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TRAVELING WAVES FOR A CLASS OF DIFFUSIVE
DISEASE-TRANSMISSION MODELS WITH NETWORK

STRUCTURES\ast 
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Abstract. In this paper, the necessary and sufficient conditions for the existence of traveling
wave solutions are derived for a class of diffusive disease-transmission models with network struc-
tures. The existence of traveling semifronts is obtained by Schauder's fixed-point theorem, and these
traveling semifronts are shown to be bounded by transforming the boundedness problem into the
classification problem of nonnegative solutions to a linear elliptic system on \BbbR . To overcome the
reducibility problem arising in the proofs, Harnack's inequality for positive supersolutions on \BbbR is
proved.
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1. Introduction. Compared with simple compartmental epidemic models, those
with complex network structures can better describe the disease-transmission behav-
iors [22]. In this paper, we aim to show the existence of traveling waves for a class
of diffusive disease-transmission models with network structures, which are formu-
lated by a noncooperative reaction-diffusion system and usually consist of more than
three equations. To that end, methods for traveling waves of noncooperative reaction-
diffusion systems will be developed.

In our model, hosts are assumed to be divided into n+1 subclasses, in which each
individual is either susceptible or infected. If a host is infected, we call it a carrier,
who may be infectious or noninfectious (e.g., exposed or infective class; see Britton
[4, Chapter 3]). Let u(x, t) and vi(x, t) denote the densities of susceptible and carrier
hosts with infection character i, respectively. Here x is the space variable and t is the
time. Then our diffusive model is given by

(1.1)

\left\{     
\partial u

\partial t
= d0\Delta u+ f(u) - g0(u, v),

\partial vi
\partial t

= di\Delta vi + gi(u, v), i = 1, . . . , n,
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where

v = (v1, . . . , vn), x \in \BbbR d, \Delta =

d\sum 
j=1

\partial 2

\partial x2j
, f(u) = \delta (K  - u),

g0(u, v) =

n\sum 
j=1

g0j (u, v), g0i (u, v) = u

n\sum 
j=1

\beta ijvj
1 + \gamma ijvj

, gi(u, v) = g0i (u, v) +

n\sum 
j=1

mijvj

with mjk \geq 0 if j \not = k and mjj \leq 0. Here dj (j = 0, 1, . . . , n), \delta and K are positive
constants, and \beta ij and \gamma ij are nonnegative constants such that \beta i0j0 > 0 for some

index i0 and j0. The function
\beta ijuvj
1+\gamma ijvj

stands for the disease incidence due to the jth

carrier class vj , which results in the susceptible u becoming carrier vi. It is the famous
bilinear incidence if \gamma ij = 0 and the saturation incidence if \gamma ij > 0 [27].

For system (1.1), we introduce the notations for the two matrices \BbbM , G0 \in \BbbR n\times n,
given by (\BbbM )ij = Dvjgi(0, 0) = mij and (G0)ij = Dvjgi(K, 0) = K\beta ij +mij , which
satisfy
(1.2)

gi(0, v) =

n\sum 
k=1

mikvk = (\BbbM v)i and gi(K, v) = (G0v)i + o(\| v\| ) for 1 \leq i \leq n.

Both matrices are essentially nonnegative and constant (i.e., off-diagonal entries are
nonnegative). In fact, (G0)ij \geq (\BbbM )ij for all i, j. These two matrices play important
roles in determining the critical wave speed and other properties of traveling wave
solutions.

To illustrate the range of disease models to which our methods for (1.1) apply,
we consider a multistage epidemiological model. Guo, Li, and Shuai [17] proposed a
general class of multistage epidemiological models that allow possible deterioration
and amelioration between any two infected stages. That model can describe disease
progression through multiple latent or infectious stages, as in the cases of HIV and
tuberculosis. The host population is partitioned into the following compartments: a
susceptible compartment S, a succession of infectious compartments Ii, i = 1, . . . , n,
whose members are in the ith stage of the disease progression, and a removed com-
partment R. Generally speaking, hosts can diffuse freely, and thus we consider a
special case of Guo's model with diffusion and bilinear incidence, which is as follows:

(1.3)

\left\{                       

\partial S

\partial t
= d0\Delta S + \delta (K  - S) - S

n\sum 
j=1

\beta jIj ,

\partial I1
\partial t

= d1\Delta I1 + S

n\sum 
j=1

\beta jIj +

n\sum 
j=1

\phi 1jIj  - \psi 1I1,

\partial Ii
\partial t

= di\Delta Ii +

n\sum 
j=1

\phi ijIj  - \psi iIi, i = 2, . . . , n,

where \delta ,K, di, i = 0, 1, . . . , n, are positive, and \psi i =
\sum n

j=1 \phi ji+\zeta i for all i. Moreover,

\phi ii = 0, \phi ij \geq 0 for all i, j, and
\sum n

j=1 \phi ji > 0 for all i; \beta i0 > 0 for some index i0,
and \zeta i > 0 for all i. Obviously, model (1.3) is a special case of (1.1). There are
two network structures in (1.3): the network between S and I := (I1, . . . , In) and
that among different progression stages Ii, i = 1, . . . , n. In the first network, \beta jSIj
stands for the disease incidence due to Ij . In the second network, \phi ij measures the
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transfer (deterioration or amelioration) rate from Ij to Ii. Similarly, for model (1.1),

the matrix
\bigl( \beta ijuvj

1+\gamma ijvj

\bigr) 
n\times n

stands for the transfer network from u to v and the matrix

\BbbM measures the transfer rates among vi, i = 1, . . . , n.
Besides the multistage epidemiological model (1.3), system (1.1) can also model

the spatial virulence-mutation behaviors [16, 15, 31, 14]. If mij = 0 = \beta ij for all i \not = j,
and \gamma ij = 0 for all i, j, then our model (1.1) becomes the one in [31]. If the total
host size is constant (i.e., u(x, t) +

\sum n
i=1 vi(x, t) is constant over \BbbR d \times [0,\infty )) and the

matrix \BbbM is irreducible, then our model results in the system of [14], the one in [16]
when n = 2, or the model in [15] when n = 2 and d1 = d2. Note that the existence of
traveling waves for our models in special cases [15, 14] has been studied completely.
However, unlike those in [16, 15, 31, 14], our model is more general and allows general
mutation matrix \BbbM and varying total host size, which would better describe virulence
evolution among different pathogen strains.

Apart from model (1.3) and those in [16, 15, 31, 14], system (1.1) also contains, as
special cases, the models in [40, 36] and those in [21, 30, 29, 23, 13, 11] with diffusion.
Clearly, in our model (1.1), susceptible hosts u have positive effects on carrier hosts
v, whereas the carrier hosts have negative effects on the susceptible. This means that
system (1.1) is noncooperative. The goal of this paper is to develop a novel method
for the existence of traveling waves of the noncooperative system (1.1) and to apply
this method to model (1.3) and the models in [16, 15, 31, 14, 21, 30, 29, 23, 13, 11].

Note that the disease incidence in (1.1) has the specific form
\beta ijuvj
1+\gamma ijvj

, which is un-

saturated (bilinear) if \gamma ij = 0 and saturated if \gamma ij > 0. Like [17, 36], we could certainly
make this incidence be a general nonlinear function with some tedious assumptions.
However, the paper organized in this manner may seem complex in writing, and lots
of efforts have to be paid for tedious assumptions. In this paper, in order to avoid
this situation and let the readers easily grasp the main ideas, we thus take the dis-
ease incidence to be the specific function

\beta ijuvj
1+\gamma ijvj

including saturated and unsaturated

cases. We hope to make the main ideas of the proofs more transparent in this way.
It is easy to verify that the following properties hold for system (1.1):
(C1) g0(u, v) is nondecreasing with respect to u \geq 0 and v \geq 0, and gj(u, v), j =

1, . . . , n, are nondecreasing with respect to u \geq 0 and vi \geq 0, i \not = j.
(C2) For u > 0 and v > 0, and i = 0, 1, . . . , n, the Hessian matrices D2

vgi(u, v)
are negative semidefinite. These two properties will be frequently used in the proofs
of this paper.

For simplicity, we introduce some notations that will be used throughout this
paper and then give some basic definitions.

1.1. Notations.
1. [n] := \{ 1, 2, . . . , n\} .
2. 0n := zero vector with n entries.
3. \^i denotes the imaginary unit, i.e., \^i2 =  - 1.
4. AT := transpose of the matrix A.
5. \Lambda 1(M) := Perron--Frobenius dominant (or principal) eigenvalue of essentially

nonnegative matrix M .
6. (M)ij := the (i, j) entry of matrix M ; (v)i := the ith entry of vector v;

(mij)n\times n denotes the n\times n matrix with entries mij .
7. \| v\| :=

\sum n
j=1 | (v)j | , where v is a vector with n entries.
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8. For vectors v, \^v \in \BbbR n, define

v \geq \^v if (v)j \geq (\^v)j for all j \in [n];

v > \^v if v \geq \^v and v \not = \^v;

v \gg \^v if (v)j > (\^v)j for all j \in [n].

9. s \succ 1: s is sufficiently large. s \prec  - 1:  - s is sufficiently large.
10. For \~v = (\~v0, \~v1, . . . , \~vn) and a function gi(\~v), set

gi,j(\~v) :=
\partial gi
\partial \~vj

(\~v), gi,jk(\~v) :=
\partial 2gi
\partial \~vj\partial \~vk

(\~v), i, j, k = 0, 1, . . . , n.

1.2. Definitions.

Definition 1.1.
1. A solution (u, v) = (u, v1, v2, . . . , vn)(x, t) of (1.1) is said to be a traveling

wave solution (TWS) if

(1.4) (u, v)(x, t) = (U, V1, V2, . . . , Vn)(s), s = xT \nu + ct,

for which c is referred to as the wave speed and \nu \in \BbbR d is the unit vector of
the traveling direction.

2. A positive TWS (1.4) is called a traveling semifront if

(1.5) (U, V )( - \infty ) = E0(K, 0n),

where E0 denotes the invasion-free equilibrium.
3. A traveling semifront (U, V )(s) is called persistent if it is bounded and satisfies

(1.6) lim inf
s\rightarrow +\infty 

U(s) > 0, lim inf
s\rightarrow +\infty 

Vj(s) > 0, j \in [n].

4. We say that a square matrix M = (Mij)n\times n is essentially nonnegative if
Mij \geq 0 whenever i \not = j. And we say that M is irreducible if for some k \in \BbbN ,
all entries of \~Mk are positive, where

\~Mij :=

\biggl\{ 
0 if i = j,
Mij if i \not = j.

We recall the classical Perron--Frobenius theorem for nonnegative matrices. See,
e.g., [3, pp. 26--27].

Theorem 1.2. Every essentially nonnegative matrix M has a Perron--Frobenius
dominant eigenvalue \Lambda 1(M) \in \BbbR , which is the eigenvalue with the greatest real part.
Moreover, if M is irreducible, there exists a strictly positive right (resp., left) eigen-
vector \vec{}vR (resp.,l \vec{}vL), such that

M\vec{}vR = \Lambda 1(M)\vec{}vR (resp., (\vec{}vL)
TM = \Lambda 1(M)(\vec{}vL)

T ).

There may be other real eigenvalues besides \Lambda 1(M), but \Lambda 1(M) is the only one with
nonnegative eigenvectors.
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1.3. Methods and related results in the literature. We now review the
methods frequently used for the existence of traveling wave solutions for reaction-
diffusion systems.

Wu and Zou [35], Li, Weinberger, and Lewis [24], and Liang and Zhao [26] set up
the general theory on the existence of TWSs for cooperative (or monotonic) systems
by monotonic theories. For noncooperative systems that can be controlled from above
and from below by cooperative systems, Wang [33] obtained results similar to that
of [24] by comparison arguments. Recently, by using Schauder's fixed-point theorem
and rescaling method, Girardin [14] studied a noncooperative system, the lineariza-
tion of which at invasion-free equilibrium results in an irreducible (and essentially
nonnegative) matrix.

