,−1)

r(x)
for − 1 ≤ x ≤ 1.

But this is a contradiction to ∂x

[
K(x,y)
r(x)

]
x=y=−1

< 0 (by (B)). Hence B > 0.

Similarly, one can show that A > 0 as well.
To determine the value of the positive constants A and B, we first prove the

following estimate.

Claim 4. . lim
k→∞

|∂xũεk(0)| = 0.

To see the claim, let δ = − 1
2 inf |x|<1/2 ṽ, then by Claim 2 we have δ > 0. For all

k large,

sup
|x|< 1

2

ṽεk < −δ, and sup
|x|<1/2

ũεk < exp

(
− δ

εk

)
.

Now, let Uk(z) := ũεk(εkz), then sup|z|<2 |Uk(z)| < exp
(
− δ
εk

)
, and

−∂2
zUk(z) = H̃εk(εkz)Uk(z) for |z| < 1/εk.

Since ‖H̃εk‖C([−1,1]) ≤ C (Lemma 3.2), we deduce that

sup
|z|<2

|∂2
zUk(z)| ≤ C exp

(
− δ

εk

)
.

By interpolation, εk|∂xũεk(0)| = |∂zUk(0)| ≤ C exp
(
− δ
εk

)
. This yields Claim 4.

We conclude the proof by determining A and B. To this end we integrate (3)
over −1 < x < 0, then

−ε2
k∂xũεk(0) =

∫ 0

−1

ũεk(x)

(
r(x)−

∫ 1

−1

K(x, y)ũεk(y) dy

)
dx.

Using (10) and using Claim 4, we may let k →∞ to obtain

0 = A [r(−1)−K(−1,−1)A−K(−1, 1)B] . (11)

Similarly, we may repeat integrate (3) over 0 < x < 1 and repeat the above argu-
ments to obtain

0 = B [r(1)−K(1,−1)A−K(1, 1)B] . (12)

Solving (11) and (12), we have

A =

K(1,1)
r(1) −

K(−1,1)
r(−1)

K(−1,−1)K(1,1)
r(−1)r(1) − K(−1,1)K(1,−1)

r(−1)r(1)

=
K(1, 1)r(−1)−K(−1, 1)r(1)

K(−1,−1)K(1, 1)−K(−1, 1)K(1,−1)
,

and

B =

K(−1,−1)
r(−1) − K(1,−11)

r(1)

K(−1,−1)K(1,1)
r(−1)r(1) − K(−1,1)K(1,−1)

r(−1)r(1)

=
K(−1,−1)r(1)−K(1,−1)r(−1)

K(−1,−1)K(1, 1)−K(−1, 1)K(1,−1)
.
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Since A and B are uniquely determined and is independent of subsequences, we
deduce in the full limit ε→ 0, ũε(x)→ Aδ0(x+1)+Bδ0(x−1) holds in distribution
sense. This proves Theorem 2.

5. Proof of Theorem 3. Consider now the time-dependent problem (1) in case
Ω = (−1, 1). ε∂tuε = ε2∂2

xuε + uε
(
r(x)−

∫
K(x, y)uε(y, t) dy

)
for − 1 < x < 1, t > 0,

∂xuε = 0 for x = ±1, t > 0,
uε(x, 0) = u0(x) for − 1 < x < 1.

(13)
In this section, let uε(x, t) be a solution of (13).

5.1. Persistence theory and the existence of equilibrium.

Lemma 5.1. The function ρε(t) :=
∫
uε(y, t) dy satisfies

min
{
ρε(0),

r∗
K∗

}
≤ ρε(t) ≤ max

{
ρε(0),

r∗

K∗

}
, (14)

where r∗, r∗,K
∗,K∗ are given in (7), and, letting t→∞,

r∗
K∗
≤ lim inf

t→∞
ρε(t) ≤ lim sup

t→∞
ρε(t) ≤

r∗

K∗
. (15)

Proof. By integrating (13) over x, we see that ρε satisfies

ε∂tρε =

∫
uεr dy +

∫∫
K(x, y)uε(x)uε(y) dxdy (16)

and hence also the differential inequalities

ε∂tρε ≤ ρε(r∗ −K∗ρε), and ε∂tρε ≥ ρε(r∗ −K∗ρε),
from which the lemma follows by ODE comparison.

