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Abstract

We consider the road-field reaction-diffusion model introduced by Berestycki,
Roquejoffre, and Rossi. By performing a “thin-front” limit, we are able to
deduce a Hamilton-Jacobi equation with a suitable effective Hamiltonian on
the road that governs the front location of the road-field model. Our main
motivation is to apply the theory of strong (flux-limited) viscosity solutions in
order to determine a control formulation interpretation of the front location. In
view of the ecological meaning of the road-field model, this is natural as it casts
the invasion problem as one of finding optimal paths that balance the positive
growth rate in the field with the fast diffusion on the road.

Our main contribution is a nearly complete picture of the behavior on two-
road conical domains. When the diffusivities on each road are the same, we
show that the propagation speed in each direction in the cone can be computed
via those associated with one-road half-space problem. When the diffusivities
differ, we show that the speed along the faster road is unchanged, while the
speed along the slower road can be enhanced. Along the way we provide a new
proof of known results on the one-road half-space problem via our approach.

Résumé. Nous considérons le modèle route-champ introduit par Berestycki,
Roquejoffre, et Rossi. En effectuant une limite “front mince,” nous déduisons
une équation Hamilton-Jacobi avec un hamiltonian effectif approprié sur la route
qui gouverne la position du front du modèle. Notre motivation principale est
l’application de la théorie des solutions fortes de viscosité (ou “flux limité”) pour
déterminer une formulation de contrôle qui décrit la position du front. Étant
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donné la signification écologique du modèle, il est en effet naturel de reformuler
le probléme en termes de chemins optimaux qui équilibrent le taux de croissance
positif dans le champ avec la diffusion rapide sur la route.

Notre contribution principale est une description presque complète du com-
portement dans les domaines coniques avec deux routes. Lorsque les diffu-
sivités dans les deux routes sont identiques, nous montrons que les vitesses de
propagation dans chaque direction du cône peut être calculée à partir de celles
associées au problème de demi-espace avec une seule route. Lorques les diffu-
sivitiés ne sont pas identiques, nous montrons que la vitesse de propagation le
long de la route rapide reste inchangée, tandis que la vitesse le long de la route
lente peut être augmentée. Grace a cette approche nous proposons d’originales
démonstrations de théorèmes connus dans le demi-espace.

Keywords: Road-field models, front propagation, flux-limited
Hamilton-Jacobi equations, thin-front limit, Wulff shape
2020 MSC: 35K57, 35F21, 92D25

1. Introduction

1.1. The model and main questions

In [8], Berestycki, Roquejoffre, and Rossi introduced a model for the invasion
of a species that can inhabit two different environments, a “field” in which each
individual moves slowly and reproduces and a “road,” on which it moves quickly
but cannot reproduce. We refer to [8] for a more in-depth discussion of the
ecological relevance of the model; however, the reader may find it helpful to
have in mind the example of wolf packs in Western Canada, which have been
observed to move quickly in the forest using seismic lines [30]; see also [21]. We
also mention [10, 26, 22] in which other effective boundary conditions, different
from what we consider here, were derived by letting the width of the road to
zero.

The Berestycki-Roquejoffre-Rossi model that we study in this paper is given
by 

Vt − d̃∆V = r̃V (1− V ) for (t, x, y) ∈ (0,∞)×H,
Ut − D̃Uxx = ν̃V |y=0 − µ̃U for (t, x) ∈ (0,∞)× R,
−d̃Vy(t, x, 0) = µ̃U(t, x)− ν̃V (t, x, 0) for (t, x) ∈ (0,∞)× R,

(1.1)

where we use the following notation for the upper half-space:

H = Rx × (0,∞)y.

Here, V (t, x, y) represents the population density of the species at time t in the
field at (x, y) ∈ H, U(t, x) represents the population density at time t on the
road (x, 0) ∈ R × {0}, and d̃, D̃, r̃, ν̃, and µ̃ are positive parameters related to
the diffusivity of the population off the road and on the road, the reproduction
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rate of the species, and the exchange rate to and from the road, respectively.
After a suitable scaling, (1.1) becomes1

Vt −∆V = V (1− V ) in (0,∞)×H,
Ut −DUxx = νV |y=0 − µU in (0,∞)× R,
−Vy = κ(µU − νV ) in (0,∞)× R× {0},

(1.2)

and this is the model that we analyze. We also consider this model posed on
conical domains, bounded by two roads. That system takes significantly more
space and care to write, so we postpone it to (1.32).

The main question is understanding how the unexplored area (U, V ∼ 0) is
invaded and populated up to the fully populated steady state (U, V ) ∼ (µ/ν, 1).
A rephrasing of this is to ask how the levels sets of U and V propagate starting
from initial data that is a compact perturbation of (0, 0); that is,

U(0, ·) ∈ L∞(R) and V (0, ·) ∈ L∞(H) are nonnegative, nontrivial, and compactly supported.
(1.3)

Actually, we make the seemingly stronger assumption that

U(0, ·) ≤ ν

µ
and V (0, ·) ≤ 1. (1.4)

In practice, this is not a strong assumption because, by a simple comparison
principle argument, U − ν/µ and V − 1 have an exponentially decaying-in-time
upper bound.

Importantly, one wishes to understand how the behavior of (U, V ) deviates
from the homogeneous, or “non-road,” case{

Ṽt −∆Ṽ = Ṽ (1− Ṽ ) in (0,∞)×H,
−Ṽy = 0 in (0,∞)× R× {0},

(1.5)

and how the propagation depends quantitatively on the parameters D, µ, and
ν. The interesting case is when the diffusion on the road is faster than it is on
the field. As such, we make the standing assumption

D > 1

throughout the paper, even when not explicitly stated.
This model has attracted a huge amount of attention; see, e.g., [1, 8, 9, 13,

7, 6, 12, 31] and the many references therein. While many questions are inves-
tigated, the basic results are that, when D ≤ 2, the invasion occurs with speed
2 in all directions, just as in (1.5), and when D > 2, the speed is directionally
dependent and scales like

√
D as D → ∞ along the road. We discuss many

of these below. These works are dependent on direct analysis of (1.2) relying

1We find an extra parameter here compared to [8]. See also the discussion in [26]
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on the careful construction of sub- and supersolutions. This is, in a sense, an
Eulerian approach to the problem.

Our goal here is to provide a more Lagrangian perspective. Specifically, we
perform a thin front limit à la Evans and Souganidis [14] (see also [5, 29, 17,
16]) to connect (1.2) with a suitable Hamilton-Jacobi equation. This equation
is a “junction” type problem where the road and field meet. Using recent
developments in the theory of Hamilton-Jacobi equations with junctions [23,
24, 15, 3, 28, 18], we characterize the longtime behavior of (U, V ) up to o(t)
fluctuations in space in terms of the zero set {J = 0} of the solution to the
control problem

J(t, x, y) = min

∫ t

0

L̂(γ(s), γ̇(s)) ds, (1.6)

where we clarify the set on which minimum is taken and the Lagrangian L̂ in
the sequel (see (1.26) and (1.27), respectively). Here,

L̂(x, y, v1, v2) =
(
1
4 |(v1, v2)|

2 − 1
)
1{y>0} + Lr(v1)1{y=0}

represents a running cost that accounts for the faster diffusion on the road and
the reproduction on the field, in which the running cost Lr(v1) on the road is
defined implicitly in terms of all the parameters of the problem (see (1.27) for
the full definition of L̂). In a sense, the optimizers in the above problem provide
the “optimal path” that individuals should take. This characterizes when the
individual should be on the road versus the field and how fast it should move
on each. This, in a sense, provides a natural ecological interpretation of previ-
ous results, and it is appropriate given the motivating question: “how do the
paths that individuals take affect the population’s expansion?” Additionally, it
reduces the study of (1.2), which requires careful analysis via sub- and superso-
lutions, to a simple control problem (1.6) that is numerically tractable and easy
to approximate by hand.

Before diving into the specifics, a brief summary of the main results of the
paper is the following:

• We deduce the appropriate Lagrangian L̂ and show that the “front” of (1.2)
is given by {J(t, x, y) = 0}. We can then recover all propagation results
from [8, 9] purely through an analysis of J via (1.6).

• We demonstrate a connection between the road and field problem (1.2)
and the ongoing work on Hamilton-Jacobi equations with junctions to the
road-field model (1.2).

• Our results generalize from H to conical domains Ωa bounded by two
roads forming an angle 0 < 2a ≤ π. In fact, the front in this case can be
given explicitly in terms of the front in the half-space case. An interesting
consequence is that the populated region is “often” non-convex, which is
in contrast to the case on H, where it is strictly convex for all D > 1. In a
sense, this is the main novelty of our work because it seems that estimates
on the spreading behavior in the interior of Ωa are not accessible via the
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types of planar supersolutions typically used in the analysis of (1.2). With
our approach, they are an immediate consequence of the analysis of the
half-space case.

In summary, we marry two ongoing currents of research, providing both a
new perspective to the road-field model and a new application to the theory of
Hamilton-Jacobi equations with junctions.

1.2. Statement of main results

In this section, we give the more technical statement of our results. To
motivate each result, we give an idea of the main computations that lead to the
control formulation for (1.2).

1.2.1. Finding the correct Hamilton-Jacobi equation and the propagation result

As we expect ballistic propagation, we perform a standard Hopf-Cole trans-
form and rescaling of the equation: let

uε(t, x) = −ε logU(t/ε, x/ε) and vε(t, x) = −ε log V (t/ε, x/ε, y/ε), (1.7)

then
vεt − ε∆vε + |vεx|2 + |vεy|2 + (1− e−

vε

ε ) = 0 in (0,∞)×H,
uεt − εDuεxx +D|uεx|2 + νe

uε−vε

ε − µ = 0 in (0,∞)× R,
vεy = κ(µe

vε−uε

ε − ν) in (0,∞)× R× {0}.
(1.8)

If we momentarily suppose that vε → w, which we prove in Theorem 1.1, then
it is a classical result [14, 17] that w satisfies

min{w,wt +Hf(∇w)} = 0 in (0,∞)×H, (1.9)

where we introduce the Hamiltonian

Hf(q, p) = q2 + p2 + 1

To understand the equation (1.9), notice that, by the comparison principle,
vε ≥ 0, and, if vε > 0, the exponential term in the first equation of (1.8) tends
to zero, while the other terms yield the Hamilton-Jacobi equation equation
in (1.9).

The boundary condition for w at y = 0, however, comes from a homoge-
nization process when individuals transition between the two states U and V .
Observe from the third equation in (1.8) that

νe
uε−vε

ε = −
µvεy

κν + vεy
+ µ.

Additionally, from the exponential terms in (1.8), we expect that vε − uε → 0,
so that uε → w as well. And we obtain, from the second and third equations of
(1.6), an additional condition on the boundary:

min{w,wt + F0(wx, wy)} = 0 on (0,∞)× R× {0}, (1.10)
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where we have introduced the function

F0(q, p) = Dq2 +B0(p), where B0(p) =

{
− µp

κν+p if p > −κν,
+∞ if p ≤ −κν.

(1.11)

The dynamic boundary condition (1.10) is understood in the relaxed viscosity
sense that we make clear in Section 3 via the definition of “weak viscosity so-
lution.” Roughly, it is the standard definition of a viscosity solution, where the
subsolution (resp. supersolution) condition involves minimizing (resp. maxi-
mizing) the equation and boundary condition when w is “touched” by a smooth
test function at the boundary. This leads to our first result:

Theorem 1.1. Suppose that (U, V ) solve (1.2) with initial data satisfying (1.3)-
(1.4). Then:

(i) the rescaled solutions vε and uε converge locally uniformly to a weak vis-
cosity solution w to (1.9)-(1.10);

(ii) the solution satisfies w(t, tx, ty) = tw(1, x, y) for all t > 0 and (x, y) ∈ H;

(iii) the set W = {(x, y) ∈ H2 : w(1, x, y) = 0} is star-shaped; 2

(iv) for all η > 0,

lim
t→+∞

 sup
dist( 1

t (x,y),W)>η

V (t, x, y) + sup
dist( 1

t (x,0),W)>η

U(t, x)

 = 0 (1.12)

and

lim
t→+∞

 sup
dist( 1

t (x,y),H\W)>η

|V (t, x, y)− 1|+ sup
dist( 1

t (x,0),H\W)>η

∣∣∣∣U(t, x)− ν

µ

∣∣∣∣
 = 0.

(1.13)

We note thatW is often referred to as a Wulff shape or asymptotic expansion
shape associated to (1.2).