Unfortunately, a large number of models, such as the famous predator-prey model
and SI disease-transmission model, cannot be controlled by cooperative systems, and
the linearization of these models at invasion-free equilibrium (e.g., prey-only equilib-
rium or disease-free equilibrium) is not cooperative. In this case, we say that the model
is essentially noncooperative. There are two methods commonly used for essentially
noncooperative reaction-diffusion systems, i.e., the geometric approach (or shooting
method) and Schauder's fixed-point theorem approach. The shooting method was
proposed by Dunbar [9, 10] for predator-prey models and has been adopted by many
researchers for more than 30 years. This method was developed further by Huang [20]
for a class of general noncooperative systems. Though it is powerful, the geometric
method is mainly used for noncooperative systems consisting of two equations. It
is usually challenging to analyze the geometric behaviors of noncooperative systems
consisting of more than three equations. The approach via Schauder's fixed-point
theorem is also widely used for essentially noncooperative systems; it was proposed
by Ma [28] and developed by Huang and Zou [18, 19] and Li, Lin, and Ruan [25].
Typically, to apply Schauder's fixed-point theorem, one needs to construct a pair
of appropriate super- and subsolutions connecting two equilibria, which is generally
challenging. To overcome this difficulty, Schauder's fixed-point theorem method was
developed further by Ducrot, Langlais, and Magal [8], Fu and Tsai [12], and Zhang,
Wang, and Wang [39] by constructing a pair of super- and subsolutions connecting
only invasion-free equilibrium at  - \infty and by using LaSalle's invariance principle to
conclude convergence to a positive equilibrium at +\infty . Zhang, Wang, and Wang
[39] also developed Schauder's fixed-point theorem by introducing persistence theory
(see Thieme [32]) into the study of traveling waves where Lyapunov function is not
available, whereby LaSalle's invariance principle cannot be applied. By Schauder's
fixed-point theorem, Zhang [36] studied the existence of traveling waves with the min-
imal wave speed for a general noncooperative system (with or without recruitment)
consisting of three equations.

We say that system (1.1) is unsaturated if there exist i and j such that \beta ij >
0, \gamma ij = 0, i.e., g0i (u, v) is unbounded with respect to v > 0 for fixed u > 0. Then
system (1.1) may be unsaturated and essentially noncooperative with recruitment
(i.e., f(u) \not \equiv 0). The existence of traveling waves for an unsaturated and essentially
noncooperative system without recruitment can be studied by the methods proposed
by Wang and Wu [34] or Zhang and Wang [38]. However, to the best of our knowledge,
there is not much literature on unsaturated and essentially noncooperative systems
consisting of more than two equations with recruitment. Zhao and Wang [40] studied
such a diffusive model, but there are some restrictions on the diffusive coefficients.
Therefore, all the aforementioned methods cannot be directly applied to system (1.1)
since they mainly deal with low-dimensional noncooperative systems (such as the
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geometric method or the methods in [8, 12]) or saturated noncooperative systems
(such as the methods in [39, 36])

In this paper, we study the existence and nonexistence of traveling waves for sys-
tem (1.1) by the rescaling method, which was used by Ducrot, Langlais, and Magal
[8] for the nonexistence of traveling waves and by Berestycki et al. [2] and Girardin
[14] for the existence of traveling waves. However, the methods utilized in these three
papers cannot be directly applied to our model, and the reasons are as follows: (i)
The irreducibility of the linearization matrix plays a key role in [14] since Harnack's
inequality for elliptic systems works well in that case. In this paper, we assume that
G0 is irreducible but do not require \BbbM to be irreducible (see (1.2) for the definition
of \BbbM and G0). (ii) In [14], the system is, for instance, of Lotka--Volterra type and the
boundedness of traveling waves can be guaranteed by the growth of the competition
terms (assumption (H4) in [14]). This cannot be done for (1.1) in general since our
system (1.1) may be unsaturated. It is a challenge to show the boundedness of travel-
ing waves, especially the traveling wave with minimal wave speed. (iii) The hyperbolic
property was used in [36] when Zhang studied the traveling wave with minimal wave
speed in [36]. However, this property cannot be easily obtained for higher-dimensional
systems such as (1.1). We overcome the obstacles (i)--(iii) by developing Harnack's
inequality for positive supersolution in entire space (see Lemma 2.1) and by trans-
forming the boundedness problem of traveling waves into the classification problem of
nonnegative solutions to a linear elliptic system (Proposition 2.4). These two results
are of independent interest in linear theory.

1.4. Main results. Recall that \BbbM = (mij)n\times n and G0 are given in (1.2). The
following theorem summarizes the main results of this work.

Theorem 1.3. Assume that G0 is irreducible:
(a) Suppose \Lambda 1(G

0) < 0; then for any c \in \BbbR , system (1.1) has no bounded traveling
semifronts with wave speed c.

(b) Suppose \Lambda 1(G
0) > 0; then there exists c\ast 0 > 0 such that the following hold:

(i) For any c \in ( - \infty , c\ast 0), system (1.1) has no traveling semifronts with wave
speed c.

(ii) For any c \in [c\ast 0,+\infty ), system (1.1) has a persistent traveling semifront
with wave speed c if, in addition, \Lambda 1(\BbbM ) < 0 holds.

We discuss briefly the assumption \Lambda 1(\BbbM ) < 0 < \Lambda 1(G
0) for the existence of

traveling semifronts. The first condition \Lambda 1(\BbbM ) < 0 is natural, as it means that the
disease will become extinct in the absence of susceptibles (u \equiv 0). On the other
hand, the second condition \Lambda 1(G

0) > 0 is, in most cases, equivalent to saying that the
disease can establish when susceptibles are at carrying capacity (u \equiv K) (or that the
basic reproduction number is greater than one). Hence it is necessary for the spread
of the disease. This theorem will be divided into two theorems (Theorems 3.2 and
6.1) to facilitate the organization of this paper.

The remainder of this paper is organized as follows. In section 2, some linear
problems are prepared for the main proofs. Specifically, Harnack's inequality is devel-
oped for positive supersolution in entire space, and nonnegative solutions for a linear
elliptic system are completely classified. In section 3, we give the definition of the
minimal wave speed c\ast 0 and show the nonexistence of traveling semifronts of system
(1.1) when c < c\ast 0. Section 4 is devoted to the existence and boundedness of traveling
semifronts of system (1.1) with wave speed c > c\ast 0, and section 5 deals with the exis-
tence of traveling semifronts in the case c = c\ast 0. In section 6, the traveling semifronts
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of (1.1) with wave speed c \geq c\ast 0 are shown to be persistent. In section 7, we apply
our theorems to the multistage epidemiological model (1.3), and the TWSs for this
model are shown to connect two equilibria by LaSalle's invariance principle.

2. Preliminary on a linear elliptic system. In this section, three important
results about some linear problems are established, that is, Lemma 2.1, Proposition
2.4, and Lemma 2.9, which play key roles in the proofs following section 2. The results
of this section are independent of other sections.

We first consider the following Harnack's inequality (see also Arapostathis, Ghosh,
and Marcus [1, Theorem 2.2]).

Lemma 2.1. Assume that \psi (\cdot ) \in C2(\BbbR ) is nonnegative in \BbbR and \psi (s) satisfies

(2.1) \psi \prime \prime + p1(s)\psi 
\prime + p2(s)\psi \leq 0 for s \in \BbbR ,

where p1(\cdot ), p2(\cdot ) \in C(\BbbR ), | p1(s)| + | p2(s)| \leq M1 for some positive constant M1 and
all s \in \BbbR :

(i) If \psi (s) > 0 for all s \in \BbbR , then there exists a positive constant M2 depending
only on M1 such that \bigm| \bigm| \bigm| \bigm| \psi \prime (s)

\psi (s)

\bigm| \bigm| \bigm| \bigm| \leq M2 for all s \in \BbbR .

(ii) There exists some positive constant M3 such that

sup
[a,b]

\psi \leq M3 inf
[a,b]

\psi ,

where M3 depends only on M1 and b - a.

Proof. If \psi \equiv 0, there is nothing to prove. If \psi \not \equiv 0, then the strong maximum
principle implies that \psi > 0 in \BbbR , which we henceforth assume.

First consider the proof of (i). Set \varphi = ln\psi and \psi = e\varphi . Substituting this
transform into (2.1) yields

\varphi \prime \prime + (\varphi \prime )2 + p1(s)\varphi 
\prime + p2(s) \leq 0.

By setting \varphi \prime = w, it follows that

w\prime (s) \leq  - w2(s) - p1(s)w(s) - p2(s).

Note that w(s) = \psi \prime (s)/\psi (s). By the boundedness of p1 and p2, there exists M2 > 0
depending only on M1 such that

(2.2) w\prime (s) \leq  - 1

2
| w(s)| 2 whenever | w(s)| \geq M2.

Suppose w(s1) \leq  - M2 for some s1 \in \BbbR . Then it follows from (2.2) that w\prime (s) < 0
for all s > s1 and thus w(s) is strictly decreasing in [s1,+\infty ). In particular, w(s) \leq 
w(s1) \leq  - M2 for all s \geq s1, which means that (2.2) holds in [s1,+\infty ). By the
comparison principle of ordinary differential equations (ODEs), we have

w(s) \leq 2w(s1)

2 + (s - s1)w(s1)
for all s > s1.

But then w(s) \rightarrow  - \infty as s\nearrow s1  - 2/w(s1), contradicting w(s) = \psi \prime (s)/\psi (s) \in C(\BbbR ).
Hence we conclude that w(s) \geq  - M2 for all s \in \BbbR .
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Similarly, suppose w(s1) \geq M2 for some s1 \in \BbbR ; then w\prime (s) < 0 and w(s) \geq M2

for all s \leq s1. Hence (2.2) holds for all s \leq s1, and by the comparison principle,

w(s) \geq 2w(s1)

2 + (s - s1)w(s1)
for all s < s1.

Then it follows that w(s) \rightarrow +\infty as s\searrow s1 - 2/w(s1), which is a contradiction. Hence
we conclude that w(s) \leq M2 for all s \in \BbbR . This proves part (i).

Now consider (ii). Let s1, s2 \in [a, b]; then it follows from (i) that

\varphi (s2) - \varphi (s1) \leq sup
[a,b]

| w(s)| (b - a) \leq M2(b - a),

implying
\psi (s2) \leq \psi (s1)e

M2(b - a).

(ii) follows from the arbitrariness of s1, s2 \in [a, b].

Remark 2.2. Note that the result (i) of Lemma 2.1 has been established by
Lemma 3.7 in Zhang and Jin [37]. The proof of (i) in this paper is more direct
than that in [37]. Obviously, (ii) of Lemma 2.1 generalizes Harnack's inequality in
Arapostathis, Ghosh, and Marcus [1, Theorems 2.1 and 2.2] to positive supersolution
in entire space. We use Lemma 2.1 to deal with the homogeneous linear elliptic system
with an essentially nonnegative (not necessarily irreducible) coefficient matrix.

Throughout this section, let P = (Pij)n\times n be a given essentially nonnegative
matrix and let

H\lambda ,c := diag(di\lambda 
2  - c\lambda )

denote the diagonal matrix with diagonal entries di\lambda 
2  - c\lambda , i \in [n]. The following

lemma is needed to describe Proposition 2.4.

Lemma 2.3. For each c \in \BbbR , let

(2.3) \Lambda (c) := \{ \lambda \in \BbbR : \Lambda 1(H\lambda ,c + P ) = 0\} .

(i) If \Lambda 1(P ) < 0, then for any c \in \BbbR we have \Lambda (c) = \{ \lambda , \lambda \} for some \lambda < 0 < \lambda .
(ii) If \Lambda 1(P ) > 0, then there exists c\ast > 0 such that

\Lambda (c) =

\left\{           
\{ \lambda , \lambda \} for some \lambda < \lambda < 0 when c <  - c\ast ,
\{ \lambda = \lambda \} for some \lambda = \lambda < 0 when c =  - c\ast ,
\emptyset when  - c\ast < c < c\ast ,
\{ \lambda = \lambda \} for some \lambda = \lambda > 0 when c = c\ast ,
\{ \lambda , \lambda \} for some 0 < \lambda < \lambda when c > c\ast .

(iii) If \lambda < \lambda , then \Lambda 1(H\lambda ,c + P ) < 0 for all \lambda \in (\lambda , \lambda ).
(iv) If c \geq c\ast , then \lambda is nonincreasing with respect to Pij , i, j \in [n]. Moreover,

\lambda is strictly decreasing with respect to Pij , i, j \in [n], if P is irreducible.

Proof. Denote \mu (\lambda ) := \Lambda 1(H\lambda ,0 + P ). Then it is obvious that \Lambda 1(H\lambda ,c + P ) =
\mu (\lambda ) - c\lambda . It is easy to verify that

\mu (\lambda ) = \~d\lambda 2 + \~\Lambda (\lambda ),

where
\~d =

1

2
min\{ d1, . . . , dn\} , \~\Lambda (\lambda ) = \Lambda 1(diag((di  - \~d)\lambda 2) + P ).
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(a) Lemma 2.3(i) when c > 0.

λ
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(P)

(b) The third case of Lemma 2.3(ii)
when 0 < c < c\ast .

λλ = λ

Λ
1
(P)

(c) The fourth case of Lemma 2.3(ii)
when c = c\ast .

Λ
1
(P)

λ λ λ

(d) The fifth case of Lemma 2.3(ii)
when c > c\ast .

Fig. 1. Diagram illustrating Lemma 2.3. The solid curve and dashed line are \mu (\lambda ) = \Lambda 1(H\lambda ,0+
P ) and c\lambda , respectively.