Lemma 5.2. There exists C > 0, such that for any t0 > 1,

‖uε(·, t0)‖L∞((−1,1)) ≤ C
∫ t0

t0−1

∫ 1

−1

uε(x, t) dxdt.

Proof. For each y and t, extend uε(x, t), r(x) and K(x, y) on the boundary x = ±1
by reflection, we may assume that uε satisfies the same equation in (−3, 3)× [0,∞).
Hence, we have

‖uε(·, t0)‖L∞((−1,1)) ≤ C
∫ t0

t0−1

∫ 2

−2

uε(x, t) dxdt = 2C

∫ t0

t0−1

∫ 1

−1

uε(x, t) dxdt

by application of the local maximum principle [19, Theorem 7.36].

The following proposition from persistence theory, which is a special case of [25,
Theorem 6.2], is the key to proving Theorem 3.

Proposition 3. Fix ε > 0. Suppose

(i) X is a closed convex subset of C([0, 1]; [0,∞)).
(ii) X is forward-invariant with respect to the semiflow generated by (13) in

C([0, 1]; [0,∞)).
(iii) X is not the singleton set of the trivial function.

Then (3) has a positive solution ũε(x) lying in X.
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Proof. In the context of persistence theory, for each u0(x) ∈ X, we define the
persistence function ρ : X → [0,∞) by ρ(u0) = inf−1<x<1 u0. Then ρ is continuous
and concave. First, we prove the following claim, which asserts that the semiflow Φt :
X → X, generated by (13) in C([0, 1]; [0,∞)), is uniformly strongly ρ - persistent
(see [25, Definition 3.1]). Here for each u0 ∈ C([−1, 1]), Φt(u0) = uε(·, t), where uε
is the solution of (13) with initial data u0.

Claim 5. There exists δ > 0 independent of (non-trivial) initial condition u0 ≥ 0
such that

lim inf
t→∞

ρ(uε(·, t)) ≥ δ.

To see the claim, we apply the Harnack inequality (for parabolic equations on
bounded domain with Neuman boundary condtiions), due to J. Huska [13, Theorem
2.5], to obtain

inf
−1<x<1

uε(x, t) ≥ C sup
−1<x<1

uε(x, t) ≥
C

2

∫
uε(y, t) dy for t > 1.

Claim 5 thus follows upon taking t→∞, and using Lemma 5.1.

Claim 6. The semiflow Φt, restricted to the forward-invariant set X, has a compact
attractor A of neighborhood of compact sets. i.e. every compact subsets K0 ⊂⊂ X
has a neighborhood N such that

lim
t→∞

dist(Φt(u0),A) = 0 uniformly for u0 ∈ N,

where dist(Φt(u0),A) = infv0∈A ‖Φt(u0)− v0‖C([−1,1]).

We use [25, Theorem 2.30] to show the claim. It suffices to show that the semiflow
Φt is (i) point-dissipative; (ii) asymptotically smooth; and (iii) eventually bounded
on every compact subset K0 of X. Here we refer the readers to [25, Definition 2.25]
for the definitions of (i) - (iii). Point-dissipativity is a direct consequence of Lemmas
5.1 and 5.2.

Next, we prove asymptotic smoothness. First, we combine the parabolic Krylov-
Safanov estimate [15] (see also [19, Corollary 7.36]) and the local maximum principle
(Lemma 5.2) to obtain, for each ε > 0, 0 < γ < 1 and 0 < δ < T , the existence of
a constant C > 0 such that for any t0 ≥ 0,

‖uε‖Cγ([−1,1]×[t0+δ,t0+T )) ≤ C‖uε(·, ·)‖L∞((−1,1)×(t0+δ/2,t0+T ))

≤ C‖uε(·, ·)‖L1((−1,1)×(t0,t0+T )) .
(17)

Now, let X1 be a forward-invariant, bounded, closed subset of X, let ti → ∞ and
pi ∈ X1, then by (17) and Lemma 5.1,

‖Φti(pi)‖Cγ([−1,1]) ≤ C
∫ ti

ti−1

∫ 1

−1

uε(x, t) dxdt ≤ C,

i.e. the family {Φti(pi)}i is uniformly bounded in Cγ([−1, 1]) and hence has a
convergent subsequence in C([0, 1]). This demonstrates that Φt is asymptotically
smooth.