1.2.2. Comparison principle for w: strong viscosity solutions

One major difficulty in the proof of Theorem 1.1 is that, in order to use the
half-relaxed limits approach to proving Theorem 1.1.(i), the limiting equation
must enjoy a comparison principle. For some time it was an open question
whether a comparison principle holds for weak viscosity solutions. Recently,
a breakthrough of Imbert and Monneau [23, 24], established the comparison
principle under certain hypotheses on F0 by relating it to a notion of strong

2We will show that W is strictly convex after connecting with the control formulation; see
Corollary 1.4.
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viscosity solutions with a suitable optimal control interpretation on the junc-
tion or boundary. Lions and Souganidis [28] later provided a simpler proof by
leveraging a deep connection with Kirchhoff-type junction conditions. Let us
also mention [3, 27] for related work.

Moreover, while Theorem 1.1 reduces the front propagation problem of
the road-field model (1.2) to understanding a limiting Hamilton-Jacobi equa-
tion (1.9)-(1.10), it does not give us access to a control formulation. In partic-
ular, it is not immediately clear that w is easier to understand than (U, V ).

Both of these issues lead us to search for the appropriate “flux-limited”
boundary condition that is satisfied by w in the “strong” viscosity sense. The
definition of this is clarified in Section 3. We follow [24] to briefly derive it here.

Fix a point z = (t, x, 0) on the “road” at which w(z) > 0, and let (−λ, q, p) ∈
D+

Hw(z) be an element of the superdifferential. By interpreting (1.10) in the
relaxed sense,

min{Hf(q, p), F0(q, p)} ≤ λ. (1.14)

Being on the boundary, one can reduce the value of p to find a critical slope
p = p(λ, q) ≥ 0 such that

(−λ, q, p′) ∈ D+
Hw(P ) if and only if p′ ≥ p (1.15)

(see Definition Appendix A.3). A key insight, due to Imbert and Monneau and
summarized in Lemma 4.7, is that

Hf(q, p) ≤ λ. (1.16)

This is not obvious because (1.14) involves a minimum of H and F0. It is
obtained by “pushing” the argument into the interior of H, where wt+H(∇w) ≤
0. Let H−

f be the nonincreasing-in-p part of Hf :

H−
f (q, p) := inf

p′≤p
Hf(q, p

′) = Hf(q, p+) = p2+ + q2 + 1. (1.17)

Here p+ = max{p, 0} is the positive part of p. Since p ≥ p, then

H−
f (q, p) ≤ Hf(q, p̄) ≤ λ. (1.18)

Next, we define the flux limiter (see [23, 24]):

Hr(q) :=

{
minHf(q, ·) = Hf(q, 0) when Hf(q, 0) ≥ F0(q, 0),

supp′>0 min{Hf(q, p
′), F0(q, p

′)} when Hf(q, 0) < F0(q, 0),

Let us mention three facts about Hr: (1) it is not immediately obvious that Hr

is convex, however, we show this in Lemma 2.1; (2) we name Hr in this way
because it is the effective Hamiltonian on the road in the control formulation
(cf. (1.25)); (3) either F0(q, 0) ≤ Hf(q, 0) or there is pq > 0 such that Hr(q) =
F0(q, pq) = Hf(q, pq). For this last point, we used that Hf(q, ·) is increasing in
p and F0(q, ·) is decreasing in p, for p > 0. Actually, this leads to the more
explicit form (1.22) of Hr.
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To motivate the definition of strong solutions, we claim, in addition to (1.18),
that

Hr(q) ≤ λ. (1.19)

Indeed, if F0(q, 0) ≤ Hf(q, 0) then Hr(q) = Hf(q, 0) ≤ Hf(q, p̄). We are then
finished by applying (1.16). Otherwise, F0(q, 0) > Hf(q, 0) and it follows from
observation (3) above imply that there is pq > 0 such that

Hr(q) = Hf(q, pq) = F0(q, pq).

Since p 7→ Hf(q, p) is increasing on R+, we deduce (1.19) immediately from (1.16)
if pq ≤ p̄. If pq > p̄ then (−λ, q, pq) ∈ D+

Hw(z), and again Hr(q) ≤ λ, thanks
to (1.14)-(1.15). This concludes the justification of (1.19).

Combining (1.18) and (1.19), we derive the strong condition on the bound-
ary:

F (q, p) := max{H−
f (q, p), Hr(q)} ≤ λ. (1.20)

whenever (−λ, q, p) ∈ D+
Hw(P ). This is to be compared with the relaxed condi-

tion (1.14), where a minimum is involved.
Motivated by the above, we introduce the following flux-limited boundary

condition:

min{w,wt + F (wx, wy)} = 0 in (0,∞)× R× {0}, (1.21)

By taking into account the explicit expressions of H and F0, we may compute
the following:

Hr(q) = q2 + (pq)
2 + 1 (1.22)

with

pq =

{
0 if q2 ≤ 1

D−1 ,

g−1(q) if q2 > 1
D−1 .

(1.23)

Here g : [0,∞) → [1/
√
D − 1,∞) is the increasing function

g(p) =

√
1

D − 1

[
p2 + 1 +

µp

κν + p

]
. (1.24)

Making the above arguments more rigorous and precise, we obtain the fol-
lowing result. Let us again note that the exact definition of a strong viscosity
solution is given in Section 3.

Theorem 1.2. Under the assumptions of Theorem 1.1, the limiting solution w
is a strong viscosity solution to (1.9)-(1.21).

1.2.3. The control formulation and w

We now connect the solution w to a control formulation. Define the value
function

J(t, x, y) = min
γ∈N(t,x,y)

∫ t

0

L̂(γ(s), γ̇(s)) ds, (1.25)
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the infimum is taken over the set

N(t, x, y) =
{
γ ∈ H1(0, t) : γ(0) = (0, 0), γ(t) = (x, y), γ(s) ∈ H for all s ∈ [0, t]

}
,

(1.26)
and where the Lagrangian L̂(x, y, v1, v2) is given by

L̂(x, y, v1, v2) = Lf(v1, v2)1y>0 + Lr(v1)1y=0, (1.27)

with the Lagrangians on the field (Lf) and road (Lr) given by

Lf(v) = max
(q,p)

[
v · (q, p)− (q2 + p2 + 1)

]
=

|v|2

4
− 1 and

Lr(v1) = max
q

[
v1q −Hr(q)

]
.

These are, respectively, the Legendre transforms of Hf(q, p) = q2 + p2 + 1 and
the effective Hamiltonian Hr(q). Let us note that J has the following obvious
scaling symmetry (see also Lemma 4.4.(iii)):

J(t, x, y) = tJ(1, x/t, y/t) (1.28)

This allows one to focus on analyzing simply J(1, ·).
It follows from [23, Theorem 6.4] that J is the unique solution satisfying, in

the strong viscosity sense,{
Jt +Hf(Jx, Jy) = 0 in (0,∞)×H,
Jt + F (Jx, Jy) = 0 in (0,∞)× R,

(1.29)

with initial data

lim inf
(t′,x′,y′)→(0+,x,y)

J(t′, x′, y′) =

{
0 when (x, y) = (0, 0),

+∞ otherwise.

Indeed, (1.29) is the (flux-limited) Hamilton-Jacobi equation that arises from
the linearization of (1.2) at the trivial solution.

Theorem 1.3. Under the assumptions of Theorem 1.1, we have

w(t, x, y) = max{0, J(t, x, y)}.

As a consequence, the Wulff shape can also be written as follows

W = {(x, y) ∈ H : J(1, x, y) ≤ 0}, (1.30)

and, for (t, x, y) ∈ (0,∞)×H,

V ε(t, x, y) →

{
1 if (t, x, y) ∈ {J < 0}
0 if (t, x, y) ∈ {J > 0}

and Uε(t, x) →

{
ν
µ if (t, x, 0) ∈ {J < 0}
0 if (t, x, 0) ∈ {J > 0}.
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See Figure 3 for a computation of the Wulff-shape W. Two easy corollaries
of Theorem 1.3 are the following:

Corollary 1.4. W is strictly convex for all D > 1.

Surprisingly, among the class of all conical domains in R2, the case Ω = H is
the only case where the Wulff shape is convex for allD > 1; see Proposition 2.19.
Corollary 1.4 is a direct consequence of (1.30) and Lemma 2.8 concerning the
strict convexity of level set {J ≤ 0} (cf. Proposition 2.19).

Corollary 1.5. For each ϑ ∈ [−π/2, π/2], there exists a directional spreading
speed c∗(ϑ) > 0 such that

lim
t→∞

V (t, x+ ct sinϑ, y + ct cosϑ) = 1 if 0 ≤ c < c∗(ϑ), and

lim
t→∞

V (t, x+ ct sinϑ, y + ct cosϑ) = 0 if c > c∗(ϑ),
(1.31)

locally uniformly in (x, y) ∈ R2.

To obtain Corollary 1.5, simply notice that J is strictly radially increasing
(Lemma 2.3.(ii)), so that there is a unique value such that

J(1, c∗(ϑ) sinϑ, c∗(ϑ) cosϑ) = 0.

As such, we omit the proof as it follows directly from the tools we develop in
the sequel.

In Section 2, we deduce several further results from Theorem 1.3 by under-
standing the optimal paths γ in (1.25). In particular:

• (Proposition 2.2) Optimal paths stick to the road {y = 0} until a time
τ0 ∈ [0, 1] when they proceed through the field along straight lines. This
yields a Lax-Oleinik-type formula for J .

• (Proposition 2.4) A characterization of the speed along the road c∗(π/2)
in terms of Hr from which it is easy to deduce that c∗(π/2) = 2 for D ≤ 2,
c∗(π/2) > 2 for D > 2, and c∗(π/2) ∼

√
D as D → ∞ (Corollary 2.5 and

Corollary 2.6).

• (Lemma 2.8) The Wulff shape W is strictly convex. Later, we see that
optimal paths to the front do not follow speed c∗(π/2) on the road for some
time and speed 2 in the field for the remainder of the time; instead, they
move faster than speed c∗(π/2) on the road and slower than speed 2 in the
field (Proposition 2.13). In particular, Huygen’s principle does not hold.

• Further, a portion of the boundary of W is a circle of radius two and, if
D > 2, a portion “lifts off” this circle. More precisely, there is ϑ∗ > 0
such that c(ϑ) = 2 for |ϑ| ≤ ϑ∗ and c(ϑ) is strictly increasing for ϑ > ϑ∗
(Proposition 2.9).

The results about the optimal paths are (necessarily) new, while those about
the Wulff shape, or equivalently, the speed c∗(ϑ), recover known results of [8, 9].
Our approach, however, is quite different.
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1.3. Conical domains

We discuss a novel and natural extension of our approach to the case when
the half space H is replaced by a general conical domain: for a fixed a ∈ (0, π/2],
let

Ωa = {(r sinϑ, r cosϑ) : r > 0, ϑ ∈ (π/2 − 2a, π/2)}.

In particular, Ωπ/2 = H and Ωπ/4 is the first quadrant of R2. Here, there are
two portions of the road:

Γ0 = (0,∞)× {0} and Γa = {(x, y) : y > 0, x/y = tan(π/2 − 2a)}.

Then we arrive at the system for (V,U)

Vt −∆V = V (1− V ) in (0,∞)× Ωa,

Ut −DUxx = νV |y=0 − µU in (0,∞)× (0,∞),

−Vy(t, x, 0) = κ[µU(t, x)− νV (t, x, 0)] in (0,∞)× (0,∞),

Ũt − D̃Ũxx = ν̃Ṽ |y=0 − µ̃Ũ in (0,∞)× (0,∞),

−Ṽy(t, x, 0) = κ̃[µ̃Ũ(t, x)− ν̃Ṽ (t, x, 0)] in (0,∞)× (0,∞),

(1.32)

where

Ṽ (t, x, y) = V (t,Ψa(x, y)) and Ũ(t, x) = U(t,Ψa(x, 0)), (1.33)

with

Ψa being the reflection that takes Γ0 and Γa to each another.

Here U is the population on the roads Γ0 ∪ Γa and V is the population on the
road Γa. In general, we only work with U |Γ0

and Ũ |Γ0
for convenience. See

Figure 1.
Let us note that the well-posedness of (1.32) is open due to the corner at

(0, 0). Existence is simple: by smoothing Ωa to Ωa,ε, one easily constructs an
approximate solution (V ε, Uε). By compactness, we may take ε → 0 to obtain
a solution on Ωa. Instead, it is uniqueness that is not obvious. As it is not our
interest to settle that here, we avoid these technical details below.

Domains of this form were considered by Ducasse [13] who, by generalizing
the arguments of [9], showed that the speed of the road is not affected by the
value of a when the diffusion on both portions of the road is identical; that is,
D = D̃. The spreading in the interior and the behavior if D ̸= D̃ is a novel
contribution of this work.