Obviously, we have
\mu \prime \prime (\lambda ) = 2 \~d+ \~\Lambda \prime \prime (\lambda ) \geq 2 \~d > 0,

where we used the fact that \~\Lambda (\lambda ) is convex in \lambda (see [5]). This means that \mu (\lambda )
is strictly convex in \lambda \in \BbbR . It is obvious that \mu (\lambda ) is an even function and thus
symmetric with respect to the vertical axis. Since \Lambda 1(H\lambda ,c + P ) = 0 if and only if
\mu (\lambda ) = c\lambda , then (i), (ii), and (iii) can be given by the convexity and symmetry of \mu (\lambda )
(see Figure 1). It follows from [3, (1.5) Corollary, p. 27] that \mu (\lambda ) is nondecreasing
in Pij and strictly increasing in Pij , provided that P is irreducible. Then (iv) follows
from the convexity and symmetry of \mu (\lambda ).

For each c \in \BbbR , we define

(2.4) \Gamma (c) = \{ \lambda \in \BbbC : 0 is an eigenvalue of H\lambda ,c + P\} .

It is obvious that \Lambda (c) \subset \Gamma (c). We have the following classification result.

Proposition 2.4. Assume \~V (s) is a nonnegative solution to

(2.5) di \~V
\prime \prime 
i (s) - c \~V \prime 

i (s) +

n\sum 
j=1

Pij
\~Vj(s) = 0, s \in \BbbR , i \in [n],

and for all \lambda \in \Gamma (c) let \zeta \lambda be the unit eigenvector of H\lambda ,c + P corresponding to the
eigenvalue 0. Then the following three conclusions hold:

(i)

(2.6) \~V (s) =
\sum 

\lambda \in \Gamma (c)\cap \BbbR 

c\lambda e
\lambda s\zeta \lambda 
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with the restriction c\lambda \zeta \lambda \geq 0.
(ii) If P is irreducible, then (2.6) can be strengthened to be

\~V (s) =
\sum 

\lambda \in \Lambda (c)

c\lambda e
\lambda s\zeta \lambda ,

where the set \Lambda (c) is defined in Lemma 2.3 and it contains at most two real numbers.
Moreover, either c\lambda \zeta \lambda = 0 or c\lambda \zeta \lambda \gg 0.

(iii) If P is irreducible and \Lambda (c) = \emptyset , then \~V (s) \equiv 0.

Let In\times n be the identity matrix of size n. By writing (2.5) as a system of 2n
first-order ODEs\biggl( 

V
W

\biggr) \prime 
= Ac

\biggl( 
V
W

\biggr) 
, where Ac =

\biggl( 
0 In\times n

 - diag (1/di)P diag (c/di)

\biggr) 
\in \BbbR 2n\times 2n,

we can write any solution \~V of system (2.5) in the form

(2.7) \~V (s) =
\sum 

\lambda \in \Gamma (c)

c\lambda 

k\lambda \sum 
j=0

Re
\Bigl( 
e\lambda ssk\lambda  - j\zeta j\lambda 

\Bigr) 
,

where k\lambda \geq 0 is an integer smaller than the dimension m\lambda = dim \cup j\geq 1 ker (\lambda I2n\times 2n - 
Ac)

j (so that
\sum 

\lambda \in \Gamma (c)m\lambda = 2n), \zeta j\lambda , j \in [k\lambda ], are constant vectors, and \zeta 0\lambda is an
eigenvector corresponding to the zero eigenvalue of H\lambda ,c + P . By possibly replacing

\zeta j\lambda by  - \zeta j\lambda , we may assume without loss of generality that c\lambda \geq 0 for all \lambda .

Remark 2.5. In the above, we used the elementary fact that 0 is an eigenvalue
of H\lambda ,c + P with eigenvector \zeta 0\lambda \in \BbbR n if and only if \lambda is an eigenvalue of Ac with
eigenvector (\zeta 0\lambda , \lambda \zeta 

0
\lambda ) \in \BbbR 2n.

The following three lemmas are needed to complete the proof of Proposition 2.4.

Lemma 2.6. Let

\varphi (s) = Re

\left(  j0\sum 
j=1

aje
\^i\beta js

\right)  ,

where aj \in \BbbC , \beta j \in \BbbR , \beta j \not = 0 for all j \in [j0], and there exists some aj \not = 0. Then
(i)

lim inf
s\rightarrow +\infty 

\varphi (s) < 0, lim inf
s\rightarrow  - \infty 

\varphi (s) < 0, lim sup
s\rightarrow +\infty 

\varphi (s) > 0, lim sup
s\rightarrow  - \infty 

\varphi (s) > 0.

(ii)

lim
L\rightarrow +\infty 

\Biggl[ 
sup
s0\in \BbbR 

1

2L

\int s0+L

s0 - L

\varphi (s) ds

\Biggr] 
= 0.

Proof. It is obvious that \varphi (s) and \varphi \prime (s) are bounded on \BbbR and that

lim
s\rightarrow +\infty 

1

s - s0

\int s

s0

\varphi (t)dt = 0

for any s0 \in \BbbR . By Corduneanu [6, Proposition 3.7], for any \epsilon > 0 there exists
l = l(\epsilon ) > 0 such that there exist \tau k \in (kl, (k + 1)l), k \in \BbbZ , with the property

(2.8) | \varphi (s0 + \tau k) - \varphi (s0)| < \epsilon for all s0 \in \BbbR .
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If \varphi (s) \geq 0 for all s \in \BbbR , then (2.8), the fact that \varphi (s) \not \equiv 0, and the boundedness
of \varphi \prime (s) imply lim sups\rightarrow +\infty 

1
s - s\ast 

\int s

s\ast 
\varphi (t)dt > 0, a contradiction. Hence there exists

s1 such that \varphi (s1) < 0. Therefore, (2.8) shows that lim infs\rightarrow +\infty \varphi (s) < 0. Other
inequalities in (i) can be similarly proved.

Assertion (ii) is a direct consequence of \varphi (s) being a finite linear combination of
sine and cosine functions.

Lemma 2.7. Suppose for some \lambda , \lambda \prime \in \Gamma (c) we have

(H\lambda ,c + P )\zeta \lambda = 0 and (H\lambda \prime ,c + P )\zeta \lambda \prime = 0

for some \zeta \lambda \in [0,+\infty )n \setminus \{ 0\} and \zeta \lambda \prime \in \BbbC n \setminus \{ 0\} . If \lambda \in \BbbR and \lambda \prime = \lambda +\^i\beta for some
\beta \in \BbbR \setminus \{ 0\} , then there exists a component i such that (\zeta \lambda \prime )i \not = 0 and (\zeta \lambda )i = 0.

Proof. Assume to the contrary that there exists \lambda \prime = \lambda + \^ib \in \Gamma (c) \setminus \BbbR with
corresponding eigenvector \zeta \lambda \prime such that

\{ i : (\zeta \lambda \prime )i \not = 0\} \subset \{ i : (\zeta \lambda )i > 0\} .

Choose
\=k := inf

\Bigl\{ 
k \in \BbbR : e\lambda s

\Bigl[ 
Re(e

\^ibs\zeta \lambda \prime ) + k\zeta \lambda 

\Bigr] 
\geq 0 for all s \in \BbbR 

\Bigr\} 
.

Since at least one entry of Re(e
\^ibs\zeta \lambda \prime ) changes sign and is periodic (with period 2\pi /b)

on \BbbR by Lemma 2.6, we can deduce that 0 < \=k <\infty and that

V0(s) := e\lambda s
\Bigl[ 
Re(e

\^ibs\zeta \lambda \prime ) + \=k\zeta \lambda 

\Bigr] 
is a nonnegative, nontrivial solution of (2.5) such that for some index j, (V0(s))j has
zero as a strict minimum. This contradicts Harnack's inequality (Lemma 2.1(ii)).

Lemma 2.8. Let W (s) =
\sum k1

k=1 e
\lambda ksslk(\zeta k + \varphi k(s) + \epsilon k(s)) satisfy

W \prime \prime + aW \prime + bW \leq 0 and W \geq 0 for s \in \BbbR ,

where \lambda 1 < \lambda 2 < \cdot \cdot \cdot < \lambda k1
, lk \in \BbbN \cup \{ 0\} , \zeta k, a, b \in \BbbR , and \zeta 1 and \varphi 1(s) are not both

identically zero. Furthermore, assume that lim| s| \rightarrow \infty | \epsilon k(s)| = 0 and that \varphi k(s) is a
finite linear combination of sine and cosine functions, as in Lemma 2.6. Then

lim inf
s\rightarrow  - \infty 

e - \lambda 1sW (s) > 0.

Proof. Let \~W (s) = e - \lambda 1sW (s); then \~W \prime \prime + (2\lambda 1 + a) \~W \prime + (\lambda 21 + a\lambda 1 + b) \~W \leq 0
on s \in \BbbR . Hence we may assume without loss of generality that 0 = \lambda 1 < \lambda 2 < \cdot \cdot \cdot .

If \varphi 1(s) \equiv 0, then \zeta 1 \not = 0. Hence lim infs\rightarrow  - \infty | s|  - l1W (s) = | \zeta 1| > 0. This proves
lim infs\rightarrow  - \infty W (s) > 0 in the case of \varphi 1(s) \equiv 0.

It remains to prove the case when \varphi 1(s) \not \equiv 0. We prove only the case for l1 being
even, as the proof for the other case is similar. In this case,

\zeta 1 + lim inf
s\rightarrow  - \infty 

\varphi 1(s) = lim inf
s\rightarrow  - \infty 

s - l1W (s) \geq 0.

By Lemma 2.6(i), lim infs\rightarrow  - \infty \varphi 1(s) < 0. Hence \zeta 1 > 0. Assume to the contrary
that there exists sj \rightarrow  - \infty such that W (sj) \rightarrow 0 as j \rightarrow \infty . By Harnack's inequality
(Lemma 2.1(ii)), we deduce that, for each L > 0,

lim
j\rightarrow \infty 

1

2L

\int sj+L

sj - L

W (s) ds = 0.
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Hence, for each L > 0,

(2.9) lim
j\rightarrow \infty 

1

2L

\int sj+L

sj - L

(\zeta 1 + \varphi 1(s)) ds = lim
j\rightarrow \infty 

1

2L

\int sj+L

sj - L

s - l1W (s) ds = 0.

Next, choose a constant L0 > 0 such that

(2.10) sup
s0\in \BbbR 

\bigm| \bigm| \bigm| \bigm| \bigm| 1

2L0

\int s0+L0

s0 - L0

\varphi 1(s) ds

\bigm| \bigm| \bigm| \bigm| \bigm| < 1

2
\zeta 1,

which is possible due to Lemma 2.6(ii) and the fact that \zeta 1 > 0. Finally, by (2.9) and
(2.10),

0 = lim
j\rightarrow \infty 

1

2L0

\int sj+L0

sj - L0

(\zeta 1 + \varphi 1(s)) ds \geq \zeta 1  - 
1

2
\zeta 1 > 0.

This leads to a contradiction, and the assertion is approved as s\rightarrow  - \infty .

Proof of Proposition 2.4. Let \~V (s) be a nonnegative solution of (2.5). Then \~V (s)
can be written in the form (2.7): \~V (s) = \~V1(s) + \~V2(s), where

\~V1(s) =
\sum 

\lambda \in \Gamma (c)\cap \BbbR 

c\lambda e
\lambda ssl\lambda (\zeta 0\lambda + o1(1)), \~V2(s) =

\sum 
\alpha +\^i\beta \in \Gamma (c)\setminus \BbbR 

c\prime \alpha e
\alpha ssk\alpha (\varphi \alpha (s) + o2(1)),

with c\lambda \geq 0, c\prime \alpha \in \BbbR , \zeta 0\lambda \not = 0 (\in \BbbR n); each entry of \varphi \alpha (s) has the form of \varphi (s) in
Lemma 2.6; l\lambda and k\alpha are nonnegative integers; oi(1) \rightarrow 0, i \in [2], when | s| \rightarrow \infty ,
o1(1) \equiv 0 if l\lambda = 0, and o2(1) \equiv 0 if k\alpha = 0. Define

\=\mu 1 = max\{ \lambda : \lambda \in \Gamma (c) \cap \BbbR , c\lambda \not = 0\} ,

and define, when \~V2 \not \equiv 0 (i.e., c\prime \alpha 0
\not = 0 for some \alpha 0 \in \{ \alpha \in \BbbR : \alpha +\^i\beta \in \Gamma (c) \setminus \BbbR \} ),

\=\mu 2 = max\{ \alpha : \alpha +\^i\beta \in \Gamma (c) \setminus \BbbR , c\prime \alpha \not = 0\} .