Finally, let K0 be a compact susbet of X, then there exists M > 0 such that
supu0∈K0

∫
u0(y) dy ≤M , and Lemma 5.1 implies that

sup
t≥0
‖uε(·, t)‖L1((−1,1)) ≤ max

{
M,

max[−1,1] r

min[−1,1]×[−1,1]K

}
.
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Hence, Lemma 5.2 says that if u0 ∈ K0, then

sup
t>1
‖uε(·, t)‖C([−1,1]) ≤ C sup

t≥0
‖uε(·, t)‖L1((−1,1)) ≤ C max

{
M,

max[−1,1] r

min[−1,1]×[−1,1]K

}
,

i.e. the semiflow Φt is eventually bounded on every compact subset K0 of X. This
proves Claim 6.

Claim 7. For each t ∈ (0, 1], Φt : X → X is compact.

Fix t ∈ (0, 1] and a bounded subset B of X, then by (17), there exists C = C(t)
such that

‖Φt(u0)‖Cγ([−1,1]) = ‖uε(·, t)‖Cγ([−1,1]) ≤ C‖uε‖L1((−1,1)×(0,1))

where uε(x, t) is the solution of (13) with initial condition u0. By Lemma 5.1, the
last term can be estimated by C max{‖u0‖L1((−1,1)), r

∗/K∗}. Hence we may take
supremum over u0 ∈ B, so that Φt(B) is a bounded subset of Cγ([−1, 1]) and is
precompact in X. This proves Claim 7.

Claim 8. If u0 ∈ C([−1, 1]) satisfies inf
−1<x<1

u0 > 0, then inf
−1<x<1

uε(x, t) > 0 for

all t > 0.

This is a direct consequence of the strong maximum principle [19, Theorem 2.7].
Finally, by the above setup, and Claims 5, 6, 7 and 8, we may apply [25, Theorem

6.2] to conclude the existence of at least one positive solution ũε(x) of (3) in X.

Corollary 5.3. Under our hypotheses (H) on K(x, y) and r(x). The equation (3)
has at least one positive solution.

Proof. TakeX = C([−1, 1]; [0,∞)) to be the set of nonnegative continuous functions
in Proposition 3.

5.2. Proof of Theorem 3.

Lemma 5.4. Define

h−(x) := ∂x

[
K(x,−1)

r(−1)

K(−1,−1)
− r(x)

]
, h+(x) := ∂x

[
K(x, 1)

r(1)

K(1, 1)
− r(x)

]
.

(18)
Under the assumption (C), there exists g−(x), g+(x) ∈ C2([−1, 1]) (both are inde-
pendent of ε), such that

(i) g−(x) < h−(x) for all x ∈ [−1, 1];

(ii)

∫ x

−1

g−(y) dy > 0 for − 1 < x < 1;

(iii)

∫ 1

−1

g−(y) dy = 0;

(iv) g−(x) = x+ 1 in some neighborhood of −1,

and that

(i’) g+(x) > h+(x) for all x ∈ [−1, 1];

(ii’)

∫ x

−1

g+(y) dy > 0 for − 1 < x < 1;

(iii’)

∫ 1

−1

g+(y) dy = 0;
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(iv’) g+(x) = x− 1 in some neighborhood of 1.

Proof. We will first construct g−(x). By assumption (C), we have

h−(−1) > 0 and

∫ x

−1

h−(y) dy > 0 for − 1 < x ≤ 1.

Hence, By subtracting a small positive constant from h−(x) and modifying in a small
neighborhood of −1, one may obtain a smooth function g0 such that g0(x) = x+ 1
in a small neighborhood of −1 and g0(x) < h−(x) in [−1, 1] and

∫ x
0
g0(y) dy > 0

for x ∈ (−1, 1). Finally, further subtract from g0 a positive function supported in a
neighborhood of 1, we obtain g−(x) with all desired properties (i) to (iv).

To construct g+(x), we first observe by assumption (C) that

h+(1) < 0 and

∫ 1

x

h+(y) dy < 0 for − 1 ≤ x < 1.