In Section 6, we show that the study of the spreading of (V,U, Ũ) reduces to
studying the solution wa of a Hamilton-Jacobi equation similar to (1.9)-(1.21).
Moreover, this equation has a control formulation:

Ja(t, x, y) = inf
γ∈Na(t,x,y)

∫ t

0

[
Lf(γ̇(s))1{γ(s)∈Ωa} + Lr(γ̇(s))1{γ(s)∈Γ0} + Lr( ˙̃γ(s))1{γ(s)∈Γa}

]
ds,

(1.34)
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x

y

Γa/2
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a

π
2

− 2a

Ωa

Γ0

Γa

x

y

Γa/2

a

a

Ωa

Γ0

Γa

Figure 1: Two examples of the domain Ωa, the first with angle a < π/4 and the second with
a > π/4.

where the class of admissible paths Na is defined analogously as in (1.26) and
γ̃ = Ψaγ. This leads to a characterization of the Wulff shape, along the lines of
Theorem 1.3. Let us roughly state this here in the simplest case when µ = µ̃,
ν = ν̃, κ = κ̃ and D = D̃. Further results when D ̸= D̃ are discussed in
Section 6.

Theorem 1.6. Let (V,U, Ũ) be any solution of (1.32) with initial data analo-
gous to (1.3)-(1.4) and (vε, uε, ũε) are defined analogously as in (1.7), then

vε, uε, ũε → wa

locally uniformly, with

wa(t, x, y) = max{0, Ja(t, x, y)}

and
Ja(t, x, y) = min{J(t, x, y), J(t,Ψa(x, y))}. (1.35)

Moreover, for every (t, x, y) ∈ (0,∞)×H

V ε(t, x, y) →

{
1 if (t, x, y) ∈ {Ja < 0}
0 if (t, x, y) ∈ {Ja > 0}

and Uε(t, x) →

{
ν
µ if (t, x, 0) ∈ {Ja < 0}
0 if (t, x, 0) ∈ {Ja > 0}.

so that the Wulff shape is

Wa = {(t, x, y) ∈ Ωa : Ja(1, x, y) ≤ 0}.

12



(a) Wulff Shape of Ω 5π
12

(b) Wulff Shape of Ωπ
4

(c) Wulff Shape of Ωπ
8

Figure 2: The boundary of Wa, with different values of a = 5π
12

, π
4
, π
8
. Here we take D̃ = D = 9

and we set all other parameters to 1. The dashed line represents the Wulff shape without
enhancement by the road (the circle with radius 2), and the solid line represents the Wulff
shape with enhancement by the road. The road speed is given by c∗(π/2) ≈ 3.1243.

Let us note an important aspect of this result: it connects the problem on
the conical domain Ωa with the problem on the half-space H by relating Ja and
J . Indeed, by symmetry, we see that Ja(t, x, y) = J(t, x, y) if (x, y) is closer to
the road Γ0 and is J(t,Ψa(x, y)) otherwise. In this way, we can leverage the
results on H to the more general case.

Using this, we derive further properties of the Wulff shape essentially “for
free” from the results on H:

• We immediately recover from the discussion above that the speed on the
roads Γ0 and Γa are c∗(π/2).

• Further, we see that speeds in the field in the subdomain Ωa/2, which is
the area under the dashed red line in Figure 1, are unchanged from the
half-space case. More succinctly,

c∗a(ϑ) = c∗(ϑ) for ϑ > π/2 − a.

By symmetry, it follows that

c∗a(ϑ) = c∗a(π − 2a− ϑ) = c∗(π − 2a− ϑ)

13



when ϑ ∈ [π/2 − 2a, π/2 − a]. Equivalently,

Wa = (W ∪Ψa(W)) ∩ Ωa.

See Proposition 2.16.

• Interestingly, we see that the Wulff shape loses convexity for any a ∈
(0, π/2) when D is sufficiently large (Proposition 2.19). In particular, we
obtain a lower bound D ≥ 4(2 + µ)2 csc2 2a. See Figures 2b and 2c for
numerical simulations illustrating this. As we pointed out above, this
implies that the interior behavior cannot be bounded by the types of
planar supersolutions used in previous works.

We also discuss the behavior when D ̸= D̃. We prove that the speed on
the slower road can be further enhanced by the effect on the faster road, while
the speed on the faster road remains unchanged compared to the case on H
(Proposition 6.4). Our results here are less precise because (1.35) may not hold
(cf. Lemma 6.2).

1.3.1. Noncompactly supported initial data

It is not difficult to see that our results easily generalize to initial data that
is not compactly supported, although some care has to be taken as it is known
that initial data with “too slow” of decay yield accelerating fronts [19, 20]. If
we assume that

V0(r sinϑ, r cosϑ) = e−(h(ϑ)+o(1))r, U0(r) = e−(h(π/2)+o(1))r as r → +∞,

for some positive function h ∈ C([−π/2, π/2]) then our proofs go through nearly
exactly, with only the step involving the comparison principle changed (and that
step becomes easier because w0 is continuous and finite) and with J replaced
by

Jh(t, x, y) = inf
γ∈H1,

γ(t)=(x,y)

{∫ t

0

L̂(γ(s), γ̇(s))ds+ w0(γ(0))

}
,

such that w0(x, y) = rh(ϑ), in polar coordinates. We omit further discussion.

1.4. Organization

We organize the paper as follows. We begin by demonstrating the strength
of the control formulation by using it and the interpretation of the front as
{J = 0} to deduce fairly precise estimates on the Wulff shape in the half space
case H, as well as the general conical case Ωa.

The main work to establish the connection between the control formula-
tion (1.25) and the original reaction-diffusion problem (1.2) in the half-space
H occurs in Sections 3 through 5. Specifically, Section 3 gives the definition
of weak and strong viscosity solutions, Section 4 gives the main arguments to
prove Theorem 1.1, and Section 5 gives the proof of Theorem 1.3. Extensions

14



of these results to conical domains Ωa are discussed in Section 6. All technical
lemmas are contained in Section 7.

Finally, we include an appendix that contains a proof of the comparison
principle for strong solutions of our Hamilton-Jacobi equations (Theorem Ap-
pendix A.1). The main novelty here is that we allow for infinite initial data.

1.5. Notation

We use big-oh and little-oh notation throughout the manuscript. In partic-
ular, when a limit is taken, say ε → 0, we use bε = o(aε) and b̃ε = O(aε) to
mean that

lim
ε→0

bε
aε

= 0 and lim sup
ε→0

|b̃ε|
|aε|

<∞.

Alternatively, we write bε ∼ aε if bε = O(aε) and aε = O(bε).
We use weak solution and strong solution for, respectively, weak viscosity

solution and strong viscosity solution (the precise definition of this is given in
Section 3). Aside from the equations relating to uε and vε, all other equations
are considered in the viscosity sense, so there is no risk of confusion. Let us note
that there is some ambiguity in the terminology for these solutions. For example,
they are sometimes also called flux-limited solutions. We opt for simplicity here
and follow the example of [18].

2. Consequences of the control formulation (1.25)

Section 2, together with part of Section 7, give a self-contained treatment of
the value function J of the optimization problem given in (1.25), and properties
of its level sets. For simplicity, we will slightly abuse notation to denote

W = {(x, y) : J(1, x, y) ≤ 0}.

Later, after establishing Theorem 1.3, we see that this is consistent with the
definition of W given in Theorem 1.1.(iii).

Before embarking on this, let us note that the fact that Hr is convex and
coercive is not obvious for q > 1/

√
D − 1. We state this fact here and prove it by

complicated, but elementary, calculus in Section 7.1.

Lemma 2.1. The Hamiltonian Hr is strictly convex and coercive.

We start with a basic proposition that characterizes the optimal paths in (1.25),
as well as provides various qualitative properties of J . The first conclusion in
Proposition 2.2 has a nice ecological interpretation: individuals who wish to in-
vade as quickly as possible will remain on3 the road for a portion of time [0, τ0]
and then follow a straight line path in the field for the remainder of time [τ0, 1].
This yields (2.2), which is a type of Lax-Oleinik formula.

3Actually, after scaling, being “on” the road represents, in the original variables, paths
that stay near the road, hopping back and forth to take advantage of the faster propagation
of the road and the ability to reproduce in the field.
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Proposition 2.2. Fix any (x, y) ∈ H with x ≥ 0. There is a unique minimizing
path γ in the control formulation (1.25). Further, there exists τ0, z0, p0, q0 such
that

γ(s) =

{
s
τ0
(z0, 0) for s ∈ [0, τ0],

(z0, 0) + (s− τ0) (2q0, 2p0) for s ∈ [τ0, 1].
(2.1)

In particular, recalling (1.27), we have

J(1, x, y) = min
0≤z≤x
0≤τ≤t

[
(1− τ)Lf

(
x− z

1− τ
,

y

1− τ

)
+ τLr

( z
τ

)]
, (2.2)

with the convention that τ = 0 implies τLr

(
z
τ

)
= 0 (and similarly if τ = 1).

Furthermore, ∇J ∈ Cloc((0,∞)×H) and is given by

∇J(t, x, y) = 1

2
γ̇(t) = (q0, p0) for (t, x, y) ∈ (0,∞)×H. (2.3)

Finally, if y = 0, then the minimum occurs for (z0, τ0) = (x, t) and

J(t, x, 0) = tLr (x/t) for (t, x) ∈ (0,∞)× R. (2.4)

It is somewhat standard that optimal paths have constant velocity for ho-
mogeneous, convex control problems. While our setting is novel, due to the
Lagrangians differing on the road and the field, the arguments are standard
enough that we relegate its proof to Section 7.1. The main novelty of the proof
is due to the presence of the road.

From this characterization and standard ideas in Hamilton-Jacobi equations,
we can easily derive some monotonicity properties of J .

Lemma 2.3. In the setting of Proposition 2.2, with τ0 and p0 given by (2.1),
we have

(i) The value function is rotationally nondecreasing from the positive x-axis
to the positive y-axes: for all x, y > 0,

(−y, x) · ∇J(1, x, y) ≥ 0.

Moreover, the inequality above is strict if τ0 > 0.

(ii) The value function is strictly radially increasing for t > 0 and (x, y) ̸= 0:

(x, y) · ∇J(1, x, y) > 0.

(Although, we note that it is not rotationally symmetric).

Proof. By Proposition 2.2, ∇J(t, x, y) is well-defined in (0,∞)×H and we have,
when τ0 < 1,

(−y, x) · ∇J(1, x, y) = (−y, x) · 1
2

(
x−z0
1−τ0

, y
1−τ0

)
=

yz0
2(1− τ0)

≥ 0,
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where we used x, y > 0 and z0 ≥ 0. This is clearly strict except in the cases
z0 = 0 (which corresponds to τ0 = 0).

The proof of the assertion (ii) is essentially the same, so we omit it. This
completes the proof.

Next, we define the quantity that corresponds to directional spreading speed.
For each ϑ ∈ [−π/2, π/2], define

c∗(ϑ) = sup{r ≥ 0 : J(1, r sinϑ, r cosϑ) ≤ 0}.

Notice that this is well-defined thanks to J(1, 0, 0) = Lr(0) = −1 and Lemma 2.3.(ii).

2.1. Invasion speed on the road

Here, we discuss the speed c∗(π/2) = c∗(−π/2) on the road. In particular, we
show its threshold behavior, that is, that c∗(π/2) = 2 for D ≤ 2 and c∗(π/2) > 2
for D > 2, and we obtain rough asymptotic behavior as D → ∞.

We begin by characterizing the speed along the road in two useful ways.

Proposition 2.4. The speed along the road (recall (1.31)) is the unique positive
velocity such that

0 = Lr(c∗(π/2)). (2.5)

Furthermore,

c∗(π/2) = min
q>0

Hr(q)

q
. (2.6)

Additionally, c∗(π/2) is nondecreasing in D.

Proof. Let us note that the strict convexity and coercivity of Hr in Lemma 2.1
guarantees the existence and uniqueness of the minimum in (2.6). It also guaran-
tees the strict convexity of Lr, which is the basis for the existence and uniqueness
of the solution to (2.5). We omit further details.

The identity (2.5) follows directly from (2.4) of Proposition 2.2.
For (2.6), we begin by noticing that

0 = Lr(c∗(π/2)) = max
q

(c∗(π/2)q −Hr(q)) .

Let q∗ be the maximizer above. This implies that

c∗(π/2) =
Hr(q∗)

q∗
and c∗(π/2) ≤

Hr(q)

q
for all q > 0,

which is precisely (2.6).
Finally, the fact that c∗(π/2) is nondecreasing in D follows directly from (2.6)

and the fact that Hr is nondecreasing in D. This concludes the proof.

With this characterization in hand, it is quite easy to derive various proper-
ties about c∗(π/2). We begin by showing that speedup occurs only when D > 2.

Corollary 2.5. We have the following:

17



(i) The speed c∗(π/2) = 2 when D ≤ 2 and

c∗(π/2) > 2 when D > 2.