For each i, di( \~V )\prime \prime i  - c( \~V )\prime i+Pii( \~V )i \leq 0 on \BbbR . The strong maximum principle implies
that, for each i, either ( \~V )i \equiv 0 or ( \~V )i > 0 on \BbbR . By considering only the nontrivial
components of \~V (s), we may assume without loss of generality that ( \~V )i(s) > 0 for
all i and for all s \in \BbbR .

Step 1. \=\mu 1 is well-defined, and c\=\mu 1 > 0, \zeta 0\=\mu 1
> 0. Furthermore, if \~V2 \not \equiv 0, then

\=\mu 1 \geq \=\mu 2.
If \~V2(s) \equiv 0, then it follows from the positivity of \~V (s) that \=\mu 1 is well-defined

and c\=\mu 1
> 0. For each i such that (\zeta 0\=\mu 1

)i \not = 0, we have (recall that ``s \succ 1"" means ``s
is sufficiently large"")

0 < sgn ( \~V )i(s) = sgn (c\=\mu 1(\zeta 
0
\=\mu 1
)i) for all s \succ 1.

Since we have chosen c\=\mu 1
to be positive, we conclude that \zeta 0\=\mu 1

> 0.

Next, suppose \~V2(s) \not \equiv 0, so that \=\mu 2 is well-defined and, by Lemma 2.6(i), \=\mu 1

is also well-defined. Since \varphi \=\mu 2(s) \not \equiv 0 is almost periodic, Lemma 2.6(i) implies that
\=\mu 1 \geq \=\mu 2 and that \zeta 0\=\mu 1

> 0.

Step 2. If \~V2(s) \not \equiv 0, then either (a) \=\mu 1 > \=\mu 2; or (b) \=\mu 1 = \=\mu 2 and l\=\mu 1
> k\=\mu 2

.
Suppose to the contrary that the above result does not hold. Then it follows from

Step 1 that \zeta 0\=\mu 1
> 0, \=\mu 1 = \=\mu 2, and l\=\mu 1

\leq k\=\mu 2
. Moreover, by the fact that \varphi \=\mu 2

\not \equiv 0 is
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almost periodic, Lemma 2.6(i) and \~V \geq 0 imply that l\=\mu 1
= k\=\mu 2

. Considering the facts

that (i) \~V (s) \gg 0, and that (ii) ( \~V1)i(s) = o(e\=\mu 1s) as s \rightarrow +\infty for those components
i such that (\zeta 0\=\mu 1

)i = 0, we deduce that \{ i : (\varphi \=\mu 2
(s))i \not \equiv 0\} \subset \{ i : (\zeta 0\=\mu 1

)i > 0\} . But this
is in contradiction to Lemma 2.7.

Step 3. For each component i \in [n] such that (\zeta 0\=\mu 1
)i > 0, we have

(2.11) lim inf
| s| \rightarrow +\infty 

e - \=\mu 1s| s|  - l\=\mu 1 ( \~V )i(s) \geq c\=\mu 1(\zeta 
0
\=\mu 1
)i > 0.

It follows directly from Step 2 that if (\zeta 0\=\mu 1
)i > 0, then

lim
s\rightarrow +\infty 

e - \=\mu 1s| s|  - l\=\mu 1 ( \~V )i(s) = c\=\mu 1(\zeta 
0
\=\mu 1
)i > 0.

To prove (2.11), it suffices to consider the case where s\rightarrow  - \infty . Suppose \=\mu 1 is the only
exponent appearing in ( \~V )i(s); then clearly (2.11) holds by Step 2. Otherwise, by
Lemma 2.8, there exists \mu \prime < \=\mu 1 such that lim infs\rightarrow  - \infty e - \mu \prime s( \~V )i(s) > 0, and hence

lim inf
s\rightarrow  - \infty 

e - \=\mu 1s| s|  - l\=\mu 1 ( \~V )i(s) = lim inf
s\rightarrow  - \infty 

[e - (\=\mu 1 - \mu \prime )s| s|  - l\=\mu 1 ][e - \mu \prime s( \~V )i(s)] = +\infty ,

where we used the fact that lim infs\rightarrow  - \infty e - (\=\mu 1 - \mu \prime )s| s|  - l\=\mu 1 = +\infty . Thus (2.11) holds.
Step 4. l\=\mu 1

= 0. (Particularly, part (b) of Step 2 is impossible.)
Suppose to the contrary that l\=\mu 1

\geq 1. By Step 3, this implies that there exist \gamma 0
and s0 such that \~V (s) - \gamma 0e

\=\mu 1s\zeta 0\=\mu 1
is a nonnegative solution to (2.5) where one of the

components achieves minimum value zero at some s0 \in \BbbR . This is impossible in view
of the strong maximum principle for cooperative systems. This proves l\=\mu 1

= 0. By
Step 2, we must have \=\mu 2 < \=\mu 1.

From Steps 3 and 4, we deduce that, for each component i such that (\zeta 0\=\mu 1
)i > 0,

(2.12) lim inf
| s| \rightarrow +\infty 

e - \=\mu 1s( \~V )i(s) \geq c\=\mu 1
(\zeta 0\=\mu 1

)i > 0.

It follows from Steps 2 and 4 that the term in \~V (s) including e\=\mu 1s is exactly c\=\mu 1
e\=\mu 1s\zeta 0\=\mu 1

.

Step 5. \~V (s) - c\=\mu 1
e\=\mu 1s\zeta 0\=\mu 1

\geq 0 in \BbbR .
Let \~V\gamma (s) := \~V (s) - \gamma c\=\mu 1

e\=\mu 1s\zeta 0\=\mu 1
.

Claim 1. \~V\gamma (s) > 0 for all s \in \BbbR and 0 < \gamma < 1.

If not, then by (2.12), there exists 0 < \gamma 0 < 1 such that the minimum value
zero of \~V\gamma 0

(s) (i.e., a nonnegative solution of (2.5) associated with \gamma 0) is attained at
some component i at some s0 \in \BbbR . By this contradiction with the strong maximum
principle, the claim is established.

By continuity and the above claim, we let \gamma \nearrow 1 and establish Step 5.
Finally, by applying Steps 1 to 5 to the nonnegative solution \~Vnew := \~V  - 

c\=\mu 1
e\=\mu 1s\zeta 0\=\mu 1

of (2.5) and by repeating this procedure finitely many times, we conclude

that \~V2 \equiv 0, and thus \~V satisfies (2.6) and c\lambda \zeta \lambda \geq 0. This completes the proof of
Proposition 2.4(i).

If P is irreducible, then ``0 is an eigenvalue of H\lambda ,c + P with a nonnegative
eigenvector"" if and only if ``0 = \Lambda 1(H\lambda ,c + P )"" if and only if \lambda \in \Lambda (c). Using
Proposition 2.4(i) and Lemma 2.3, this proves (ii) and (iii).

The following lemma will be used in section 4.3. This lemma is presented here,
as its proof is independent of other sections.
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Lemma 2.9. Let \Lambda (c) and \Gamma (c) be given by (2.3) and (2.4), respectively. If

min\Lambda (c) < max\Lambda (c),

then

(2.13) \Gamma (c) \cap \{ \lambda \in \BbbC : min\Lambda (c) < Re\lambda < max\Lambda (c)\} = \emptyset .

Proof. To prove this lemma, we first assume that P is irreducible. Let min\Lambda (c) =
\lambda and max\Lambda (c) = \lambda with corresponding unit eigenvectors \zeta \gg 0, \zeta \gg 0, so that

(H\lambda ,c + P )\zeta = 0 and (H\lambda ,c + P )\zeta = 0.

Let \lambda = a+ b\^i \in \Gamma (c) such that \lambda < a < \lambda , yielding that zero is an eigenvalue of
H\lambda ,c+P . Suppose b = 0; then the matrix Ha,c+P is real and essentially nonnegative.
Hence, by the Perron--Frobenius theorem, Theorem 1.2, for each eigenvalue \mu ofHa,c+
P ,

Re\mu \leq \Lambda 1(Ha,c + P ) < 0;

i.e., zero is not an eigenvalue of Ha,c + P , where the second inequality follows from

Lemma 2.3(iii). Therefore, we must have \lambda = a + b\^i for some b \not = 0. Let \zeta \lambda be a
corresponding eigenvector, and choose

\=k := inf\{ k \in \BbbR : k[e\lambda s\zeta + e\lambda s\zeta ] + Re(e\lambda s\zeta \lambda ) \geq 0 for all s \in \BbbR \} .

Since at least one entry of Re(e\lambda s\zeta \lambda ) changes sign on \BbbR , we deduce that 0 < \=k < \infty ,
and that

V0(s) = \=k[e\lambda s\zeta + e\lambda s\zeta ] + Re(e\lambda s\zeta \lambda )

is a nontrivial, nonnegative solution of (2.5) such that for some component j and
s0 \in \BbbR , (V0)j(s0) = 0 is a strict minimum of (V0)j(s). This is in contradiction to the
strong maximum principle, and thus (2.13) holds if P is irreducible.

Now suppose P is reducible and denote P\epsilon = P + \epsilon \scrI , where \scrI is an n\times n matrix
with entries being one. Then, for each \epsilon > 0, P\epsilon is irreducible and (2.13) holds. By
continuous dependence of the roots of det(H\lambda ,c +P\epsilon ) = 0 on \epsilon , we may let \epsilon \rightarrow 0 and
deduce that (2.13) holds for P as well.

3. Nonexistence of traveling semifronts of (1.1). It is easy to show that
the traveling profile (U, V )(s) of system (1.1) defined by Definition 1.1 satisfies the
following system:

(3.1)

\Biggl\{ 
cU \prime = d0U

\prime \prime + f(U) - g0(U, V ),

cV \prime 
i = diV

\prime \prime 
i + gi(U, V ), i \in [n],

where \prime refers to the derivative with respect to s.
First, we linearize the equations for Vi of system (3.1) at E0 = (K, 0). Precisely,

if e\lambda s\zeta is a solution of the associated linear system, then necessarily (H\lambda ,c+G
0)\zeta = 0.

Definition 3.1. Whenever \Lambda 1(G
0) > 0, define c\ast 0 > 0 to be the quantity c\ast given

by Lemma 2.3(ii) with P = G0.

The following theorem establishes the nonexistence of traveling semifronts.

Theorem 3.2. Assume that G0 is irreducible. If \Lambda 1(G
0) < 0, then for any c \in \BbbR 

system (1.1) has no bounded traveling semifronts with wave speed c. If \Lambda 1(G
0) > 0,

then for any c \in ( - \infty , c\ast 0) system (1.1) has no traveling semifronts with wave speed c.
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Proof. We will adopt the idea of Girardin [14], but Lemma 6.1 of [14] cannot be
directly used in this proof.

Assume system (1.1) has a bounded traveling semifront (u, v)(x, t) = (U, V )(s),
s = x + ct. We claim that u\ast \infty := lim sups\rightarrow +\infty U(s) \leq K. Suppose to the contrary
that u\ast \infty > K. If U(s) is fluctuating for s \succ 1, there exists sk \rightarrow +\infty such that

(3.2) U(sk) \rightarrow u\ast \infty , U \prime (sk) \rightarrow 0, U \prime \prime (sk) \rightarrow U \prime \prime 
\ast \leq 0

for some constant U \prime \prime 
\ast . If U(s) is monotonic for s \succ 1, (3.2) still obviously holds for

some sk \rightarrow +\infty . It follows by passing to a further subsequence that lims\rightarrow +\infty V (sk)
exists. By the first equation of (3.1),

0 = d0U
\prime \prime 
\ast + \delta (K  - u\ast \infty ) - g0(u

\ast 
\infty , lim

s\rightarrow +\infty 
V (sk)) < 0,

which leads to a contradiction. We therefore have u\ast \infty \leq K. Assume that there
exists s0 such that U(s0) > K. It follows from (1.5) and u\ast \infty \leq K that there exists
s1 such that U(s1) > K, U \prime (s1) = 0, U \prime \prime (s1) \leq 0, contradicting the first equality
of (3.1). We thus have U(s) \leq K for all s \in \BbbR . It can be similarly shown that
U(s) < K for all s \in \BbbR .

Now let \Lambda 1(G
0) < 0 and let \zeta \gg 0 be the corresponding principal eigenvector.

Obviously, for any \tau > 0, \^v(t) = \tau e\Lambda 1(G
0)t\zeta is a positive supersolution of the second

equation of (1.1) such that \^v(t) \rightarrow 0. Then we have

\partial 

\partial t
(\^v  - v) - diag(di)\Delta (\^v  - v) = G0\^v  - g(u, v) \geq G0(\^v  - v),

where g(u, v)(x, t) \leq g(K, v) \leq G0v is used (see property (C2) in section 1). Let \tau be
sufficiently large such that \tau \zeta > v(x, 0) for all x \in \BbbR . It follows from the comparison
principle that 0 \leq v(x, t) \leq \^v(t) \rightarrow 0. Therefore, it is impossible for (1.1) to admit
bounded traveling semifronts.