By repeating the steps in constructing g−(x), we obtain g+(x) satisfying properties
(i’), (iii’), (iv’), and that ∫ 1

x

g+(y) dy < 0 in (−1, 1).

In view of (iii’), the last property is equivalent to (ii”).

For each sufficiently small ε, we construct the sets Xδ
ε,±, which will then shown

to be forward-invariant. For this purpose, fix

δ0 :=
c0

3‖K‖C2([−1,1]2)
, where c0 =

1

2
min

{
inf

(−1,1)
|g− − h−|, inf

(−1,1)
|g+ − h+|

}
> 0

(19)
and choose

0 < δ < min{ (min r)3

2(maxK)2‖r′‖
, δ0} and 0 < η0 < min

{
2r∗

K∗
,
K∗δ0
r∗

}
, (20)

with η0 small enough so that

max

{
sup

[−1,−1+η0]3

∣∣∣∣ r(z)

K(x, y)
− r(−1)

K(−1,−1)

∣∣∣∣ , sup
[1−η0,1]3

∣∣∣∣ r(z)

K(x, y)
− r(1)

K(1, 1)

∣∣∣∣
}
<
δ

2
.

(21)
Next, define

w−(x) = −

√∫ x

−1

g−(y) dy < 0 and w+(x) =

√∫ x

−1

g+(y) dy > 0. (22)

where g± is from Lemma 5.4, and define the spaces

Xε,+ :=

{
u0 ∈ C1([−1, 1]; [0,∞)) :

r∗
K∗ ≤

∫
u0 dy ≤ r∗

K∗
and

ε∂xu0 ≥ w+u0 for −1 < x < 1.

}
,

Xε,− :=

{
u0 ∈ C1([−1, 1]; [0,∞)) :

r∗
K∗ ≤

∫
u0 dy ≤ r∗

K∗
and

ε∂xu0 ≤ w−u0 for −1 < x < 1.

}
,

Xδ
ε,+ :=

{
u0 ∈ Xε,+ :

∣∣∣∣∫ u0 dy −
r(1)

K(1, 1)

∣∣∣∣ ≤ δ} ,
and

Xδ
ε,− :=

{
u0 ∈ Xε,− :

∣∣∣∣∫ u0 dy −
r(−1)

K(−1,−1)

∣∣∣∣ ≤ δ} .



DIRAC-CONCENTRATIONS IN AN INTEGRO-PDE MODEL 13

Lemma 5.5. Let η0 satisfy (20) and (21), and let η3 = 1
2

∫ −1+η0
−1+η0/2

−w−(y) dy > 0,

where w− is defined in (22). Then for all ε < ε0 := η3/ log
(

2r∗

η0K∗

)
and any

u0 ∈ Xε,−, we have

ε log u0(x0) ≤ −η3 for all x0 ∈ [−1 + η0, 1]. (23)

Proof. Now, let x ∈ [−1,−1 + η0/2] and x0 ∈ [−1 + η0, 1]. By definition of Xε,−,

ε log u0(x) = ε log u0(x0)−
∫ x0

x

ε∂xu0(y)

u0(y)
dy ≥ ε log u0(x0)−

∫ −1+η0

−1+η0/2

w−(y) dy.

Hence, letting η3 = 1
2

∫ −1+η0
−1+η0/2

−w−(y) dy > 0,

u0(x) ≥ exp

(
ε log u0(x0) + 2η3

ε

)
.

Integrating over x ∈ [−1,−1 + η0/2], and using the integral constraint in Xε,−, we
have

r∗

K∗
≥ η0

2
exp

(
ε log u0(x0) + 2η3

ε

)
.

By our choices of η0 and ε, we have

η3 > ε log

(
2r∗

η0K∗

)
≥ ε log u0(x0) + 2η3.

This proves (23).