(ii) For any τ ∈ [0, 1], c ∈ [−c∗(π/2), c∗(π/2)], and v ∈ H such that |v| ≤ 2, we
have

J(1, cτ + v1(1− τ), v2(1− τ)) ≤ 0.

Roughly, this says that the endpoint of any path that moves at speed |c| ≤
c∗(π/2) on the road and speed at most 2 in the field is inside the Wulff
shape W.

(iii) Letting β = (2 + µ)−1, we have

2
√
Dβ ≤ c∗(π/2) ≤ D/

√
D − 1. (2.7)

Before proving Corollary 2.5, we observe that the bound in (iii) is sharp
in the case µ ≪ 1 ≪ D. In general, though, it is not sharp. We investigate
this further below; however, it is interesting to easily deduce the result that
c∗(π/2) ∼

√
D as D → ∞.

Proof of (i). Let us begin with the case D ≤ 2. The lower bound in (i) when
D ≤ 2 follows from Proposition 2.4 and (1.22):

c∗(π/2) = min
q>0

Hr(q)

q
≥ min

q>0

q2 + 1

q
= 2.

For the upper bound, notice that 1 ∈ [0, 1/
√
D − 1], so Hr(1) = q2 + 1

∣∣
q=1

= 2,

and

c∗ ≤ min
q>0

Hr(q)

q
≤ Hr(1)

1
= 2.

We now consider the case D > 2. For the lower bound, fix an arbitrary

q̄ ∈
(

1√
D − 1

, 1

)
.

For q ≤ q̄,
Hr(q)

q
≥ q +

1

q
≥ q̄ +

1

q̄
> 2. (2.8)

Here we used that x+ 1/x is decreasing for x < 1 and that q̄ < 1. For q > q̄, we
have

Hr(q)

q
= q +

p2q + 1

q
≥ q +

p2q̄ + 1

q
≥ 2
√
p2q̄ + 1 > 2. (2.9)

Here we used that pq is increasing in q and that q̄ > 1/
√
D − 1 so that pq̄ > 0.

The combination of (2.8) and (2.9) finish the proof of (i).
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Proof of (ii). We use (2.2) from Proposition 2.2 with the choice x = cτ +v1(1−
τ), y = v1(1− τ), and z = cτ . Then

J(1, x, y) ≤ (1− τ)Lf

(
v1(1− τ)

1− τ
,
v2(1− τ)

1− τ

)
+ τLr

(τc
τ

)
= (1− τ)

(
v21 + v22

4
− 1

)
+ τLr (c)

≤ (1− τ) · 0 + τLr(c∗(π/2)) = 0.

In the last inequality, we used that Lr is increasing for in |c|, and r, c∗(π/2) ≥
0.

Proof of (iii). The upper bound in (iii) follows from the fact that, for q >
1/

√
D − 1, we have

c∗(π/2) ≤
Hr(q)

q
=
Dq2 − µpq

κν+pq

q
≤ Dq.

Taking the limit q → 1/
√
D − 1, we obtain the bound.

We now consider the lower bound. Observe from the definition of Hr that

Hr(q) = q2 + p2q + 1 = Dq2 − µpq
κν + pq

.

Hence, we may write, for q ≥ 1/
√
D − 1,

Hr(q) = (1− β)(q2 + p2q + 1) + β

(
Dq2 − µpq

κν + pq

)
≥ (1− β) + β

(
Dq2 − µ

)
= β

(
Dq2 + 1

)
,

where we used that β = 1/(2 + µ). We deduce that

min
q≥ 1√

D−1

Hr(q)

q
≥ 2β

√
D.

It is simple to check that

min
q≤ 1√

D−1

Hr(q)

q
=

D√
D − 1

≥ 2β
√
D

because 2β < 1. This completes the proof.

These identities make various asymptotic computations quite easy. In par-
ticular, let us consider the case D → ∞. For any θ > 0, define ζθ to be zero if
θ ≤ 1 and the unique positive solution of

θ2 = ζ2 + 1 +
µζ

κν + ζ
(2.10)

if θ > 1. Then we recover [8, Theorem 1.1 and eqn (7.8)].
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Corollary 2.6. With ζθ defined above, we have

lim
D→∞

c∗(π/2)√
D

= min
θ>0

1 + ζ2θ
θ

> 0.

Proof. This follows by letting qθ = θ/
√
D − 1 and noticing that ζθ = pqθ . Then

c∗(π/2)√
D − 1

= min
q>0

Hr(q)

q
√
D − 1

= min
θ>0

Hr(qθ)

θ
= min

θ>0

1 + ζ2θ + θ2

D−1

θ
.

Let us note that ζθ ≈ θ for θ ≫ 1, so the minimum above is well-defined.

Finding ζθ via (2.10) amounts to solving a cubic equation. While there
are closed form solutions of these, they are somewhat complicated. It is best
to consider Corollary 2.6 numerically or in certain asymptotic regimes. Using
Corollary 2.6, this is often quite simple.

We present briefly an example where the asymptotic speed can be computed.
When µ→ ∞, we see that

ζθ ∼ θ2 − 1

µ
≪ 1.

Hence,

c∗(π/2) = min
θ>0

1 + ζ2θ
θ

∼ min
θ>0

1 + (θ2−1)2

µ

θ
∼ 4

33/4µ1/4
.

The last equality follows from simple calculus computations after noting that
the minimum occurs at θmin = O(µ

1/4). The work above yields the following.

Corollary 2.7. The asymptotic limit of the speed along the road is

lim
µ→∞

lim
D→∞

µ
1/4c∗(π/2)√

D
=

4

33/4
.

2.2. Convexity of the Wulff shape

We now begin our investigation into how the presence of the road influences
the invasion behavior in the field. First, we examine the strict convexity of the
Wulff shape. In [9], the authors were interested in comparing W with W, the
shape containing all paths moving at speed c∗(π/2) on the road (for time τ) and
speed 2 in the field (for time 1− τ):

W = {(x, y) : ∃τ ∈ [0, 1], v ∈ H s.t. |v| = 2, |x| ≤ v1(1−τ)+c∗(π/2)τ, y ≤ v2(1−τ)}.

See Figure 3. Notice that W is the convex hull of the union of the ball in H
of radius 2 centered at the origin and the segment of the x-axis between x =
±c∗(π/2). It is, thus, not strictly convex. In fact, using some simple trigonometry,
we find

W =

{
r(sinϑ, cosϑ) : |ϑ| ≤ π

2
, 0 ≤ r ≤

{
2 for |ϑ| ≤ ϑ

2 sec(|ϑ| − ϑ) for |ϑ| ≥ ϑ

}
,
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Figure 3: The boundary of W and W in the case D = 9, and d = µ = ν = k = 1. In this case,
the road speed is given by c∗(π/2) ≈ 3.1243. The angle ϑ∗ is such that, for |ϑ| < ϑ∗ individuals
(following optimal paths) do not use the road to travel and, for |ϑ| > ϑ∗, individuals use the
road to travel for at least some portion of their journey; see Proposition 2.9. The constant ϑ
is defined in (2.11).

where

ϑ = sin−1

(
2

c∗(π/2)

)
. (2.11)

Recalling Corollary 2.5.(ii), we see that W ⊂ W. The following lemma shows
that W ̸= W when D > 2 because the former is strictly convex and the latter
is not. Hence, we recover that W ⊊ W, which was observed in [9]. Further
comparisons between W and W are made in Propositions 2.11 and 2.12.

Lemma 2.8. The set W is strictly convex. As a consequence, W ⊊ W when
D > 2.

Proof. It is enough to show that, if

J(1, xi, yi) = 0 for i = 1, 2,

then

J(1, x̄, ȳ) < 0 where (x̄, ȳ) =

(
x1 + x2

2
,
y1 + y2

2

)
.

Thanks to Proposition 2.2, there exists vi, qi, pi > 0 and τi ∈ (0, 1) such that
the minimizing path γi of J(1, xi, yi) is given by

γi(s) =

{
s(vi, 0) for s ∈ [0, τi],

(s− τi)(2qi, 2pi) + τi(vi, 0) for s ∈ (τi, 1].

i.e.

0 = J(1, xi, yi) =

∫ 1

0

L̂γi(s), γ̇i(s)) ds = (1− τi)L(2qi, 2pi) + τiLr(vi).

Define a path to (x̄, ȳ) as follows: let

τ̄ =
τ1 + τ2

2
v̄ =

τ1v1 + τ2v2
τ1 + τ2

,

q̄ =
(1− τ1)q1 + (1− τ2)q2
(1− τ1) + (1− τ2)

, and p̄ =
(1− τ1)p1 + (1− τ2)p2
(1− τ1) + (1− τ2)

,
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and, for all s ∈ [0, 1], let

γ(s) =

{
s(v̄, 0) for s ∈ [0, τ̄ ],

τ(v̄, 0) + (s− τ̄)(2q̄, 2p̄) for s ∈ [τ̄, 1].
(2.12)

Clearly, γ(1) = (x̄, ȳ). Computing J directly, we find

J(1, x̄, ȳ) ≤
∫ 1

τ̄

Lf(2q̄, 2p̄) ds+

∫ τ̄

0

Lr(v̄) ds

= (1− τ̄)Lf(2q̄, 2p̄) + τ̄Lr(v̄)

< (1− τ̄)

[
1− τ1
2(1− τ̄)

Lf(2q1, 2p1) +
1− τ2
2(1− τ̄)

Lf(2q2, 2p2)

]
+ τ̄

[ τ1
2τ̄
Lr(v1) +

τ2
2τ̄
Lr(v2)

]
= 0.

where Lf(v1, v2) =
|v|2
4 − 1, and we used the strict convexity of Lf and Lr.

2.3. The spreading speed in different directions

We now understand how the shape of W depends on the angle ϑ from the
y-axis. Our main goal is to show that there is a critical angle ϑ∗ > 0 such that
c∗(ϑ), defined in Corollary 1.5, equals 2 (that is, it is unaffected by the presence
of the road) if and only if |ϑ| ≤ ϑ∗. Otherwise c∗(ϑ) > 2; that is, the presence
of the road speeds up the invasion. We state the main result here:

Proposition 2.9. There exists ϑ∗ ∈ (0, π/2] such that

c∗(ϑ) = 2 for |ϑ| ≤ ϑ∗ and c∗(ϑ) > 2 for ϑ∗ < |ϑ| ≤ π/2.

(i) If D ≤ 2, then ϑ∗ = π/2. In other words, c∗(ϑ) = 2 for all ϑ and

W = {(r sinϑ, r cosϑ) : 0 ≤ r ≤ 2t, |ϑ| ≤ π/2} = B2(0) ∩H.

(ii) If D > 2, then

ϑ∗ ∈
[
arcsin

( 7

16
√
D − 1

)
,min

{
π

2
, arcsin

(
2 + µ√
D

)})
. (2.13)

Moreover,
d

dϑ
c∗(ϑ) > 0 for ϑ∗ < ϑ ≤ π/2. (2.14)

Let us note that the result above was first proved in [9] via fine construction
of super/subsolutions for the cooperative system (1.1). Here, we give an alter-
native derivation of the result entirely via the control formulation (1.25) and
Theorem 1.3. We begin with a technical lemma whose proof we postpone until
Section 7.
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Lemma 2.10. Fix (x, y) ∈ H and let τ0, p0, q0, z0 be given by (2.1) for the point
(1, x, y). Suppose that τ0 > 0.

(i) We have

q0 = L′
r

(
z0
τ0

)
,

z0
τ0

= H ′
r(q0), and p0 = pq0 .

Moreover, q0 >
1√
D−1

if y > 0.

(ii) The action takes the value

J(s, γ(s)) = (s− τ0)(Hr(q0)− 2) + τ0Lr (H
′
r(q0)) for s ∈ [τ0, t].

Next, we state and prove two short propositions that let us distinguish be-
tween W and W more precisely. The first of these, showing that ϑ∗ < ϑ (see
Figure 3 for an illustration), is used in the proof of Proposition 2.9.

Proposition 2.11. We have that ϑ∗ < ϑ. Moreover:

c∗(ϑ) >

{
2 for |ϑ| ∈ (ϑ∗, ϑ),

2
cos(ϑ−ϑ) for |ϑ| ∈ [ϑ, π/2).

(2.15)

Proof. For the first claim, we need only show that c ∗ (ϑ) > 2 by the strict
convexity of W. To do so, consider the tangent line to W at 2(sinϑ, cosϑ).
Suppose for contradiction that c∗(ϑ) = 2, then this line is also tangent to W at
2(sinϑ, cosϑ) and it must not intersect W at any other points. This contradicts
the fact that this tangent line of W contains both the point 2(sinϑ, cosϑ) and
(c∗(π/2), 0) (see Figure 3). This completes the proof that c∗(ϑ) > 2 for ϑ ∈
(ϑ∗, ϑ).