Suppose now that \Lambda 1(G
0) > 0 and system (1.1) has a traveling semifront (U, V )(s)

with wave speed c < c\ast 0, which is the positive solution of (3.1) satisfying (1.5). Obvi-
ously, it is impossible that (V (s))1 is nonincreasing for s \prec  - 1. Thus there exists a
sequence si \rightarrow  - \infty such that (V \prime (si))1 \geq 0. Define

\~V (i)(s) :=
V (s+ si)

\| V (si)\| 
,

and thus \| \~V (i)(0)\| = 1, ( \~V (i))\prime 1(0) \geq 0. Lemma 2.1 shows that \~V (i)(\cdot ) converges to
some \~V\ast (\cdot ) in C2

loc(\BbbR ), where \~V\ast (\cdot ) is a nonnegative solution of (2.5) with P = G0. If
 - c\ast 0 < c < c\ast 0, Lemma 2.3(ii) says that \Lambda (c) = \emptyset , and Proposition 2.4(iii) says that
\~V\ast (\cdot ) \equiv 0, contradicting \| \~V\ast (0)\| = 1. If c \leq  - c\ast 0, Proposition 2.4(ii) and Lemma
2.3(ii) yield that

\~V\ast (s) = c\lambda e
\lambda s\zeta \lambda + c\lambda e

\lambda s\zeta \lambda ,

where
c\lambda \geq 0, c\lambda \geq 0, c\lambda + c\lambda > 0, \lambda \leq \lambda < 0, \zeta \lambda \gg 0, \zeta \lambda \gg 0.

However,
\~V \prime 
\ast (0) = c\lambda \lambda \zeta \lambda + c\lambda \lambda \zeta \lambda \ll 0,

contradicting ( \~V \prime 
\ast (0))1 \geq 0.
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In what follows (i.e., sections 4, 5, and 6), to study the existence of traveling
semifronts and by Theorem 3.2, we assume the following assumption (A1) holds.

(A1) \Lambda 1(\BbbM ) < 0 < \Lambda 1(G
0), and G0 is irreducible,

where \BbbM = (mij)n\times n and G0 are given in (1.2).

4. Existence of traveling semifronts of (1.1) with \bfitc > \bfitc \ast \bfzero . Noting that
assumption (A1) holds, in this section we assume that c > c\ast 0. Since \Lambda 1(G

0) > 0, where
G0 is given by (1.2), c\ast 0 > 0 is well-defined by Definition 3.1. We will show the existence
of traveling semifronts of (1.1) with wave speed c > c\ast 0. This is accomplished by using
Schauder's fixed-point theorem with the aid of a pair of super- and subsolutions.
In addition, we show the boundedness of these traveling semifronts in L\infty (\BbbR ) by a
rescaling argument.

4.1. The super- and subsolutions. Now we construct a pair of super- and
subsolutions. Denote

A\lambda ,c := H\lambda ,c +G0 and \lambda 1 := \lambda ,

where \lambda > 0 is determined by Lemma 2.3(ii) with P = G0. Define

(4.1)
U(s) := K, U(s) := max\{ K  - \sigma 0e

\alpha s, 0\} ,
V i(s) := \kappa ie

\lambda 1s, V i(s) := max\{ \kappa ie\lambda 1s(1 - \sigma ie
\epsilon s), 0\} 

for i \in [n], where \kappa = (\kappa 1, . . . , \kappa n)
T is the unit positive eigenvector associated with

\Lambda 1(A\lambda 1,c), i.e., A\lambda 1,c\kappa = 0, and \epsilon , \alpha , \sigma i (i = 0, 1, . . . , n) are positive constants to be
determined later. Note that the vector \kappa \gg 0, as G0 is irreducible. The following
results establish the inequities that this pair of super- and subsolutions satisfy.

Lemma 4.1. The function V i, i \in [n], satisfies

cV
\prime 
i \geq diV

\prime \prime 
i + gi(K,V ), V = (V 1, . . . , V n).

Proof. By definition (4.1) and Taylor's theorem, we obtain

diV
\prime \prime 
i  - cV

\prime 
i + gi(K,V )

= diV
\prime \prime 
i  - cV

\prime 
i +

n\sum 
j=1

gi,j(E0)V j +
1

2

n\sum 
j,k=1

gi,jk(E
\ast 
0 )V jV k

= (A\lambda 1,c\kappa )i e
\lambda 1s +

1

2

n\sum 
j,k=1

gi,jk(E
\ast 
0 )V jV k

=
1

2

n\sum 
j,k=1

gi,jk(E
\ast 
0 )V jV k \leq 0,

where E\ast 
0 = (1 - t0)E0 + t0(K,\kappa e

\lambda 1s) = (K, t0\kappa e
\lambda 1s) for some t0 = t0(s) \in [0, 1], and

property (C2) in section 1 is used for the last inequality.

Lemma 4.2. Choose \alpha , \sigma 0 such that

(4.2) 0 < \alpha <
1

2
min

\biggl\{ 
c

d0
, \lambda 1

\biggr\} 
, \sigma 0 > max

\Biggl\{ 
K,

\sum n
j=1 g0,j(E0)\kappa j

\alpha (c - d0\alpha )

\Biggr\} 
.

Then the function U(s) satisfies the following inequality:

(4.3) cU \prime \leq d0U
\prime \prime + f(U) - g0(U, V ) for s \not = s0 :=

1

\alpha 
ln
K

\sigma 0
.
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Proof. Since \sigma 0 > K, it is clear that s0 = 1
\alpha ln(K/\sigma 0) < 0. If s > s0, then U = 0

and (4.3) is clearly satisfied. If s < s0 < 0, then we have

d0U
\prime \prime  - cU \prime + f(U) - g0(U, V )

\geq  - \sigma 0(d0\alpha 
2  - c\alpha )e\alpha s  - g0(K,V )

=  - \sigma 0(d0\alpha 
2  - c\alpha )e\alpha s  - 

n\sum 
j=1

g0,j(E0)V j  - 
1

2

n\sum 
j,k=1

g0,jk(E
\ast 
0 )V jV k

\geq  - \sigma 0(d0\alpha 
2  - c\alpha )e\alpha s  - 

n\sum 
j=1

g0,j(E0)\kappa je
\lambda 1s

= e\alpha s

\left(  \sigma 0\alpha (c - d0\alpha ) - 
n\sum 

j=1

g0,j(E0)\kappa je
(\lambda 1 - \alpha )s

\right)  
\geq e\alpha s

\left(  \sigma 0\alpha (c - d0\alpha ) - 
n\sum 

j=1

g0,j(E0)\kappa j

\right)  
\geq 0,

where property (C2) in section 1 is used for the second inequality, and (4.2) is used
for the last inequality.

Lemma 4.3. Let \alpha and \sigma 0 be chosen such that (4.2) holds. Then there exist \epsilon > 0
sufficiently small and \sigma i \succ 1 such that V i(s) satisfies

(4.4) cV \prime 
i \leq diV

\prime \prime 
i + gi(U, V ), V = (V 1, . . . , V n),

for s \not = si :=  - 1
\epsilon ln\sigma i, i \in [n].

Proof. Recall that (i) \kappa = (\kappa j) is the unit positive eigenvector of A\lambda 1,c, so that
A\lambda 1,c\kappa = 0, and (ii) \alpha , \sigma 0 are specified in (4.2), so that 0 < \alpha < \lambda 1. Now choose \epsilon 
such that

(4.5) 0 < \epsilon < min\{ \alpha , \lambda 1, \lambda  - \lambda \} ,

where \lambda (= \lambda 1) and \lambda are determined by Lemma 2.3(ii) with P = G0. By Lemma
2.3(iii), \Lambda 1(A\lambda 1+\epsilon ,c) < 0 and we denote the corresponding unit positive eigenvector
to be \eta = (\eta j), so that

(4.6) (A\lambda 1+\epsilon ,c\eta )j = \Lambda 1(A\lambda 1+\epsilon ,c)\eta j < 0.

Set lj :=  - (A\lambda 1+\epsilon ,c\eta )j , \sigma j = \eta 0\eta j/\kappa j , j \in [n], such that lj > 0 by (4.6), where \eta 0 > 0
will be determined later. We can assume that si < s0 < 0 by setting \eta 0 \succ 1. Here
si \in \BbbR is the nonsmooth point of V i(s).

Having defined \sigma j and thus V j(s) according to (4.1), we proceed to show the
differential inequality (4.4). First, we note that (4.4) is satisfied trivially whenever
V j(s) = 0, i.e., s > si. Denote V \ast 

j (s) = \kappa je
\lambda 1s(1  - \sigma je

\epsilon s), j \in [n], yielding that
V j(s) = V \ast 

j (s) > 0 for s < sj and that V j(s) = 0 > V \ast 
j (s) for s > sj . Observe that

for each fixed i \in [n] and s < si, we have

V i(s) = V \ast 
i (s) > 0 and V j(s) \geq V \ast 

j (s) \forall j \in [n].
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In view of Taylor's theorem, we compute

gi(U, V )

=

n\sum 
j=1

gi,j(U, 0n)V j +
1

2

n\sum 
j,k=1

gi,jk(P0)V jV k

=

n\sum 
j=1

\bigl[ 
gi,j(E0) + gi,0j(Pj)(U  - K)

\bigr] 
V j +

1

2

n\sum 
j,k=1

gi,jk(P0)V jV k

\geq 
n\sum 

j=1

gi,j(E0)V
\ast 
j +

n\sum 
j=1

gi,0j(Pj)(U  - K)V j +
1

2

n\sum 
j,k=1

gi,jk(P0)V jV k,

for which

E0 = (K, 0n), P0 = (U, \xi 0V ), Pj = (\xi jU, 0n), \xi 0, \xi j \in [0, 1], j \in [n].

Then we have

e - \lambda 1s
\bigl[ 
diV

\prime \prime 
i  - cV \prime 

i + gi(U, V )
\bigr] 

\geq 
\Bigl[ 
(di\lambda 

2
1  - c\lambda 1)\kappa i +

n\sum 
j=1

gi,j(E0)\kappa j

\Bigr] 

 - e\epsilon s

\Biggl[ \Bigl( 
di(\lambda 1 + \epsilon )2  - c(\lambda 1 + \epsilon )

\Bigr) 
\kappa i\sigma i +

n\sum 
j=1

gi,j(E0)\kappa j\sigma j

\Biggr] 
 - \sigma 0R1(s)e

\alpha s +R2(s)e
\lambda 1s

= (A\lambda 1,c\kappa )i  - e\epsilon s\eta 0(A\lambda 1+\epsilon ,c\eta )i  - \sigma 0R1(s)e
\alpha s +R2(s)e

\lambda 1s

=  - e\epsilon s\eta 0(A\lambda 1+\epsilon ,c\eta )i  - \sigma 0R1(s)e
\alpha s +R2(s)e

\lambda 1s

= e\epsilon s\eta 0li  - \sigma 0R1(s)e
\alpha s +R2(s)e

\lambda 1s,

where

R1(s) =

n\sum 
j=1

gi,0j(Pj)\kappa j(1 - \sigma je
\epsilon s)+,

R2(s) =
1

2

n\sum 
j,k=1

gi,jk(P0)\kappa j\kappa k(1 - \sigma je
\epsilon s)+(1 - \sigma ke

\epsilon s)+,

and \varphi (s)+ := max\{ \varphi (s), 0\} . Since 0 \leq (1  - \sigma je
\epsilon s)+ \leq 1, j \in [n], gi(\cdot ) \in C2(\BbbR n+1

+ ),
there exists M =M(\epsilon ) > 0 such that | Rj(s)| < M(\epsilon ), j = 1, 2. Then we have

e - \lambda 1s
\bigl[ 
diV

\prime \prime 
i  - cV \prime 

i + gi(U, V )
\bigr] 

\geq 
\bigl[ 
\eta 0li  - \sigma 0R1(s)e

(\alpha  - \epsilon )s +R2(s)e
(\lambda 1 - \epsilon )s

\bigr] 
e\epsilon s

>
\bigl( 
\eta 0li  - \sigma 0M  - M

\bigr) 
e\epsilon s > 0,

provided we choose \eta 0 > 0 such that \eta 0 >
(\sigma 0+1)M

min\{ lj :j\in [n]\} and use (4.5) and s < 0.