Lemma 5.6. Assume uε(·, t) ∈ Xδ
ε,− for 0 ≤ t ≤ T , then when ε ∈ (0, ε′0], we have

sup
−1<x<1

[∂xHε(x, t) + g−(x)] < −c0 for 0 ≤ t ≤ T, (24)

where c0 is given in (19), and

ε′0 :=
η3

log 8− log δ0
, Hε(x, t) := r(x)−

∫
K(x, y)uε(y, t) dy. (25)

Proof. Recall the definition of h−(x) in (18), we compute

∂xHε(x, t) + h−(x)

= ∂xK(x,−1) r(−1)
K(−1,−1) −

∫ 1

−1

∂xK(x, y)uε(y, t) dy

= ∂xK(x,−1)
[

r(−1)
K(−1,−1) −

∫ 1

−1

uε(y, t) dy

]
+

∫ −1+η0

−1

[∂xK(x,−1)− ∂xK(x, y)]uε(y, t) dy

+

∫ 1

−1+η0

[∂xK(x,−1)− ∂xK(x, y)]uε(y, t) dy

≤ δ‖K‖C1 + η0‖K‖C2

∫ −1+η0

−1

uε dy + 2‖K‖C1

∫ 1

−1+η0

uε dy

≤ ‖K‖C2

(
δ + η0

r∗

K∗
+ 4e−η3/ε

)
,

where we used the integral constraint in the definition of Xε,−, and Lemma 5.5, in
the last inequality. By the definition of δ and η0 in (20) and that ε ∈ (0, ε′0], we
have

∂xHε(x, t) + h−(x) < 3δ0‖K‖C2 = c0,
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and thus

∂xHε(x, t) + g−(x)+ < c0 − h−(x) + g−(x) ≤ −c0 for (x, t) ∈ [−1, 1]× [0, T ],

where the last inequality follows from the definition of c0 in (19) and the fact that
g−(x)− h−(x) < −2c0 in [−1, 1] (Lemma 5.4).

Lemma 5.7. Let c0 be given by (19) and ε ≤ ε′′0 := c0/(‖w−‖C2+‖w+‖C2). Assume
uε(·, 0) ∈ Xδ

ε,− and

sup
−1<x<1

[∂xHε(x, t) + g−(x)] < −c0 for 0 ≤ t ≤ T,

Then uε(·, t) ∈ Xε,− for 0 ≤ t ≤ T .

Proof. Define vε(x, t) = ε log uε(x, t), then vε satisfies ∂tvε = ε∂2
xvε + |∂xvε|2 +Hε(x, t) for x ∈ (−1, 1), t > 0,

∂xvε = 0 for x = ±1, t > 0,
vε(x, 0) = ε log uε(x, 0) for x ∈ (−1, 1).

(26)

By Lemma 5.1 and the definition of Xε,−, it is enough to show

∂xvε(x, t) ≤ w−(x) < 0 for (x, t) ∈ (−1, 1)× [0, T ]. (27)

Now, differentiate (26) with respect to x, and use Lemma 5.6, we have ∂tw − ε∂xxw − 2w∂xw − ∂xHε(x, t) = 0 in (−1, 1)× [0, T ],
w = 0 on {−1, 1} × [0, T ],
w(x, 0) ≤ w−(x) in (−1, 1).

(28)

where w(x, t) = ∂xvε(x, t) = ε∂xuε(x, t)/uε(x, t). Moreover, we verify that w− (as
given in (22)) satisfies −ε(∂xxw−)− 2(w−)∂x(w−)− ∂xHε(x, t) = −ε(∂xxw−)− g−(x)− ∂xHε(x, t)

in (−1, 1),
w− = 0 for x = ±1.

(29)
Now, by the hypotheses of the lemma,

−ε(∂xxw−)−2(w−)∂x(w−)−∂xHε(x, t)=−ε(∂2
xw−)−g(x)−∂xHε(x, t)>−c0+c0=0.

Hence w− is an upper solution of (28), from which it follows that ∂xvε = w ≤ w−
for (x, t) ∈ (−1, 1)× [0, T ].

Lemma 5.8. Let ε ≤ ε′′′0 := η3
log 2C1−log δ , where

C1 = max

{
4 +

2K∗

K∗

(
2 +

r∗

r∗

)
, 2
r∗K∗

r∗K∗
+ 4

(K∗)2

K∗r∗

}
.