The second claim follows by an elementary geometry argument and is, thus,
omitted.

The second provides a complementary bound to (2.15).

Proposition 2.12. For each |ϑ| ∈ [ϑ∗, π/2],

c∗(ϑ) ≤
2

cos(ϑ− ϑ∗)
and lim

D→∞
c∗(ϑ) =

2

cosϑ
. (2.16)

Proof. The first inequality follows by trigonometry and using the fact that W
lies below the tangent line to ∂W at 2(sinϑ∗, cosϑ∗); that is,

W ⊂ {(x, y) ∈ H : (x, y) · (sinϑ∗, cosϑ∗) ≤ 2}.

To see the second inequality, we use that 0 ≤ ϑ∗ ≤ ϑ and, by (2.11) and
Corollary 2.6, ϑ(D) → 0 as D → ∞. It is then a direct consequence of the first
inequality in (2.16) and Proposition 2.11.
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We are now in a position to prove Proposition 2.9.

Proof of Proposition 2.9.(i). Suppose D ≤ 2. Then the claim is finished if we
show that

J(1, x, y) ≤ x2 + y2

4
−1 for x2+y2 ≤ 4 and J(1, x, y) > 0 for x2+y2 > 4.

(2.17)
We assume without loss of generality that y > 0. Indeed, if y = 0, it follows by
the obvious continuity of J that J(1, x, 0) ≤ x2/4−1 for x ≤ 2 and J(1, x, 0) ≥ 0
for x ≥ 2. Using then Lemma 2.3.(ii), we deduce that J(1, x, 0) > 0 for x > 2.
We assume without loss of generality that x ≥ 0 because J is clearly even in x.

We first consider the upper bound in (2.17). If we take the path γ(s) =
s(x, y), then

J(1, x, y) ≤ x2 + y2

4
− 1.

Here we used that y > 0 so that only the Lf appears in the computation of J .
We now consider a lower bound when x2 + y2 > 4. If τ0 = 0, then we

immediately deduce that γ(s) = (s/t)(x, y) from Proposition 2.2, and it follows
that

J(1, x, y) =
x2 + y2

4
− 1 > 0.

Let us, then, focus on the case
τ0 > 0.

Before we begin, let us recall that, by (1.22)-(1.23),

Hr(q) = q2+1 for q ∈
[
0,

1√
D − 1

]
and Lr(v) =

v2

4
−1 for v ∈

[
0,

2√
D − 1

]
.

(2.18)
Moreover, both Hr and Lr are strictly convex (see Lemma 2.1) and increasing
on (0,∞).

In view of Lemma 2.10.(i), the fact that τ0 > 0 implies that p0 = pq0 . On
the other hand, p0 > 0 because y > 0 (cf. (2.1), recalling that γ(1) = y). It
follows from (1.23) that q0 > 1/

√
D − 1. Then using the strict convexity of Hr

(Lemma 2.1), we have

H ′
r(q0) ≥ 2q0 >

2√
D − 1

.

Now using the monotonicity of Lr, we see that

Lr(H
′
r(q0)) > Lr(2/

√
D − 1) =

1

D − 1
− 1 ≥ 0,

where we used (2.18). Hence, using Lemma 2.10.(ii) and also that Hr is increas-
ing,

J(1, x, y) = (1− τ0) (Hr(q0)− 2) + τ0 (Lr(H
′
r(q0))) > (1− τ0) (Hr(1/

√
D − 1)− 2) + 0

= (1− τ0)

(
1

D − 1
− 1

)
≥ 0.
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This completes the proof.

Proof of Proposition 2.9.(ii). First, by Proposition 2.2, ∇J is continuous in H.
Next, without loss of generality, let ϑ ∈ [0, π/2) for the remainder of the

proof. Observe that, in view of Lemma 2.3.(ii), c∗(ϑ) is uniquely given by

J(1, c∗(ϑ) sinϑ, c∗(ϑ) cosϑ) = 0. (2.19)

Further, by the continuity and nondegeneracy of ∇J , we deduce from the im-
plicit function theorem that c∗(ϑ) is differentiable in ϑ.

Differentiating (2.19) with respect to ϑ, we obtain, at the point (x, y) =
c∗(ϑ)(sinϑ, cosϑ),

c′∗(ϑ)

c∗(ϑ)
(x, y) · ∇J(1, x, y) = (−y, x)∇J(1, x, y),

and, hence, by Lemma 2.10 again,

c′∗(ϑ) = c∗(ϑ)
(−y, x) · ∇J(1, x, y)
(x, y) · ∇J(1, x, y)

≥ 0. (2.20)

We note that the last inequality is strict whenever τ0 > 0 by Lemma 2.3.(i).
Given (2.20), we see that c∗ is increasing in ϑ. Hence, we define

ϑ∗ = inf{ϑ ∈ [0, π/2] : c∗(ϑ) > 2}.

Since D > 2, Corollary 2.5.(i) says that c∗(π/2) > 2. We deduce that ϑ∗ is
well-defined and satisfies ϑ∗ < π/2.

To deduce (2.14), it remains to prove that ϑ ∈ (ϑ∗, π/2] implies τ0 > 0.
Indeed, suppose to the contrary that for some ϑ ∈ (ϑ∗, π/2] we have τ0 = 0,
then c∗(ϑ) > 2 (since c∗(·) is monotone increasing). Moreover, for (x, y) =
c∗(ϑ)(sinϑ, cosϑ, we have γ(s) = s(x, y). Hence,

0 = J(1, x, y) =

∫ 1

0

Lf (γ̇(s)) ds =
1
4 (x

2 + y2)− 1 = c∗(ϑ)
2

4 − 1.

This is a contradiction. This proves (2.14).
The improved upper bound of ϑ∗ follows from the fact that, recalling Lemma 2.8

(see, also, Figure 3),

0 ≤ ϑ∗ < ϑ = arcsin (2/c∗(π/2))

and the lower bound (2.7) of c∗(π/2).
For the lower bound of ϑ∗, let (x, y) ∈ ∂W be given such that

(x, y) = c∗(ϑ)(sinϑ, cosϑ) for some ϑ ∈ {ϑ ∈ [0, π/2] : c∗(ϑ) > 2}.

It suffices to show that

x ≥ 7

8
√
D − 1

, (2.21)
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Indeed, were (2.21) established, then taking the infimum of all ϑ such that
c∗(ϑ) > 2 yields

2 sinϑ∗ = c∗(ϑ∗) sinϑ∗ ≥ 7

8
√
D − 1

,

which implies (2.13).
Let us now prove (2.21). To aid us in this proof, associate to the point

(1, x, y) the quantities τ0, p0, q0, z0 given as in Proposition 2.2. By the assump-
tions on (x, y), we have ϑ ∈ (ϑ∗, π/2] and hence τ0 > 0, as we have argued
above.

Next, by Proposition 2.9.(i), we deduce that q0 > 1/
√
D − 1 and z0/τ0 =

H ′
r(z0). Since Hr is strictly convex, it follows that

z0
τ0

= H ′
r(q0) > H ′

r

(
1√
D−1

)
= 2√

D−1
,

where we used (2.18). Hence, by (2.1),

x = τ0z0 + (1− τ0)q0 ≥ τ20 · 2√
D−1

+ (1− τ0) · 1√
D−1

≥ 7
8
√
D−1

.

This is precisely (2.21). The proof is complete.

2.4. Further characterization of paths

We now characterize the optimal paths a bit more precisely. As a result, we
see precisely why the strict inclusion W ⊊ W holds. Indeed, we see that, if (x, y)
is on the road-enhanced portion of the boundary in the field, it corresponds to
a path that moves at speed cr > c∗(π/2) for time τ ∈ (0, 1) and then moves at
speed cf < 2 in the field for remainder of the (1− τ) time.

Proposition 2.13. Fix (x, y) on the front: J(1, x, y) = 0, and let γ ∈ N(1, x, y)
be the optimal path. Then there are two alternatives:

(i) (Non-road-enhanced or purely on road) If x2 + y2 = 4 or if y = 0, then
γ(s) = s(x, y);

(ii) (Road-enhanced in the field) If x2 + y2 > 4 and y > 0, then there are
cr > c∗(π/2) and cf ∈ H with |cf | < 2 such that

γ(s) =

{
s(cr, 0) if s ≤ τ0

τ0(cr, 0) + (s− τ0)cf if s ≥ τ0

for τ0 ∈ (0, 1) given by Proposition 2.2.

Before we prove this, we state two lemmas. First, we state a lemma whose
proof we delay until Section 7.1.

Lemma 2.14. Fix v0 and q0 such that q0 is in the subdifferential of Lr at v0.
Then, if Lr(v0) < 0, then Hr(q0) < 2. Moreover, if D > 2 and Lr(v0) ≤ 0, then
Hr(q0) < 2.

26



Next, let us remind the reader of the dynamic programming principle. As
this result is standard, we omit its proof.

Lemma 2.15 (Dynamic programming principle). For (t, x, y) ∈ (0,∞)×H and
γ ∈ N(t, x, y), suppose that

J(t, x, y) =

∫ t

0

L̂(γ(s), γ̇(s)) ds.

with γ(0) = 0 and γ(t) = (x, y). Then for each τ ∈ (0, t),

J(t, x, y) =

∫ t

τ

L̂(γ(s), γ̇(s)) ds+ J(τ, γ(τ))

and

J(τ, γ(τ)) =

∫ τ

0

L̂(γ(s), γ̇(s)) ds.

We now prove Proposition 2.13.

Proof of Proposition 2.13. Using Proposition 2.2, let us consider the cases τ0 =
1, τ0 = 0, and τ0 ∈ (0, 1). First consider when τ0 = 1. This is equivalent to
y = 0 (under the standing assumption that J(1, x, y) = 0). Then the conclusion
follows directly from Proposition 2.2.

Next consider when τ0 = 0. By Proposition 2.2, this is equivalent to γ(s) =
s(x, y). Additionally,

0 = J(1, x, y) = Lf(x, y),

so that we see that x2+y2 = 4. By the uniqueness of minimizing paths (Propo-
sition 2.2), it follows that τ0 = 0 is equivalent to x2+y2 = 4 (under the standing
assumption that J(1, x, y) = 0), which completes the proof of (i).

Finally, we consider the case τ0 ∈ (0, 1), which is the most difficult. As we
have seen above, this is equivalent to the assumption that y > 0 and x2+y2 > 4.
Additionally, by Corollary 2.5, we must have D > 2 in this case.

Lemma 2.10.(ii) yields

J(s, γ(s)) = (s− τ0)(Hr(q0)− 2) + τ0Lr

(
z0
τ0

)
for s ∈ [τ0, t], (2.22)

where q0 = L′
r

(
z0
τ0

)
. Keeping this and Proposition 2.2 in mind, the optimal

path γ satisfies

γ̇(s) =

{
(cr, 0) := ( z0τ0 , 0) for s ∈ [0, τ0),

cf := (2q0, 2pq0) for s ∈ (τ0, 1].

Hence, by the definition of J and by (2.22) evaluated at s = 1, we have

τ0Lr(cr) + (1− τ0)Lf(cf) = J(1, x, y) = (1− τ0)(Hr(q0)− 2) + τ0Lr

(
z0
τ0

)
,
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whence
Lf(cf) = Hr(q0)− 2. (2.23)

Next, we show the non-strict inequality

Lr(cr) ≥ 0 and Lf(cf) ≤ 0. (2.24)

Notice that, by (2.22), evaluated at s = 1, we have

0 = J(1, x, y) = J(1, γ(1)) = (1− τ0)(Hr(q0)− 2) + τ0Lr

(
z0
τ0

)
(2.25)

In view of (2.23), this implies that the two terms in (2.24) have opposite signs.
Suppose that (2.24) were not true, then we must have Lr(z0/τ0) < 0. Lemma 2.14
and the fact that q0 = L′

r(cr) imply Hr(q0) < 2. This is impossible in view of
(2.25). It follows that (2.24) holds.

If D > 2, then Lemma 2.14 implies that Hr(q0) < 2, whence (2.25) implies
that Lr(cr) > 0. We deduce that cr > c∗(π/2) (recall that Lr is increasing and,
by (2.4), Lr(c∗(π/2)) = 0). A similar argument using (2.23) shows that |cf | < 2.
This completes the proof.

2.5. Conical domains

We now use our understanding of J and c∗ developed in the previous subsec-
tions, as well as Theorem 1.6, to deduce several results for the problem posed on
conical domains. Recall the notation set in (1.3). Throughout this subsection,
we suppose that (D,κ, µ, ν) = (D̃, κ̃, µ̃, ν̃).