4.2. Existence of traveling semifronts. Note that c > c\ast 0 in this section. For
a > 0, we define Ia = ( - a, a), \=Ia = [ - a, a], and

\Gamma a = \{ (U, V )(\cdot ) \in C(\=Ia,\BbbR n+1) :U(s) \leq U(s) \leq U(s),

V i(s) \leq Vi(s) \leq V i(s), i \in [n], s \in \=Ia\} .
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Consider the following boundary-value problem:

(4.7)

\left\{     
d0U

\prime \prime  - cU \prime + f(U) - g0(U, V ) = 0, s \in Ia,

djV
\prime \prime 
j  - cV \prime 

j + gj(U, V ) = 0, j \in [n], s \in Ia,

(U, V )( - a) = (U, V )( - a), (U, V )(a) = 0.

Lemma 4.4. Boundary-value problem (4.7) has a solution

(U, V )(\cdot ) \in C2(\=Ia,\BbbR n+1) \cap \Gamma a

for any large a > 0.

Proof. Set

\gamma = max
(u,v)\in \Gamma \ast 

\left(  | \=g0,0(u, v)| +
\sum 
i\in [n]

| gi,i(u, v)| 

\right)  ,

where

\=g0(u, v) = f(u) - g0(u, v), \Gamma \ast =
\bigl\{ 
(u, v) \in \BbbR n+1 : 0 \leq u \leq K, 0 \leq v \leq V (a)

\bigr\} 
.

Define the operator \scrT : \Gamma a \rightarrow C(\=Ia,\BbbR n+1) by \scrT (U0, V 0) = (U, V ), where (U, V )(s) is
the unique solution to
(4.8)\left\{     

 - d0U
\prime \prime + cU \prime + \gamma U = \gamma U0 + \=g0(U

0, V 0) =: F0(U
0, V 0), s \in ( - a, a),

 - diV
\prime \prime 
i + cV \prime 

i + \gamma Vi = \gamma V 0
i + gj(U

0, V 0) =: Fi(U
0, V 0), i \in [n], s \in ( - a, a),

(U, V )( - a) = (U, V )( - a), (U, V )(a) = 0.

A regularity estimate for elliptic equations shows that (U, V ) \in C2(\=Ia,\BbbR n+1). From
the choice of \gamma , we have, for all (u, v) \in \Gamma \ast , that F0(u, v) is increasing in u and
decreasing in vj and that for each i \in [n], Fi(u, v) is increasing in both u and vj .

Claim 2. For each a \succ 1, \scrT (\Gamma a) \subset \Gamma a.

Let (U, V ) = \scrT (U0, V 0) for some (U0, V 0) \in \Gamma a, and let a > 0 be large enough
such that  - a < s0 < a, where s0 is defined in Lemma 4.2. Define \phi (s) = U(s) - U(s).
We claim that \=\phi (s) satisfies in the weak sense

(4.9)

\biggl\{ 
 - d0\phi \prime \prime + c\phi \prime + \gamma \phi \geq 0 for s \in Ia,
\phi (\pm a) \geq 0.

It is obvious that \phi (\pm a) = 0. Next, Lemma 4.2 and the first equality of (4.7) show
that

 - d0\phi \prime \prime + c\phi \prime + \gamma \phi \geq F0(U
0, V 0) - F0(U, V ) \geq 0, s \in ( - a, s0) \cup (s0, a).

This and the fact that \phi \prime (s0 - ) \geq \phi \prime (s0+) show that the differential inequality in
(4.9) holds in the weak sense. i.e., \phi (s) is a weak supersolution (see, e.g., [7, section
4.2] for the definition of weak super- and subsolutions). Since the coefficient of the
zeroth-order term, \gamma , in (4.9) is nonnegative, we conclude that \phi (s) \geq 0 for s \in \=Ia.
By arguing similarly, one may show that U(s) \leq U(s), V (s) \leq V (s) \leq V (s) for
s \in [ - a, a] and thus that (U, V ) \in \Gamma a. The proof of this claim is completed.

Elliptic estimates imply that \scrT : \Gamma a \rightarrow \Gamma a is continuous and compact. Obviously,
\Gamma a is closed and convex. Then Schauder's fixed-point theorem shows that \scrT has a
fixed point in \Gamma a, which is a nonnegative solution of (4.7).
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Lemma 4.5. System (3.1) has a positive solution (U, V )(s), s \in \BbbR , satisfying
boundary condition (1.5).

Proof. Lemma 4.4 shows that (3.1) has a solution (Uk, V k)(\cdot ) \in C2([ - k, k],\BbbR n+1)\cap 
\Gamma k for any positive integer k. Elliptic estimates show, by passing to (diagonal) subse-
quence, that (Uk(s), V k(s)) \rightarrow (U\infty 

\ast (s), V\infty 
\ast (s)) in C2

loc(\BbbR ,\BbbR n+1), where (U\infty 
\ast , V\infty 

\ast )(\cdot ) \in 
\Gamma \infty is a nonnegative solution of (3.1). Since

U \leq U\infty 
\ast \leq U and V \leq V\infty 

\ast \leq V in \BbbR ,

it follows from (U, V )( - \infty ) = E0 = (U, V )( - \infty ) that (U\infty 
\ast , V\infty 

\ast )(s) satisfies (1.5).
Since (U\infty 

\ast , V\infty 
\ast )(s) \gg 0 for s \prec  - 1, Lemma 2.1(ii) shows that (U\infty 

\ast , V\infty 
\ast )(s) is positive

on \BbbR .

4.3. Boundedness of traveling semifronts. The boundedness plays an im-
portant role in studying TWSs. In this subsection, we will show the boundedness of
traveling semifronts obtained in Lemma 4.5. For this purpose, let G0 and \BbbM be given
by (1.2) (note that \Lambda 1(G0) > 0 > \Lambda 1(\BbbM ), i.e., (A1)), so that c\ast 0 > 0 is given by (3.1).
Lemma 4.5 says that, for each c > c\ast 0, system (3.1) has a positive solution (Uc, Vc) on
\BbbR .

Lemma 4.6. For each open bounded interval I \subset (c\ast 0,+\infty ), there exists C > 0
such that

sup
c\in I

\| (Uc, Vc)\| C(\BbbR ) \leq C,

where (Uc, Vc) is a positive solution of (3.1) with wave speed c obtained in Lemma
4.5.

Proof. By the construction of the super- and subsolutions in (4.1), 0 \leq Uc(s) \leq K
for all c > c\ast 0 and s \in \BbbR . So if we suppose to the contrary that this lemma is false, then
there exist a sequence of wave speeds ck \in I and corresponding solution (Uck , Vck) of
system (3.1) such that (for the notation \| \cdot \| see section 1.1)

ck \rightarrow c\infty \in [c\ast 0,+\infty ) and \scrM k := sup
s\in \BbbR 

\| Vck(s)\| \rightarrow +\infty .

Again by the construction in (4.1),

(4.10) \| Vck(s)\| \leq 
n\sum 

j=1

\kappa k,j exp(\lambda ks) = exp(\lambda ks) for s \in \BbbR ,

where \lambda k > 0 is the \lambda in (the last case of) Lemma 2.3(ii) with c = ck and P = G0

(\kappa k,1, . . . , \kappa k,n) is the unit positive eigenvector of H\lambda k,ck
+ G0 associated with \lambda k.

Hence

(4.11) \lambda k \rightarrow \lambda \infty ,

where \lambda \infty > 0 is the \lambda in (the last or second to last case of) Lemma 2.3(ii) with
c = c\infty and P = G0.

Step 1. If \| Vck(sk)\| \rightarrow +\infty for some sequence sk, then

(4.12)
g0j (Uck , Vck)(\cdot + sk)

\| Vck(sk)\| 
\rightarrow 0 in Cloc(\BbbR ).
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We discuss two cases separately: (i)
g0(Uck

,Vck
)

Uck

\bigm| \bigm| 
s=sk

\rightarrow +\infty or (ii)
g0(Uck

,Vck
)

Uck

\bigm| \bigm| 
s=sk

remains bounded in k.
For case (i), one may infer, by Harnack's inequality (Lemma 2.1(ii)) applied to

equation of Vck , that if (Vck)j\prime (sk) \rightarrow +\infty for some j\prime , then inf [sk - L,sk+L](Vck)j\prime \rightarrow 
+\infty for each L > 0. Hence we deduce that, for each L > 0, inf [sk - L,sk+L]

g0(Uck
,Vck

)

Uck
\rightarrow 

+\infty . Then, for any \epsilon > 0, take a test function u(s) \in C2([ - L,L]) satisfying

u(\pm L) = K, u(s) > 0 in [ - L,L], and u(s) = \epsilon in [ - L/2, L/2].

It follows from the fact that inf [sk - L,sk+L]
g0(\=u,Vck

)

\=u \rightarrow +\infty that

d0\=u
\prime \prime  - c\=u\prime + \delta (K  - \=u) - \=u

g0(\=u, Vck(s+ sk))

\=u
\leq 0 for s \in ( - L,L),

provided k is large enough. Denote w := \=u(s) - Uck(s+sk), so that w(\pm L) \geq 0. Then
by the first equality of (3.1) we get for all s \in ( - L,L) and large k that

d0 \=w
\prime \prime  - c \=w\prime  - \delta w  - g0(\=u, Vck(s+ sk)) + g0(Uck(s+ sk), Vck(s+ sk))

= d0 \=w
\prime \prime  - c \=w\prime  - [\delta +Dug0(\^u, Vck(s+ sk))]w \leq 0,

where \^u is between \=u and Uck(s+sk). Since Dug0(\^u, Vck(s+sk)) \geq 0, the comparison
principle shows that, for sufficiently large k, Uck(s + sk) \leq u(s) in s \in [ - L,L] and
thus Uck(s + sk) \leq \epsilon in s \in [ - L/2, L/2]. Since \epsilon and L are arbitrary, we show that
Uck(s+ sk) \rightarrow 0 (as k \rightarrow \infty ) in Cloc(\BbbR ). By the definition of g0j , this implies (4.12).

For case (ii),
g0(Uck

,Vck
)

Uck

\bigm| \bigm| 
s=sk

remains bounded even if \| Vck(sk)\| \rightarrow +\infty . It follows

from the definition of g0 (see system (1.1)) and Harnack's inequality (Lemma 2.1(ii))
that the family \{ g0(Uck , Vck)(\cdot + sk)\} remains bounded in any compact subinterval of
\BbbR . By the definitions of g0 and g0j , we have 0 \leq g0j (u, v) \leq g0(u, v), so the same holds

for \{ g0j (Uck , Vck)(\cdot + sk)\} . Combining with the fact that \| Vck(sk)\| \rightarrow +\infty , we obtain
(4.12).

Step 2. Let c = c\infty and P = \BbbM , let \lambda \ast > 0 be the corresponding \lambda in Lemma
2.3(i), and let \Gamma (c) and \Lambda (c) be given in (2.4) and (2.3), respectively. Then

(4.13) \Gamma (c)\cap [0,\infty ) = \Gamma (c)\cap [sup\Lambda (c),\infty ), \Gamma (c)\cap ( - \infty , 0] = \Gamma (c)\cap ( - \infty , inf \Lambda (c)],

where inf \Lambda (c) < 0 < sup\Lambda (c), and sup\Lambda (c) = \lambda \ast . Furthermore, \lambda \ast > \lambda \infty , in
particular, \lambda \ast > 1

2 (\lambda \ast + \lambda \infty ) > \lambda k for all k sufficiently large, where \lambda k and \lambda \infty are
defined after (4.10) and (4.11).

By hypothesis, \Lambda 1(\BbbM ) < 0, so that by Lemma 2.3(i), inf \Lambda (c) < 0 < sup\Lambda (c).
Hence Lemma 2.9 says that \Gamma (c) \cap [0,\infty ) = \Gamma (c) \cap [sup\Lambda (c),\infty ). The second part of
(4.13) is similar. Also, it follows by the definition (when c = c\infty and P = \BbbM ) that
sup\Lambda (c) = \lambda \ast .

The strict inequality \lambda \ast > \lambda \infty follows from the fact that G0 > \BbbM and Lemma
2.3(iv) (see Figure 2). The inequality \lambda \ast > 1

2 (\lambda \ast +\lambda \infty ) > \lambda k follows from (4.11). This
proves Step 2.

Step 3. It is impossible that there exists a sequence sk \in \BbbR such that

(4.14) \| Vck(sk)\| \rightarrow +\infty , \| V \prime \prime 
ck
(sk)\| \leq 0.