Suppose

uε(·, 0) ∈ Xδ
ε,−, and uε(·, t) ∈ Xε,− for 0 ≤ t ≤ T,

then uε(·, t) ∈ Xδ
ε,− for 0 ≤ t ≤ T .
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Proof. Recall that ρε(t) :=
∫ 1

−1
uε(y, t) dy, then r∗

K∗ ≤ ρε(t) ≤ r∗

K∗
. By integrating

(13) over −1 < x < 1, we have

ε∂tρε ≤

(
sup

(−1,−1+η0)

r

)∫ −1+η0

−1

uε dy + r∗
∫ 1

−1+η0

uε dy

−
(

inf
(−1,−1+η0)2

K

)[∫ −1+η0

−1

uε dy

]2

+ 2K∗
[∫ 1

−1

uε dy

] [∫ 1

−1+η0

uε dy

]
=

(
inf

(−1,−1+η0)2
K

)[
sup(−1,−1+η0) r

inf(−1,−1+η0)2 K
−
∫ −1+η0

−1

uε dy

] ∫ −1+η0

−1

uε dy

+ [r∗ + 2K∗ρε(t)]

∫ 1

−1+η0

uε dy.

Using Lemma 5.1, we have∫ −1+η0

−1

uε dy = ρε −
∫ 1

−1+η0

uε dy, and
K∗

r∗
ρε ≥ 1,

so that

ε∂tρε ≤
(

inf
(−1,−1+η20)

K

)[
sup(−1,−1+η0) r

inf(−1,−1+η0)2 K

] ∫ −1+η0

−1

uε dy −
(

inf
(−1,−1+η20)

K

)
ρ2
ε

+

(
inf

(−1,−1+η20)
K

)[
ρ2
ε −

(∫ −1+η0

−1

uε dy

)2
]

+ [r∗ + 2K∗] ρε

∫ 1

−1+η0

uε dy

≤
(

inf
(−1,−1+η20)

K

)[
sup(−1,−1+η0) r

inf(−1,−1+η0)2 K

]
ρε −

(
inf

(−1,−1+η20)
K

)
ρ2
ε

+

(
inf

(−1,−1+η20)
K

)[
2ρε

∫ 1

−1+η0

uε dy

]
+

[
K∗r∗

r∗
+ 2K∗

]
ρε

∫ 1

−1+η0

uε dy

≤
(

inf
(−1,−1+η20)

K

)[
sup(−1,−1+η0) r

inf(−1,−1+η0)2 K
− ρε

]
ρε

+

[
2

(
inf

(−1,−1+η20)
K

)
+
K∗r∗

r∗
+ 2K∗

]
ρε

∫ 1

−1+η0

uε dy

≤
(

inf
(−1,−1+η20)

K

)[
sup(−1,−1+η0) r

inf(−1,−1+η0)2 K
+
C1

2

∫ 1

−1+η0

uε dy − ρε
]
ρε,

where C1 is given in the statement of the lemma. Using also Lemmas 5.5 and (21),

ε∂tρε ≤
(

inf
(−1,−1+η20)

K

)[
r(−1)

K(−1,−1)
+
δ

2
+ C1e

−η3/ε − ρε
]
ρε for 0 ≤ t ≤ T.

By the smallness of ε specified in the lemma, we deduce that

ε∂tρε ≤
(

inf
(−1,−1+η20)

K

)(
r(−1)

K(−1,−1)
+ δ − ρε

)
ρε for 0 ≤ t ≤ T.

Since also ρε(0) ≤ r(−1)
K(−1,−1) +δ, we have ρε(t) ≤ r(−1)

K(−1,−1) +δ for t ∈ [0, T ]. Similarly,

we can show that ρε(t) ≥ r(−1)
K(−1,−1) − δ for t ∈ [0, T ]. Hence we have uε(·, t) ∈ Xδ

ε,−
for t ∈ [0, T ].

Proposition 4. For all ε sufficiently small, the semiflow Φt generated by (13) is
forward-invariant in Xδ

ε,+ and also in Xδ
ε,−.
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Proof. Fix ε ≤ min{ε0, ε
′
0, ε
′′
0 , ε
′′′
0 }, where the latter four constants are as specified

in Lemmas 5.5 to 5.8. Assume uε(·, 0) ∈ Xδ
ε,−, and define I to be the maximal

interval for which uε(·, t) ∈ Xδ
ε,−, i.e.