We also introduce the notation c∗a for the speed on Ωa, with the under-
standing that c∗(π/2) = c∗. For each ϑ ∈ [π/2 − 2a, π/2], this is well-defined by
the identity (1.35) and the fact that J is radially increasing (Lemma 2.3.(ii)).

Recall that J is clockwise rotationally increasing (Lemma 2.3.(i)). Thus,
using (1.35), we immediately see that the value of Ja(t, x, y) is given by J(t, x, y)
if (x, y) is closer to Γ0 and by J(t,Ψa(x, y)) otherwise. This yields the following
result.

Proposition 2.16. For any (x, y) ∈ Ωa, we have that

Ja(t, x, y) =

{
J(t, x, y) if x

y ≥ tan(π/2 − a),

J(t,Ψa(x, y)) if x
y ≤ tan(π/2 − a).

As a consequence, for all ϑ ∈ [π/2 − 2a, π/2],

c∗a(ϑ) =

{
c∗(ϑ) if ϑ ∈ [π/2 − a, π/2],

c∗(π − 2a− ϑ) if ϑ ∈ [π/2 − 2a, π/2 − a].

Let us note that the above can be rephrased in the following way:

Wa = (W ∪Ψa(W)) ∩ Ωa. (2.26)

Here W = Wπ/2 is the Wulff shape on the half space H.
We can read off several results from this.
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Proposition 2.17. Let Wa be as above, then

Wa ⊂ {(x, y) ∈ Ωa : dist((x, y),Γ0 ∪ Γa) ≤ 2}. (2.27)

In particular, c∗a(π/2 − a) ≤ 2 csc a is bounded uniformly in D > 1.

Proof. The set inclusion in (2.27) follows from (2.26) andW ⊂ {(x, y) ∈ H : y ≤
2}.

Corollary 2.18. Let ϑ∗ be defined by Proposition 2.9. Then:

(i) If D ≤ 2, then c∗a(ϑ) = 2 for all ϑ ∈ [π2 − 2a, π2 ].

(ii) If D > 2, and a ∈ (0, π2 − ϑ∗], then c∗a(ϑ) > 2 for all ϑ ∈ [π2 − 2a, π2 ].

(iii) If D > 2, and a ∈ [π2 − ϑ∗,
π
2 ), then

c∗a(ϑ) > 2 for ϑ ∈ (π2 − ϑ∗,
π
2 ] ∪ [π2 − 2a, π2 − 2a+ ϑ∗).

and c∗a(ϑ) = 2 otherwise.

From Proposition 2.16, we can also easily deduce the nonconvexity of Wa.
Notice that this is a generic phenomenon, and the strict convexity (Lemma 2.8)
of W is an idiosyncracy of the case a = π/2.

Proposition 2.19. We have the following regaring the convexity of Wa:

(i) Wa is convex if and only if a ≥ π/2 − ϑ∗, where ϑ∗ is given in Proposi-
tion 2.9.

(ii) For each a ∈ (0, π/2), there exists Da ∈ [2,∞) depending on a such that
Wa is convex for D ∈ (1, Da] and non-convex for any D ∈ (Da,∞).

(iii) Da ≤ 4(2 + µ)2 csc2(2a). In particular, Wa is nonconvex when D ≥
4(2 + µ)2 csc2(2a).

Proof. To prove (i), notice that Wa is convex if and only if there is a supporting
hyperplane at (x̄, ȳ) = c∗(π/2 − a)(sin(π/2 − a), cos(π/2 − a)). See Figure 4 for
an illustration, where ûa = (sin(π/2 − a), cos(π/2 − a)). This is the case if
and only if d

dϑc∗(
π
2 − a) ≤ 0, which is equivalent to a ≥ π/2 − ϑ∗, thanks to

Proposition 2.9.(ii).
The assertion (ii) follows from the fact that

c∗a(π/2 − a) ≤ 2 csc a (2.28)

(from Proposition 2.17) and that, by Corollary 2.5 and Proposition 2.16, c∗a(π/2) =
c∗a(π/2 − 2a) = c∗(π/2) → ∞ as D → ∞. Thus there exists Da such that Wa is
nonconvex for D > Da.

We now prove assertion (iii). By Proposition 2.16, c∗a(π/2) = c∗a(π/2−2a) =
c∗(π/2). Hence, Wa is nonconvex if

c∗(π/2) cos(a) > c∗(π/2 − a). (2.29)
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x

y
Ψa(c∗(π/2), 0)

(c∗(π/2), 0)

c∗(π/2) cos(a)ûa

a

a

π
2

− 2a

c∗(π/2 − a)ûa

Figure 4: An cartoon example illustrating the nonconvex shape Wa. The violet, solid out-
line is the boundary of the region formed by the convex hull of the points (c∗(π/2, 0) and
Ψa(c∗(π/2, 0), while the blue shaded region is the Wulff shape. Above, we denote the unit
vector ûa = (cos(a), sin(a)).

See Figure 4 for an illustration. Using Corollary 2.5.(iii) to bound the left hand
side and (2.28) to bound the right hand side, we see that a sufficient condition
for (2.29) (and, thus, Wa is nonconvex) is given by

2
√
D

2 + µ
cos(a) ≥ 2 csc a.

The conclusion follows by rearranging the above. The proof is complete.

3. Strong and weak viscosity solutions

For the convenience of the reader, we provide the definitions of weak and
strong viscosity solutions in our context. We note that the notion of weak
viscosity solution here corresponds to the standard notion of viscosity solution
as in [11], while the notion of strong viscosity solution appeared more recently
(see, e.g. [23, 24, 18, 15] for the problem without obstacle).

Fix the domain Q = (0,∞)×H2 and any Hamiltonians H,F : R2 → R that
correspond to the field and the road, respectively. Consider the (variational)
Hamilton-Jacobi equation:{

min{w,wt +H(wx, wy)} = 0 in (0,∞)×H,
min{w,wt + F (wx, wy)} = 0 in (0,∞)× ∂H.

(3.1)

We first define the notion of a weak viscosity solution.

Definition 3.1 (Weak viscosity solutions). (i) Let w : Q̄ → R be upper
semicontinuous. We say that w is a weak subsolution to (3.1) if for any
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point (t0, x0, y0) ∈ Q such that w(t0, x0, y0) > 0, and any C1 function φ
touching w from above, then

y0 > 0 =⇒ φt +H(φx, φy) ≤ 0 at (t0, x0, y0),
y0 = 0 =⇒ either φt +H(φx, φy) ≤ 0 or φt + F (φx, φy) ≤ 0 at (t0, x0, y0).

(3.2)
We note that the latter can be written as min{ϕt+H(∇ϕ), ϕt+F (∇ϕ)} ≤
0. This is how it is presented in [11].

(ii) Let w : Q̄ → [0,∞) be lower semicontinuous. We say that w is a weak
supersolution to (3.1) if w ≥ 0 in Q, and if for any point (t0, x0, y0) ∈ Q
and any C1 function φ touching w from above, then

y0 > 0 =⇒ φt +H(φx, φy) ≥ 0 at (t0, x0, y0),
y0 = 0 =⇒ either φt +H(φx, φy) ≥ 0 or φt + F (φx, φy) ≥ 0 at (t0, x0, y0).

(3.3)
We note that the latter can be written as max{ϕt+H(∇ϕ), ϕt+F (∇ϕ)} ≥
0. This is how it is presented in [11].

(iii) Let w ∈ Cloc(Q̄). We say that w is a weak solution to (3.1) if w is both a
weak subsolution and a weak supersolution.

We contrast this with the notion of a strong solution. Notice that the alter-
natives in (3.2) and (3.3) do not appear in (3.4) and (3.5).

Definition 3.2 (Strong viscosity solutions). (i) Let w : Q̄ → R be upper
semicontinuous. We say that w is a strong subsolution to (3.1) if for any
point (t0, x0, y0) ∈ Q such that w(t0, x0, y0) > 0, and any C1 function φ
touching w from above, then

y0 > 0 =⇒ φt +H(φx, φy) ≤ 0 at (t0, x0, y0),
y0 = 0 =⇒ φt + F (φx, φy) ≤ 0 at (t0, x0, y0).

(3.4)

(ii) Let w : Q̄ → [0,∞) be lower semicontinuous. We say that w is a strong
supersolution to (3.1) if w ≥ 0 in Q, and if for any point (t0, x0, y0) ∈ Q
and any C1 function φ touching w from above, then

y0 > 0 =⇒ φt +H(φx, φy) ≥ 0 at (t0, x0, y0),
y0 = 0 =⇒ φt + F (φx, φy) ≥ 0 at (t0, x0, y0).

(3.5)

(iii) Let w ∈ Cloc(Q̄). We say that w is a strong solution to (3.1) if w is both
a strong subsolution and a strong supersolution.

Let us make a small note that the terminology used for strong and weak
solutions is not consistent across the literature. In place of using the, perhaps
more common, terminology of strong (resp. weak) F -solution or Hr-flux-limited
solution, we opt for the simpler terminology above. This follows the terminology
used in the classic text of Crandall, Ishii, and Lions; see [11, Section 7A].
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Let us also note that, in practice, the Hamiltonian on the boundary is dif-
ferent for the weak and strong solutions. More precisely, given a weak solution
w to a Hamilton-Jacobi equation with Hamiltonian H in the field and F0 on
the road, it is usually a strong solution to a Hamilton-Jacobi equation with
Hamiltonian H in the field and F on the road, with F ̸= F0. This is the case in
our setting. To compensate for this, we always reference the specific boundary
conditions when we write “strong solution” or “weak solution.”

4. The half-relaxed limits and convergence of (uε, vε)

In this section, we prove Theorem 1.1 and Theorem 1.2 concerning the con-
vergence of vε, uε to w, which is the weak solution of (1.9)-(1.10) and the strong
solution of (1.9)-(1.21). We do so by using the method of half-relaxed limits. A
main issue is to connect these with the notion of strong sub- and supersolutions
so that the comparison principle may be applied. Note that this section does
not depend on the results in Section 2.

4.1. Definition and preliminary bounds

Let u∗, u∗ (resp. v∗, v∗) be the half-relaxed limits of uε (resp. vε):

v∗(t, x, y) = lim sup
(t′,x′,y′)→(t,x,y)

v(t′, x′, y′) and v∗(t, x, y) = lim inf
(t′,x′,y′)→(t,x,y)

v(t′, x′, y′),

(4.1)
with u∗ and u∗ are defined similarly. Let

w∗(t, x, y) =

{
v∗(t, x, y) if y > 0,

max{u∗(t, x), v∗(t, x, 0)} if y = 0,

and

w∗(t, x, y) =

{
v∗(t, x, y) if y > 0,

min{u∗(t, x), v∗(t, x, 0)} if y = 0.
(4.2)

We immediately notice that, by construction,

w∗ ≤ w∗.

Hence, the locally uniform convergence in Theorem 1.1 follows if we show that

w∗ ≥ w∗. (4.3)

We do this by showing that these are, respectively, super- and subsolutions of
the same equation and that comparison holds for that equation, despite the
infinite, discontinuous initial data. Let us note that, by construction, w∗ is
lower semicontinuous and w∗ is upper semicontinuous.

One might be concerned about the finiteness of w∗ and w∗. It follows imme-
diately from (1.4) and a straightforward comparison principle argument that

µ

ν
∥U∥∞, ∥V ∥∞ ≤ 1 (4.4)
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(recall (1.4)). We, thus, deduce that

w∗ ≥ w∗ ≥ lim inf
ε→0

ε log
1

min {1, ν/µ}
= 0. (4.5)

Next, we state the upper bound, the proof of which is slightly more involved,
although not difficult. It is delayed until Section 7.2.

Lemma 4.1. Under the assumptions of Theorem 1.1 and given T ∈ [0,∞),
there is AT > 0 such that

uε(t, x), vε(t, x, y) ≤ AT

t

(
1 + x2 + y2

)
for all t ∈ [0, T ] and ε > 0.

Consequently, we have

0 ≤ w∗(t, x, y) ≤ w∗(t, x, y) ≤ AT

t

(
1 + x2 + y2

)
for all t ∈ [0, T ].

Next, one complication is that, formally, we expect w∗(0, ·, ·) = +∞ every-
where. This is one issue that prevents us from using the comparison principle
to deduce (4.3). To sidestep this issue, we construct suitable sub- and superso-
lutions to control the behavior of w∗ and w∗ at (0, 0) for positive times and at
any (x, y) ̸= (0, 0) at time zero. We state these results here but again postpone
the proofs until Section 7.2.

Lemma 4.2. w∗(t, 0, 0) = w∗(t, 0, 0) = 0 for t > 0.

Lemma 4.3. w∗(0, x, y) = w∗(0, x, y) = +∞ for (x, y) ̸= (0, 0).