We suppose to the contrary that (4.14) holds. But if we define

\~Vk(s) :=
Vck(s+ sk)

\| Vck(sk)\| 
,
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λ∗ λ
λ∞

Fig. 2. Diagram illustrating the definition of \lambda \infty < \lambda \ast . The solid curve is \lambda \mapsto \rightarrow \Lambda 1(H\lambda ,c\infty +\BbbM );
the dashed curve is \lambda \mapsto \rightarrow \Lambda 1(H\lambda ,c\infty +G0).

then, passing to a subsequence, we deduce that \~Vk \rightarrow \~V\infty in C2
loc(\BbbR ). Moreover, by

the arguments of Step 1, \~V\infty is a nonnegative solution of

c\infty \~V \prime 
\infty = diag(dj) \~V

\prime \prime 
\infty +\BbbM \~V\infty in \BbbR and \| \~V\infty (0)\| = 1,

where the coefficient matrix \BbbM is defined in (1.2). However, by Proposition 2.4(i), we
deduce that \~V\infty (s) =

\sum 
\lambda \in \Gamma (c)\cap \BbbR c\lambda e

\lambda s\zeta \lambda , where c\lambda \zeta \lambda \geq 0. By Step 2, 0 \not \in \Gamma (c) \cap \BbbR .
Therefore, \| \~V \prime \prime 

\infty (0)\| > 0, which contradicts (4.14). This completes Step 3.
Step 4. There exists s\prime k \in \BbbR such that for k sufficiently large, \| Vck(s)\| is strictly

increasing in [s\prime k,+\infty ), and \| Vck(s\prime k)\| \rightarrow +\infty .
By Step 3 and the fact that \scrM k \rightarrow +\infty , \scrM k \not = maxs\in \BbbR \| Vck(s)\| for all large k.

Then we deduce that \scrM k = lim sups\rightarrow +\infty \| Vck(s)\| since (Uck , Vck) satisfies (1.5). If
for k sufficiently large, \| Vck(s)\| is not strictly increasing for s \succ 1, then there exists
a sequence sk \in \BbbR such that (4.14) holds, contradicting Step 3. Step 4 is proved.

Step 5. Let \lambda \ast be as in Step 2. Then

(4.15) lim inf
k\rightarrow \infty 

\biggl[ 
inf

[s\prime k+k,\infty )

V \prime 
ck
(s)

Vck(s)

\biggr] 
\geq \lambda \ast .

Now, let s\prime \prime k be any sequence such that s\prime \prime k \geq s\prime k + k for all k. By Step 4, we have

\| Vck(s\prime \prime k)\| \rightarrow +\infty . Hence we may define \^Vk(s) := Vck(s + s\prime \prime k)/\| Vck(s\prime \prime k)\| and pass to

the limit \^Vk \rightarrow \^V\infty in C2
loc(\BbbR ) as in Step 3, where \^V\infty is a nonnegative solution to

c\infty \^V \prime 
\infty = diag(dj) \^V

\prime \prime 
\infty +\BbbM \^V\infty in \BbbR and \| \^V\infty (0)\| = 1.

By Proposition 2.4 and Step 2,

(4.16) \^V\infty (s) =
\sum 

\lambda \in \Gamma (c)\cap \BbbR 

c\lambda e
\lambda s\zeta \lambda ,

where the constant coefficients satisfy c\lambda \zeta \lambda \geq 0 and \Gamma (c) is given in (2.4) with c = c\infty 
and P = \BbbM .

By Step 4, \| Vck(s)\| is nondecreasing in [s\prime k,+\infty ), so that \| \^Vk(s)\| (resp., \| \^V\infty (s)\| )
is nondecreasing in [ - k,+\infty ) (resp., \BbbR ). Hence the sum in (4.16) is taken over \lambda \in 
\Gamma (c) \cap [0,\infty ) only. Combining with \Gamma (c) \cap [0,\infty ) = \Gamma (c) \cap [\lambda \ast ,\infty ) (Step 2), we have

\^V\infty (s) =
\sum 

\lambda \in \Gamma (c)\cap [\lambda \ast ,\infty )

c\lambda e
\lambda s\zeta \lambda .
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This implies that

lim
k\rightarrow \infty 

\| V \prime 
ck
(s\prime \prime k)\| 

\| Vck(s\prime \prime k)\| 
=

\| \^V \prime 
\infty (0)\| 

\| \^V\infty (0)\| 
\geq \lambda \ast .

Since this is true for arbitrary sequence s\prime \prime k \geq s\prime k + k, this proves Step 5.
Finally, since 0 < 1

2 (\lambda \ast + \lambda \infty ) < \lambda \ast , Step 5 shows that for all large k,

(4.17) \| Vck(s)\| \geq \| Vck(s\prime k + k)\| exp
\biggl( 
1

2
(\lambda \ast + \lambda \infty )(s - s\prime k  - k)

\biggr) 
for s \geq s\prime k + k.

Since (by Step 2) 1
2 (\lambda \ast + \lambda \infty ) > \lambda k for k large, (4.17) is in contradiction to (4.10).

5. Existence of traveling semifront of (1.1) with \bfitc = \bfitc \ast \bfzero . Take a sequence
cj \searrow c\ast 0, and let \Phi j(s) := (U (j), V (j))(s) be a positive solution of (3.1) with wave
speed cj . Lemma 4.6 shows that \Phi j(s) := (U (j), V (j))(s) is uniformly bounded with
respect to j and s \in \BbbR . In this section, we will pass to the limit j \rightarrow \infty to obtain a
traveling wave with the critical wave speed c\ast 0.

Lemma 5.1.

lim sup
j\rightarrow \infty 

\biggl[ 
sup
s\in \BbbR 

(K  - U (j)(s))

\biggr] 
> 0

or

lim sup
j\rightarrow \infty 

\biggl[ 
sup
s\in \BbbR 

\| V (j)(s)\| 
\biggr] 
> 0.

Proof. Suppose for contradiction that, as j \rightarrow \infty ,

(5.1) sup
s\in \BbbR 

(K  - U (j)(s)) \rightarrow 0 and sup
s\in \BbbR 

\| V (j)(s)\| \rightarrow 0.

Lemma 2.1(i) yields V (j)(s) \rightarrow 0 in C2(\BbbR ) as j \rightarrow \infty .

We claim that there exists j0 such that for j > j0 and k \in [n], V
(j)
k (s) are

nondecreasing with respect to s \in \BbbR . We suppose by passing to a subsequence (in j)
to the contrary that there exist k1 \in [n] and sj \in \BbbR such that

V
(j)
k1

\prime 
(sj) = 0, V

(j)
k1

\prime \prime 
(sj) \leq 0, j \geq 1.

It is evident that the second part of (3.1) can be rewritten as

(5.2) cjV
(j)\prime = diag(dl)V

(j)\prime \prime +G0V (j) + o(\| V (j)(s)\| ).

Define

\~V (j)(s) :=
(V

(j)
1 (sj + s), . . . , V

(j)
n (sj + s))T

\| V (j)(sj)\| 
.

Then it is easy to see by passing to a subsequence that \~V (j)(\cdot ) \rightarrow \~V (\infty )(\cdot ) in C2
loc(\BbbR ),

where \~V (\infty )(s) is a nonnegative solution of

c\ast 0V
\prime = diag(dl)V

\prime \prime +G0V

with \| \~V (\infty )(0)\| = 1, \~V
(\infty )\prime 
k1

(0) = 0. However, it follows from Lemma 2.3(ii) and

Proposition 2.4(ii) that \~V (\infty )(s) = e\lambda 1s\zeta \lambda 1
, where \zeta \lambda 1

\gg 0 is a unit vector, contra-

dicting \~V
(\infty )\prime \prime 

k1
(0) \leq 0. In conclusion, there exists j0 such that for all j > j0 and

k \in [n], V
(j)
k (s) is nondecreasing with respect to s \in \BbbR .
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From the above claim, we deduce that for j > j0, the limit V (j)(+\infty ) exists,
and hence U (j)(+\infty ) also exists. Obviously, (U (j)(+\infty ), V (j)(+\infty )) is a sequence of
positive equilibria of (5.2), that is,

G0V (j)(+\infty ) = o(\| V (j)(+\infty )\| ).

Furthermore, by (5.1) we have

(U (j), V (j))(+\infty ) \rightarrow E0(K, 0n).

Define, for each j, the constant vectors

\~V (j)
\infty :=

(V
(j)
1 (+\infty ), . . . , V

(j)
n (+\infty ))T

\| V (j)(+\infty )\| 
,

so that \~V
(j)
\infty \rightarrow \~V

(\infty )
\infty by passing to a subsequence, where

G0 \~V (\infty )
\infty = 0, \| \~V (\infty )

\infty \| = 1, \~V (\infty )
\infty > 0.

Since G0 is irreducible, it follows from Theorem 1.2 that \Lambda 1(G
0) = 0, contradicting

assumption (A1).

Lemma 5.2. System (3.1) with c = c\ast 0 has a bounded positive solution (U, V )(s)
satisfying (1.5).

Proof. Lemma 5.1 yields that

lim
j\rightarrow \infty 

sup
s\in \BbbR 

(K  - U (j)(s)) > 0 or lim
j\rightarrow \infty 

sup
s\in \BbbR 

\| V (j)(s)\| > 0.

Set \epsilon > 0 small enough. Since (U (j), V (j))(s) satisfies (1.5), by possible translations
we can suppose that

U (j)(s) > K  - \epsilon , \| V (j)(s)\| < \epsilon \forall s < 0

and that

U (j)(0) = K  - \epsilon or \| V (j)(0)\| = \epsilon 

holds. It follows by elliptic estimate and by passing to a subsequence that

(U (j), V (j))(\cdot ) \rightarrow (U, V )(\cdot )

in C2
loc(\BbbR ), where (U, V )(\cdot ) is a nonnegative solution of (3.1) with c = c\ast 0 such that

(5.3) U(s) \geq K  - \epsilon , \| V (s)\| \leq \epsilon \forall s < 0

and that

(5.4) U(0) = K  - \epsilon or \| V (0)\| = \epsilon 

holds. Lemma 2.1(ii) yields U(s) > 0 for all s \in \BbbR .

Claim 3. V (s) \gg 0 for all s \in \BbbR .
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If \| V (0)\| = 0, then U(0) = K - \epsilon and Lemma 2.1(ii) shows that V (s) \equiv 0, s \in \BbbR .
Hence U(s) satisfies

(5.5) c\ast 0U
\prime = d0U

\prime \prime + f(U).

We claim that U \prime (s) \leq 0, s \in [0,+\infty ). Assume to the contrary that this does not hold.
Then there exists s0 \geq 0 such that U \prime (s0) = 0, U \prime \prime (s0) \geq 0, U(s0) < K, implying,
together with (5.5), that 0 = U \prime \prime (s0) + f(U(s0)) > 0, a contradiction. Consequently,
U \prime (s) \leq 0, s \in [0,+\infty ). Then (5.5) gives that U \prime \prime (s) < 0, s \in (0,+\infty ), yielding that
U(+\infty ) =  - \infty , a contradiction to U being nonnegative. This shows that \| V (0)\| > 0,
and Harnack's inequality [1, Theorem 2.2] gives V (s) \gg 0 for all s \in \BbbR .

So far we have shown that 0 < U(s) < K, V (s) \gg 0 for all s \in \BbbR and that (5.3)
and (5.4) hold. Define \epsilon j := \epsilon /j, j \in [n]. It follows from the arbitrariness of the above

small \epsilon that there exists a positive solution (U j
\ast , V

j
\ast )(\cdot ) to (3.1) with c = c\ast 0 such that

U
(j)
\ast (s) \geq K  - \epsilon j , \| V (j)

\ast (s)\| \leq \epsilon j \forall s < 0

and that one of the following holds:

U
(j)
\ast (0) = K  - \epsilon j , \| V (j)

\ast (0)\| = \epsilon j .

Claim 4. For large j, each entry of V
(j)
\ast (s) is monotonic with respect to s \prec  - 1.

Assume to the contrary that this claim does not hold. By passing to a subse-

quence, there exist k0 \in [n] and j0 such that V
(j)
\ast k0

(s) is not monotonic with respect to
s \prec  - 1 for j > j0. Then there exists sj \rightarrow  - \infty such that

(5.6) V
(j)
\ast k0

\prime 
(sj) = 0, V

(j)
\ast k0

\prime \prime 
(sj) \leq 0, j > j0.

Since \epsilon j \rightarrow 0, then by passing to a subsequence, we have (U
(j)
\ast , V

(j)
\ast )(s) \rightarrow E0(K, 0n)

in C2
loc(( - \infty , 0)). Define

\~V
(j)
\ast (s) :=

V
(j)
\ast 

T
(sj + s)

\| V (j)
\ast (sj)\| 

.

Then, similar to the proof of Lemma 5.1, we have \~V
(j)
\ast (s) \rightarrow e\lambda 1s\zeta \lambda 1

in C2
loc(\BbbR ), where

\zeta \lambda 1
\gg 0, contradicting (5.6).

It follows from the above claim that (U
(j)
\ast , V

(j)
\ast )( - \infty ) exists for large j and is

a sequence of equilibria of (3.1) such that (U
(j)
\ast , V

(j)
\ast )( - \infty ) \rightarrow E0(K, 0n). Since

E0(K, 0n) is an isolated equilibrium, we deduce that for all j sufficiently large,

(U
(j)
\ast , V

(j)
\ast )( - \infty ) = E0.