I := {t0 ≥ 0 : uε(·, t) ∈ Xδ
ε,− for 0 ≤ t ≤ t0},

and I ′ to be the maximal interval for which sup−1<x<1[∂xHε(x, t) + g−(x)] < −c0,

I ′ :=

{
t0 ≥ 0 : sup

−1<x<1
[∂xHε(x, t) + g−(x)] < −c0 for 0 ≤ t ≤ t0

}
.

By the definition of Xδ
ε,− it is clear that I is closed, I 3 0 is nonempty, and that I ′

is open.
We claim that I = I ′, so that I is non-empty, open and closed. Now Lemma

5.6 implies I ⊂ I ′; and Lemmas 5.7 and 5.8 together implies I ⊃ I ′. We thus have
I = I ′. Being a non-empty, open and closed subset of [0,∞), it must be the case
that I = [0,∞). i.e. Xδ

ε,− is forward-invariant.

The proof for the forward-invariance of Xδ
ε,+ is similar and is omitted.

Proof of Theorem 3. By the forward-invariance of Xδ
ε,− (Proposition 4) and the

fact that Xδ
ε,− is closed and convex, we may apply Proposition 3 to yield, for every

sufficiently small ε, a positive solution ũε,− ⊂ Xε,−. Let ṽε,− = ε log ũε,−, then by
the proof of Proposition 1, we may pass to a sequence εk → 0 and assume ṽε,− → ṽ−
such that sup−1<x<1 ṽ− = 0. Furthermore, the fact that ũε,− ∈ Xε,− implies that

∂xṽεk,−(x) ≤ w− ≤ 0 and ṽεk,−(x) ≤ ṽεk,−(−1)+

∫ x

−1

w−(y) dy for −1 < x < 1.

Passing εk → 0, we deduce that ṽ−(x) ≤
∫ x
−1
w−(y) dy < 0 for −1 < x ≤ 1. Hence,

we must have
ũε,−(x)→ Aδ0(x+ 1) in distribution sense.

Since
∫
ũεk,− dy ≥ min r

maxK > 0, we may deduce as in proof of Proposition 2 that

A = r(−1)
K(−1,−1) . Since A is independent of subsequences εk → 0, we deduce that

ũε,−(x) → r(−1)
K(−1,−1)δ0(x + 1) in distribution, as ε → 0. Similarly, the forward

invariance of Xε,+ implies the existence of another positive solution of (3) ũε,+
such that ũε,+(x)→ r(1)

K(1,1)δ0(x− 1) in distribution, as ε→ 0.

6. Discussion. In this paper, the existence, multiplicity, and qualitative behavior
of a nonlocal competition model are studied. Sufficient conditions are obtained
in Theorems 1, 2 and 3, which guarantee the concentration of steady states (i)
at a single location; (ii) at two locations simultaneously ; (iii) at two alternative
locations. In the following, we briefly discuss the meaning of the assumptions in
terms of the adaptive dynamics framework.

The adaptive dynamics framework focuses on the competition between two dif-
ferent phenotypes of the same species. For this purpose, let x, y ∈ [−1, 1] be two
different phenotypes. The invasion fitness λ(x, y) is defined as the exponential
growth rate of the rare invader phenotype x in the environment where the resident

phenotype y is at equilibrium. By considering the linear stability of
(

r(x)
K(x,x) , 0

)
in

the two-species competition ODE system{
U ′(t) = U(t)(r(x)−K(x, x)U(t)−K(x, y)V (t)),
V ′(t) = V (t)(r(y)−K(y, x)U(t)−K(y, y)V (t)),
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we easily deduce

λ(x, y) = r(x)−K(x, y)
r(y)

K(y, y)
=
r(x)r(y)

K(y, y)

(
K(y, y)

r(y)
− K(x, y)

r(x)

)
.

Hence the sign of λ(x, y), which determines the invasion success or failure of the

phenotype x against phenotype y at equilibrium, is equivalent to the sign of K(y,y)
r(y) −

K(x,y)
r(x) . This partially justifies the use of derivatives of K(x,y)

r(x) , with respect to x, in

the assumptions (A), (B) and (C). To a certain extent, it is sufficient to impose

assumptions on the nodal sets of K(y,y)
r(y) −

K(x,y)
r(x) , which is the same as the nodal

set of λ(x, y).
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