4.2. The relaxed equation

Our first main lemma is the following (recall the definition of F0 in (1.11)):

Lemma 4.4. The half-relaxed limits have the following properties.

(i) The upper relaxed limit w∗ is a weak subsolution to (1.9)-(1.10), and sat-
isfies

w∗(0, x, y) = +∞ for all (x, y) ∈ H.

(ii) The lower relaxed limit w∗ is a weak supersolution to (1.9)-(1.10), and
satisfies

w∗(0, x, y) =

{
+∞ for all (x, y) ∈ H \ {(0, 0)},
0 if (x, y) = (0, 0).

(iii) There is ρ∗ such that

w∗(t, x, v) = tρ∗(x/t, y/t). (4.6)

and that is upper semi-continuous is a weak subsolution to{
min{ρ∗ − (x, y) · ∇ρ∗ +H(∇ρ∗), ρ∗} ≤ 0 in H,
min{ρ∗ − (x, y) · ∇ρ∗ + F0(∇ρ∗), ρ∗} ≤ 0 in R× {0}.

(4.7)
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Given Lemma 4.2 and Lemma 4.3 regarding the initial data, we note that
the proofs of Lemma 4.4.(i) and Lemma 4.4.(ii) are essentially the same. Hence,
we omit the latter.

Proof of Lemma 4.4.(i). The lower semicontinuity of u∗ and v∗, which is then
inherited by w∗ follows directly from the definition of the half-relaxed lim-
its (4.1). Additionally, the behavior of the initial data follows from Lemma 4.3.
Hence, we focus only on showing that w∗ is a subsolution to the constrained
Hamilton-Jacobi equation.

Fix an test function ϕ. Suppose w∗ − ϕ has a strict local maximum point
at (t0, x0, y0) with t0 > 0 and y0 ≥ 0. If y0 > 0, standard arguments arguments
apply directly and we omit the argument. We, thus, consider only the case y0 =
0, i.e. w∗−ϕ has a strict local maximum point at (t0, x0, 0). If w

∗(t0, x0, 0) = 0,
the conclusion is immediate. Hence, we assume that w∗(t0, x0, 0) > 0. We break
the argument up into two cases.

Case one: ϕy(t0, x0, 0) ≤ −κν. Fix a constant A > 0 such that

νA > −ϕt(t0, x0, 0)−D|ϕx(t0, x0, 0)|2 + µ. (4.8)

Since (t0, x0, 0) is a strict local maximum, there is (tε, xε, yε) tending to (t0, x0, 0)
that is a local maximum of max{vε + ε logA, uε} − ϕ. (Actually, this occurs
along a subsequence of εn tending to zero, but we omit this notationally).

We claim that yε > 0 for all ε sufficiently small. Were this the case, it follows
by standard arguments (that we omit) that

min{ϕ, ϕt + |∇ϕ|2 + 1} ≤ 0 at (t0, x0, 0). (4.9)

We show that yε > 0 by contradiction. Suppose that yε = 0. If, at (tε, xε, 0),

vε + ε logA > uε,

then vε + ε logA− ϕ has a local maximum at (tε, xε, 0). By the third equation
in (1.8), we find

0 ≥ ∂y(v
ε − ϕ)

∣∣
(tε,xε,0)

= k
[
µe

vε−uε

ε − ν
]
− ϕy(t0, x0, 0) + o(1)

≥ κµ

A
− κν − ϕy(t0, x0, 0) + o(1) ≥ κµ

A
+ o(1),

(4.10)

where the last inequality follows by the assumption ϕy(t0, x0, 0) ≤ −κν and that
o(1) is a quantity tending to zero as ε→ 0. This is a contradiction as κµ/A > 0.

On the other hand, if, at (tε, xε, 0),

vε + ε logA ≤ uε,

then uε − ϕ has a local maximum at (tε, xε, 0). The second equation in (1.8),
implies that, at the point (tε, xε, 0),

0 ≥ ϕt − εDϕxx +D|ϕx|2 + νe
uε−vε

ε − µ

≥ ϕt − εDϕxx +D|ϕx|2 + νA− µ =
(
νA+ ϕt +D|ϕx|2 − µ

)
+ o(1) > 0.
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In the last inequality, we used (4.8) and took ε sufficiently small. This is clearly
a contradiction. Since we have reached a contradiction in all cases, we conclude
that yε > 0 for ε sufficiently small.

Case two: ϕy(t0, x0, 0) > −kν. fix an arbitrary constant Ã such that

0 < Ã <
κµ

κν + ϕy(t0, x0, 0)
. (4.11)

Again, since (t0, x0, 0) is a strict local maximum, there is (tε, xε, yε) tending
to (t0, x0, 0) that is a local maximum of max{vε + ε log Ã, uε} − ϕ. (Actually,
this again occurs along a subsequence of εn tending to zero, but we omit this
notationally).

If yε > 0 for ε sufficiently small, then we again conclude (4.9) by standard
(and, thus, omitted) arguments. Thus we suppose that yε = 0 for all ε small.
Then, as in (4.10), if,

vε + ε log Ã ≥ uε at (tε, xε, 0), (4.12)

we find

0 ≥ ∂y(v
ε − ϕ)

∣∣
(tε,xε,0)

= k
[
µe

vε−uε

ε − ν
]
− ϕy(t0, x0, 0) + o(1)

≥ k
[
µe− log Ã − ν

]
− ϕy(t0, x0, 0) + o(1) > 0

where the last inequality followed by the choice of Ã in (4.11) and taking ε small
enough.

It follows that (4.12) does not hold, and hence

vε + ε log Ã < uε at (tε, xε, 0),

when w∗(t0, x0, 0) takes the limit value of uε at (tε, xε, 0). We, thus, use the
second equation in (1.8) and deduce, at (tε, xε, 0),

0 ≥ ϕt − εDϕxx +D|ϕx|2 + νe
uε−vε

ε − µ > ϕt − εDϕxx +D|ϕx|2 + νÃ− µ.

Taking ε to zero and then

νÃ→ κνµ

κν + ϕy(t0, x0, 0)
= B0(ϕy(t0, x0, 0)) + µ,

we deduce, at (t0, x0, 0),

0 ≥ ϕt − εDϕxx +D|ϕx|2 +B0(ϕy).

This concludes the proof.

Proof of Lemma 4.4.(iii). Define, for any (x, y) ∈ H,

ρ∗(x, y) = w∗(1, x, y). (4.13)
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We claim that, for all (t, x, y) ∈ (0,∞)×H and A > 0,

w∗(At,Ax,Ay) = Aw∗(t, x, y). (4.14)

Notice that, if (4.14), holds, then, applying it with A = 1/t at (1, x/t, y/t) and
then using (4.13), we derive (4.6). Hence, we need only establish (4.14). This
is easy seen by using (1.7):

vε(At,Ax,Ay) = Av
ε/A(t, x, y) and uε(At,Ax) = Au

ε/A(t, x).

We deduce (4.14) in the limit ε→ 0.
In order to derive (4.7) from (1.9) and weak F0-condition on the boundary,

one simply takes test functions ψ : H → R for ρ∗ and transforms them to test
functions ψ̃(t, x, y) for w∗ via

ψ̃(t, x, y) = t ψ (x/t, y/t)

and then argues in a straightforward manner. We omit the details.

In order to apply comparison principle arguments, we require some regularity
of w∗. We do this by establishing a local Lipschitz bound w∗ via ρ∗, which
formally follows from the convexity of the Hamiltonian in (4.7), for instance:∣∣∣∣∇ρ∗ − (x, y)

2

∣∣∣∣2 ≤ −(x, y) · ∇ρ∗ + |∇ρ∗|2 + |(x, y)|2

4
≤ |(x, y)|2

4
(4.15)

in {(x, y) ∈ H : ρ∗(x, y) > 0}.

Lemma 4.5. Let ρ∗ be the function given in Lemma 4.4.(iii). Then the follow-
ing statements hold.

(i) There is AR > 0 such that for all 0 ≤ |xi| ≤ R and 0 ≤ yi ≤ R,

|ρ∗(x0, y0)− ρ∗(x1, y1)| ≤
AR|(x0 − x1, y0 − y1)|√

min{y0, y1}
. (4.16)

In particular, ρ∗ is locally Lipshitz continuous in H.

(ii) ρ∗ is locally C
1/2 on H.

The proof is postponed until Section 7.2; however, it follows the rough idea
given in the discussion around (4.15). An important consequence of Lemma 4.5
is that, since w∗(t, x, y) = tρ∗(x/t, y/t),

w∗(t, x, y) ∈ Cloc((0,∞)×H). (4.17)

4.3. The flux-limited equation

The last step to applying the comparison principle is to show that w∗ and
w∗ are, respectively, strong sub- and supersolutions of (1.9)-(1.21). We show
this now.
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4.3.1. Critical slopes

For each viscosity subsolution or supersolution to (1.9) in the interior of
the domain H, additional information can be obtained by considering “critical
slopes,” which were introduced in [23].

Let w : [0,∞)×H → R be given. Suppose φ is a test function that touches
w from below at a boundary point (t0, x0, 0), then one can define p to be the
maximal number such that φ̃(t, x, y) = φ(t, x, y) + py touches w from below at
(t0, x0, 0). Furthermore, the test function φ̃ with the critical slope inherits the
subsolution inequality provided w is a viscosity solution to the equation (1.9)
in the interior of the upper half plane H. We state this formally now.

Lemma 4.6 (Critical slopes for super-solutions). Let w be a super-solution
to (1.9), and let φ be an arbitrary test function touching w from below at any
point (t0, x0, 0). Then the “critical slope,” defined as

p = sup{p ≥ 0 : ∃r > 0, φ(t, x, y) + py ≤ w(t, x, y) for (t, x, y) ∈ Br(t0, x0, 0) with y ≥ 0},

satisfies that either p = +∞ or

φt(t0, x0, 0) +Hf(φx(t0, x0, 0), φy(t0, x0, 0) + p) ≥ 0.

Proof. See [23, Lemma 2.9] and [24, Lemma A.9].

Lemma 4.7 (Critical slopes for sub-solutions). Let w be a subsolution to (1.9),
and let φ be an arbitrary test function touching w from above at any point
(t0, x0, 0). Assume that w satisfies the weak continuity condition

w(t0, x0, 0) = lim sup
(t,x,y)→(t0,x0,0)

w(t, x, y). (4.18)

Then the “critical slope,” defined as

p = inf{p ≤ 0 : ∃r > 0, φ(t, x, y)+py ≥ w(t, x, y) for (t, x, y) ∈ Br(t0, x0, 0) with y ≥ 0}
(4.19)

is finite and

min{w(t0, x0, 0), φt(t0, x0, 0) +H(φx(t0, x0, 0), φy(t0, x0, 0) + p)} ≤ 0.

Proof. See [23, Lemma 2.10] [24, Lemma A.10].

4.3.2. Connecting weak and strong viscosity (sub/super) solutions

We begin by observing that the definition (1.19) ofHr in Section 1.2.2 implies
the following.

Lemma 4.8. Fix q ∈ R, then the following statements are equivalent.

(i) Hr(q) > infHf(q, ·);

(ii) Hf(q, 0) < F0(q, 0);
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(iii) there is a unique number pq > argminHf(q, ·) = 0 such that Hf(q, pq) =
F0(q, pq);

(iv) q2 > 1/(D − 1)

(v) the number pq given by (1.23) is positive.

If any of the above conditions hold, the numbers pq in (iii) and (v) are the same
and Hr(q) = Hf(q, pq).

Proof. The equivalence of (iii) and (v) is obvious. We now show the equivalence
of (i) - (iv). For each fixed q, observe that argminHf(q, ·) = 0, Hf(q, ·) (resp.
F0(q, ·)) is strictly increasing (resp. strictly decreasing) in (0,∞), and that
Hf(q, p) > F0(q, p) for p sufficiently large. Hence, the unique positive root
pq > 0 exists if and only if Hf(q, 0) < F0(q, 0). On the other hand,

H(q, 0) < F0(q, 0) ⇐⇒ q2 > 1/(D − 1) ⇐⇒ Hr(q) > infHf(q, ·),

thanks to the definition of Hr in (1.22). This completes the proof of the equiv-
alence of all statements.

The fact that both pq are the same is a direct computation. That Hr(q) =
Hf(q, pq) is also immediate from the fact that Hf(q, p) is increasing and F0(q, p)
is decreasing for all p ∈ [0,∞).

We now adapt the arguments of [24, Proposition A.8] in order to connect
strong and weak solutions. We remind the reader that F = max{Hr, H

−
f }, with

Hr, and H
−
f defined by (1.19) and (1.17), respectively.