This completes the proof of this lemma.

6. Persistence of traveling semifronts. Note that we assume that assump-
tion (A1) holds in this section.

Theorem 6.1. System (1.1) has a persistent traveling semifront \Phi (x+ ct) if c \geq 
c\ast 0.

Remark 6.2. It follows from Theorems 3.2 and 6.1 that c\ast 0 is the minimal wave
speed of system (1.1) if \Lambda 1(G

0) > 0.
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Proof. Let (U(s), V (s)) be the bounded traveling semifront in Lemma 4.5 or
Lemma 5.2. We claim that lim infs\rightarrow +\infty U(s) > 0. Suppose to the contrary that

lim inf
s\rightarrow +\infty 

U(s) = 0.

Then there exists a sequence si \rightarrow +\infty such that U(si) \rightarrow 0. Lemma 2.1 shows that
U(s+si) \rightarrow 0 in C2

loc(\BbbR ) by passing to a subsequence. It follows from the boundedness
of V (s) and the first equality of (3.1) that \delta K = 0, a contradiction. We thus have
lim infs\rightarrow +\infty U(s) > 0.

Next, we show that lim infs\rightarrow +\infty V (s) \gg 0. Assume to the contrary that there
exists j0 \in [n] such that lim infs\rightarrow +\infty Vj0(s) = 0, implying there exists a sequence
si \rightarrow +\infty such that Vj0(si) \rightarrow 0, V \prime 

j0
(si) \leq 0. We can rewrite gi(U, V ), i \in [n], as

(g1(U, V ), . . . , gn(U, V ))T = G(s)V,

where G(s) is an n\times n matrix. It follows from lim infs\rightarrow +\infty U(s) > 0 that there exists
an irreducible matrix G\ast such that G(s) \geq G\ast for large s. Then Harnack's inequality
[1, Theorem 2.2] yields that V (si + \cdot ) \rightarrow 0 in Cloc(\BbbR ). Lemma 2.1(i) implies that
V (si + \cdot ) \rightarrow 0 in C2

loc(\BbbR ). It follows from the first equality of (3.1) (possibly by
passing to a subsequence) that U(si+ \cdot ) \rightarrow U\ast (\cdot ) in C2

loc(\BbbR ), where U\ast (s) is a solution
to

cU\ast \prime = d0U
\ast \prime \prime + \delta (K  - U\ast ).

However, any solution of this equation can be expressed as U\ast (s) = c1e
\lambda 1s+c2e

\lambda 2s+K,
where \lambda 1 < 0 < \lambda 2 are the zeros to d0\lambda 

2  - c\lambda  - \delta = 0. Since U\ast (s) \leq K is bounded
in \BbbR , it follows that U\ast (s) \equiv K and U(si + s) \rightarrow K in C2

loc(\BbbR ). Define

\~V (i)(s) :=
V (s+ si)

| V (si)| 
, s \in \BbbR ,

and thus | \~V (i)(0)| = 1, \~V
(i)\prime 

j0
(0) \leq 0. Then it follows by passing to a subsequence and

from Lemma 2.1(i) that \~V (i)(\cdot ) converges to some \~V\ast (\cdot ) in C2
loc(\BbbR ), where \~V\ast (\cdot ) is a

nonnegative solution of (2.5) with P = G0 and satisfies ( \~V \prime 
\ast )j0(0) \leq 0. Proposition

2.4 and Lemma 2.3(ii) imply that \~V\ast (s) = c\lambda e
\lambda s\zeta \lambda + c\lambda e

\lambda s\zeta \lambda , where

0 < \lambda \leq \lambda , \zeta \lambda \gg 0, \zeta \lambda \gg 0, c\lambda \geq 0, c\lambda \geq 0, and c\lambda + c\lambda > 0.

Then \~V \prime 
\ast (0) = c\lambda \lambda \zeta \lambda + c\lambda \lambda \zeta \lambda \gg 0, contradicting ( \~V \prime 

\ast )j0(0) \leq 0. Hence we have proved
lim infs\rightarrow +\infty V (s) \gg 0.

7. Applications. The TWSs in Theorem 6.1 connect the disease-free equilib-
rium E0(K, 0n) at s =  - \infty and are persistent at s = +\infty . In this section, we will
apply Theorems 3.2 and 6.1 for system (1.1) to system (1.3) and show that the TWSs
of system (1.3) connect the endemic equilibrium at s = +\infty (this is a more detailed
result than persistence property). In addition, it will be shown that this method for
system (1.3) can be applied to a class of specific disease-transmission models.

For system (1.3), define

\scrF =

\left[     
\beta 1K \beta 2K \cdot \cdot \cdot \beta nK
0 0 \cdot \cdot \cdot 0
...

...
. . .

...
0 0 \cdot \cdot \cdot 0

\right]     , \scrV =

\left[     
\psi 1  - \phi 12 \cdot \cdot \cdot  - \phi 1n

 - \phi 21 \psi 2 \cdot \cdot \cdot  - \phi 2n
...

...
. . .

...
 - \phi n1  - \phi n2 \cdot \cdot \cdot \psi n

\right]     .
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Then \scrV is a nonsingularM -matrix and its inverse \scrV  - 1 is nonnegative (see [17, p. 267]).
Define R0 := \Lambda 1(\scrF \scrV  - 1), which is the basic reproduction number. It follows from the
expression of \scrF and the nonnegativity of \scrV  - 1 that R0 = (\scrF \scrV  - 1)11. Note that the
linearization of the reaction terms in Ii, i \in [n], of (1.3) at the equilibrium P0(K, 0n)
is G0 := \scrF  - \scrV . Indeed, it is possible that G0 is irreducible and yet  - \scrV (which plays
the role of \BbbM in the notations of earlier sections) is not irreducible.

Theorem 7.1. Assume G0 is irreducible. System (1.3) has no bounded positive
TWS connecting P0 at s =  - \infty if R0 < 1. Now let R0 > 1. Then (1.3) has a unique
endemic equilibrium P \ast (S\ast , I\ast ). Furthermore, there exists a constant c\ast 1 > 0 such
that (1.3) has a positive TWS \Phi (x+ ct) satisfying boundary conditions

(7.1) \Phi ( - \infty ) = P0, \Phi (+\infty ) = P \ast 

if and only if c \geq c\ast 1.

Proof. We first study the relation between \Lambda 1(G
0) and R0.

Claim 5. \Lambda 1(G
0) = 0 if and only if R0 = 1.

We first consider the necessity and suppose \Lambda 1(G
0) = 0. Since G0 is irreducible,

Theorem 1.2 gives that there exists a positive eigenvector \nu \gg 0 such that G0\nu =
\scrF \nu  - \scrV \nu = 0. Then the expression of \scrF shows that \scrV \nu = \scrF \nu = (\kappa \ast , 0, . . . , 0)T , where
\kappa \ast > 0. This yields that

0 = (G0\nu )1 = (G0\scrV  - 1\scrV \nu )1 = (G0\scrV  - 1)11\kappa 
\ast ,

and thus (G0\scrV  - 1)11 = 0. Since \scrV  - 1 and, therefore, \scrF \scrV  - 1 are nonnegative, we have

0 = (G0\scrV  - 1)11 = (\scrF \scrV  - 1  - In\times n)11 = (\scrF \scrV  - 1)11  - 1 = R0  - 1,

where In\times n is the identity matrix.
Now suppose R0 = 1. Since R0 = (\scrF \scrV  - 1)11, it is easy to show that

G0\scrV  - 1(1, 0, . . . , 0)T = (\scrF \scrV  - 1  - In\times n)(1, 0, . . . , 0)
T = 0.

Since \scrV  - 1(1, 0, . . . , 0)T is a nonnegative and nonzero vector, Theorem 1.2 implies that
\Lambda 1(G

0) = 0. This claim is proved.
Next we show that R0 > 1 if and only if \Lambda 1(G

0) > 0. It follows from the
expression of \scrF and the nonnegativity of \scrV  - 1 that

R0 = (\scrF \scrV  - 1)11 = K

n\sum 
i=1

\beta i(\scrV  - 1)i1.

Thus R0 is strictly increasing with respect to K > 0. Since G0 is irreducible, the
Perron--Frobenius theorem shows that \Lambda 1(G

0) is also strictly increasing with respect
to K > 0. Then the monotonicity of R0 and \Lambda 1(G

0) with respect to K > 0 and Claim
5 show that R0 > 1 if and only if \Lambda 1(G

0) > 0.
Similarly to the proof of Theorem 3.2, we can show that system (1.3) has no

bounded positive TWS connecting P0 at s =  - \infty if R0 < 1. In the following, we
assume R0 > 1, i.e., \Lambda 1(G

0) > 0. Let c\ast 1 be the c\ast in Lemma 2.3(ii) with P = G0.
Since \scrV is a nonsingular M -matrix, we have \Lambda 1( - \scrV ) < 0 [3, p. 135]. This means that
the corresponding assumption (A1) for (1.3) holds. Completely similar to the proofs
of Theorems 3.2 and 6.1, it can be shown that (1.3) has a persistent positive TWS
(S(x+ ct), I(x+ ct)) connecting P0 if and only if c \geq c\ast 1.
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Next, suppose c \geq c\ast 1. To complete the proof, we need to show (S, I)(+\infty ) = P \ast .
Following the idea of [10, 8, 12, 39], a Lyapunov function, motivated by [17], will be
constructed. It is obvious that (S, I)(s), s = x+ ct, satisfies

(7.2)

\left\{         
S\prime =W0,

d0W
\prime 
0 = cW0  - G0(S, I),

I \prime i =Wi,

diW
\prime 
i = cWi  - Gi(S, I), i \in [n],

where

G0(S, I) = \delta 0(K  - S) - S

n\sum 
j=1

\beta jIj , G1(S, I) = S

n\sum 
j=1

\beta jIj +

n\sum 
j=1

\phi 1jIj  - \psi 1I1,

Gi(S, I) =

n\sum 
j=1

\phi ijIj  - \psi iIi, i = 2, . . . , n.

Define

L(s) :=

n\sum 
j=0

\sigma jLj(s),

where positive constants \sigma j will be determined later and

L0(s) = c

\int S

S\ast 
1 - S\ast 

\xi 
d\xi  - d0W0

\biggl( 
1 - S\ast 

S

\biggr) 
,

Li(s) = c

\int Ii

I\ast 
i

1 - I\ast i
\xi 
d\xi  - diWi

\biggl( 
1 - I\ast i

Ii

\biggr) 
, i \in [n].

Trivial calculations give

dL0(s)

ds

\bigm| \bigm| 
(7.2) = [cW0  - d0W

\prime 
0]
S  - S\ast 

S
 - d0W0S

\ast S\prime 

S2

= G0(S, I)
S  - S\ast 

S
 - d0S

\ast W 2
0

S2

=: \scrJ 01  - \scrJ 02.

It can be similarly shown that

dLi(s)

ds
= Gi(S, I)

Ii  - I\ast i
Ii

 - diI
\ast 
i W

2
i

I2i
=: \scrJ i1  - \scrJ i2, i \in [n].

It is evident that \scrJ k2 \geq 0, 0 \leq k \leq n, and that the conditions of this theorem imply
those of Theorem 5.1 of [17]. Then, from the proof of Theorem 5.1 of [17], there exist
positive constants \sigma j , j = 0, 1, . . . , n, such that

\sum n
j=0 \sigma j\scrJ j1 \leq 0. This means that

L\prime (s) \leq 0 and that the only invariant set in the set \{ L\prime (s) = 0\} is the singleton

(S, I)(s) \equiv (S\ast , I\ast ), Wj(s) \equiv 0, 0 \leq j \leq n.

Since (S, I)(s) is persistent and Wj(s), 0 \leq j \leq n, are bounded in [0,+\infty ), we
have that L(s) is bounded in [0,+\infty ). Then LaSalle's invariance principle gives
(S, I)(+\infty ) = P \ast .
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Remark 7.2. Since the saturation condition ((A5)(II)) is required for the model
in [36], the methods in this paper can be applied to the model in [36] under a weaker
(unsaturated) condition.

By the proof of Theorem 7.1, we know that the Lyapunov function L(s) for
system (7.2) is constructed based on that in [17] for the ODE or nondiffusive model
corresponding to diffusive model (1.3) (i.e., model (1.3) with di = 0 for i = 0, 1, . . . , n).
Generally speaking, a Lyapunov function for the traveling-wave system (3.1) can be
constructed if the corresponding ODE or nondiffusive model has a Lyapunov function.
We can thus obtain a theorem similar to Theorem 7.1 for the models or special cases
in [21, 30, 29, 23, 13, 11, 40].
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