Proposition 4.9. Let F0 and F be given respectively in (1.11) and (1.20). Then
every weak F0-supersolution w (resp. weak F0-subsolution additionally satisfying
(4.18)) to (1.9)-(1.10) is a strong supersolution (resp. strong subsolution) of
(1.9)-(1.21).

Proof of Proposition 4.9 for subsolutions. Fix any test function φ that touches
w from above at (t0, x0, y0). If y0 > 0 or w(t0, x0, 0) = 0, there is nothing to
show. We, thus, assume that

y0 = 0 and w(t0, x0, 0) > 0.

Recall the definition of pq0 in (1.23) and also the the definition of F0 in (1.11).
Denote

(q0, p0) = (φx(t0, x0, 0), φy(t0, x0, 0)), λ = −φt(t0, x0, 0), and Hr(q0) = Hf(q0, pq0).
(4.20)

By definition of weak solution to (1.9)-(1.10), we have

min{F0(q0, p0), Hf(q0, p0)} ≤ λ. (4.21)

By Lemma 4.7, there exists a critical slope −∞ < p̄ ≤ 0 such that

Hf(q0, p0 + p̄) ≤ λ. (4.22)
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We claim that
Hr(q0) ≤ λ. (4.23)

Let us postpone its proof momentarily and show how to conclude the proof.
Since H−

f is decreasing in p, we have

H−
f (q0, p0) ≤ H−

f (q0, p0 + p̄) ≤ Hf(q0, p0 + p̄) ≤ λ.

Combining this with (4.23) yields

F (q0, p0) = max{H−
f (q0, p0), Hr(q0)} ≤ λ,

which is precisely (1.21), finishing the proof.
We now establish (4.23). If Hr(q0) ≤ Hf(q0, p0 + p̄), then the conclusion is

immediate from (4.22). Hence, we assume instead that

Hr(q0) > Hf(q0, p0 + p̄). (4.24)

By Lemma 4.8, this implies that F0(q0, ·) intersects the increasing part of
Hf(q0, ·) at pq0 > 0, i.e.

F0(q0, pq0) = Hf(q0, pq0) = Hr(q0). (4.25)

Next, the combination of (4.24) and (4.25) implies that

Hf(q0, pq0) > Hf(q0, p0 + p̄).

Since pq0 > 0 and Hf(q0, ·) is increasing on on R+, we see that

p0 + p̄ < pq0 . (4.26)

Recall that, due to the definition (4.19) of p̄, we have

w(t, x, y) ≤ ϕ(t, x, y) + p̄y for (t, x, y) sufficiently close to (t0, x0, 0).

Since ϕ(t, x, y) ≈ ϕ(t, x, 0)+p0y, we deduce from (4.26) that there is r > 0 such
that

w(t, x, y) ≤ φ(t, x, 0) + pq0y for (t, x, y) ∈ Br(t0, x0, 0) \ {(t0, x0, 0)}.

The above is an equality when (t, x, y) = (t0, x0, 0). Hence, using ϕ(t, x, 0)+pq0y
as a test function of w in (1.9)-(1.10), we deduce

Hr(q0) = min{F0(q0, pq0), Hf(q0, pq0)} ≤ λ

where the first equality holds by (4.25) and the second follows as in (4.21) by
definition of weak subsolution. This proves (4.23). Thus the claim is proved.
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Proof of Proposition 4.9 for supersolutions. Suppose that φ touches w from be-
low at (t0, x0, 0), and fix λ, q0, p0, and Hr(q0) as in (4.20). Then w ≥ 0 every-
where, and

max{H(q0, p0), F0(q0, p0)} ≥ λ.

We only need to show

F (q0, p0) = max{H−
f (q0, p0), Hr(q0)} ≥ λ. (4.27)

Let pq0 ≥ 0 be given by (1.23) and let the critical slope p̄ ∈ [0,+∞] be as in
Lemma 4.6. Let us first argue under the assumption that

pq0 < p̄+ p0, (4.28)

but we consider the opposite case afterwards.
If (4.28) holds, then clearly, from the definition (4.19) of p̄, that

φ(t, x, 0) + pq0y touches w from below at (t0, 0, 0). (4.29)

By the definition of relaxed supersolution, (4.29) implies that

max{F0(q0, pq0), Hf(q0, pq0)} ≥ λ. (4.30)

Consider first the case where Hr(q0) > infHf(q0, ·). Then pq0 , defined above,
is exactly the pq0 given in Lemma 4.8.(iii). Hence,

Hr(q0) = Hf(q0, pq0) = max{F0(q0, pq0), Hf(q0, pq0)} ≥ λ,

which establishes (4.27) in this case.
Now consider the opposite case, whereHr(q0) ≤ infHf(q0, ·). Then, Lemma 4.8.(iv)

and (1.23) implies that pq0 = 0, combining with Lemma 4.8.(ii) and (4.30) we
get

Hf(q0, 0) = max{F0(q0, 0), Hf(q0, 0)} ≥ λ. (4.31)

Combining (4.31) with the obvious inequalities below (recall the definition (1.17))

max{H−
f (q0, p0), Hr(q0)} ≥ H−

f (q0, p0) ≥ infHf(q0, ·) = Hf(q0, 0),

we deduce that

F (q0, p0) = max{H−
f (q0, p0), Hr(q0)} ≥ Hf(q0, 0) = max{F0(q0, 0), Hf(q0, 0)} ≥ λ.

This concludes the proof of Proposition 4.9, in the case that (4.28) holds.
Let us now consider the case where (4.28) does not hold, i.e. we assume

pq0 ≥ p̄+ p0, (4.32)

In particular, we deduce that 0 ≤ p̄ < +∞, and, by Lemma 4.6,

λ ≤ Hf(q0, p0 + p̄). (4.33)
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In case p0 + p̄ ≤ 0, then recalling that H−
f is nonincreasing everywhere and is

equal to Hf on (−∞, 0], we find

λ ≤ Hf(q0, p0 + p̄) = H−
f (q0, p0 + p̄) ≤ H−

f (q0, p0) < F (q0, p0)

which is the desired inequality (4.27).
In case p0 + p̄ > 0, then

λ ≤ Hf(q0, p0 + p̄) ≤ Hf(q0, pq0) = Hr(q0) ≤ F (q0, p0), (4.34)

which, again, is the desired inequality (4.27). The first inequality in (4.34)
follows from (4.33) and the second follows from (4.32) and p0 + p̄ ≥ 0.

Thus, in all cases, (4.27) follows. This concludes the proof.

4.4. The convergence of wε: the proof of Theorem 1.1.(i)-(iii) and Theorem 1.2
Proof. Let us first note that we need only prove that w∗ = w∗ on (0,∞) × H.
Indeed, denoting their common value by w, then the locally uniform convergence
of uε, vε to w follows then directly from the definitions of w∗ and w∗, while the
fact that w is a weak solution to (1.9)-(1.10) and a strong solution to (1.9)-(1.21)
follows from Lemma 4.4 and Proposition 4.9, respectively, in view of the fact
that w∗ = w∗ = w.

We now prove that w∗ = w∗. First, we claim that for each τ > 0, we have

w∗(τ, x, y) ≤ w∗(0, x, y) for all (x, y) ∈ H. (4.35)

By Lemma 4.2 and Lemma 4.3,

w∗(τ, 0, 0) = 0 ≤ w∗(0, 0, 0).

For (x, y) ̸= (0, 0), Lemma 4.1 and Lemma 4.3 imply that

w∗(τ, x, y) < +∞ = w∗(0, x, y).

Hence (4.35) holds.
We can, thus, apply the comparison principle, detailed in Theorem Ap-

pendix A.1, to w∗(τ + ·, ·, ·) and w∗ to conclude that

w∗(τ + t, x, y) ≤ w∗(t, x, y) for (t, x, y) ∈ (0,∞)×H. (4.36)

Let us note that Theorem Appendix A.1 requires that we are working with
strong sub- and supersolutions, which we have thanks to Proposition 4.9.

Recall from (4.17) that w∗ ∈ C
1/2
loc((0,∞) × H). Then, for fixed (t, x, y) ∈

(0,∞)×H, we can take τ → 0 in (4.36). We, thus, find

w∗(t, x, y) ≤ w∗(t, x, y) for (t, x, y) ∈ (0,∞)×H.

Since, by construction, we have w∗ ≥ w∗, it follows that w
∗ = w∗.

The next claim, Theorem 1.1.(ii), is immediate from Theorem 1.1.(i) and
Lemma 4.4.(iii).

Thanks to Theorem 1.1.(i)-(ii), W = {(x, y) : w(1, x, y) = 0} is well defined
and w(t, x, y) = tρ(x/t, y/t). Next, we observe that W is star-shaped. It suffices
to show that ρ(x, y) ≥ ρ(βx, βy) for all 0 < β < 1. Indeed, one can show that
ρ(x, y) and ρ(βx, βy) forms a pair of solution and subsolution to the equation
(4.7). Hence one again have ρ(x, y) ≥ ρ(βx, βy). This completes the proof.
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4.5. The spreading properties of (U, V ): the proof of Theorem 1.1.(iv)

Theorem 1.1.(iv) is made up of two equations (1.12) and (1.13), which we
prove one at a time.

Proof of (1.12). We first show that the claim holds for all (x, y) far from the
origin: there exists R > 1 such that

lim
t→∞

sup
1
t (x,y)/∈BR+1

V (t, x, y) = 0 and lim
t→∞

sup
1
t (x,0)/∈BR+1

U(t, x) = 0.

(4.37)
Indeed, for any fixed ϑ ∈ [−π/2, π/2], let

V ϑ(t, x, y) = exp {−(x, y) · (sinϑ, cosϑ) +Rt} and Uϑ(t, x) =
ν

µ
exp {−x sinϑ+Rt} .

A straightforward computation shows that, for arbitrarily fixed R ≥ max{2, D},
(Uϑ, V ϑ) is a supersolution to the unscaled problem (1.2). Up to multiplying
(Uϑ, V ϑ) by a large constant C > 1 so that U ≤ CU and V ≤ CV at t = 0,
one can then conclude by applying the comparison principle (see [9, Proposition
4.3]) and performing the scaling in ε. We omit the details as they are entirely
straightforward.

We now consider the case when (x, y) may be “near” the origin. We claim
that, for all η > 0,

lim
t→+∞

sup
1
t
(x,y)∈BR+2

dist( 1
t
(x,y),W)>η

V (t, x, y) = 0 and lim
t→+∞

sup
1
t
(x,0)∈BR+2

dist( 1
t
(x,0),W)>η

U(t, x) = 0.

(4.38)
Notice that the proof of (1.12) follows directly from the combination of (4.37)
and (4.38).

To this end, we first show how (4.38) follows from the claim that

δη := lim
ε→0

min{ min
(x,0)∈Kη

uε(1, x), min
(x,y)∈Kη

vε(1, x, y)} > 0, (4.39)

where
Kη = {(1, x′, y′) : (x′, y′) ∈ BR+2,dist((x

′, y′),W) ≥ η}.

Indeed, assuming (4.39), we find

lim
t→+∞

sup
1
t
(x,y)∈BR+2

dist( 1
t
(x,y),W)>η

V (t, x, y) = lim
ε→0

sup
ε(x,y)∈BR+2

dist(ε(x,y),W)>η

V (1/ε, x, y)

= lim
ε→0

sup
(x′,y′)∈Kη

V (1/ε, x′/ε, y′/ε)

= lim
ε→0

sup
(x′,y′)∈Kη

e−
1
ε v

ε(x′,y′) ≤ lim inf
ε→0

e−
1
ε δη = 0,

and a similar statement for U to hold, which is precisely (4.38).
We now prove (4.39) to finish. If it were not true, then there must be a

sequence εn → 0 and (xn, yn) ∈ Kη such that either vεn(1, xn, yn) → 0 or
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uεn(1, xn) → 0. By compactness, we may, up to passing to a subsequence whose
renumbering we omit, assume that (xn, yn) converges to a point (x∞, y∞) ∈ Kη.
By the locally uniform convergence given by Theorem 1.1.(i), it follows that
w(1, x∞, y∞) = 0. This implies that (x∞, y∞) ∈ W, which contradicts the fact
that (x∞, y∞) ∈ Kη. Hence, (4.39) must hold. The proof is complete.

The proof of the lower bound of (V,U) in the interior of W is significantly
more involved. The bound for U follows from that of V , so we separate their
proofs.

Proof of the bound on V in (1.13). Fix any sequence (t̄n, x̄n, ȳn) such that t̄n →
∞, ȳn > 0, and

dist

(
1

t̄n
(x̄n, ȳn),H \W

)
≥ η.

It is enough to show that
V (t̄n, x̄n, ȳn) → 1.

Let us note that, by (4.4), we need only show that

lim inf
n→∞

V (t̄n, x̄n, ȳn) ≥ 1. (4.40)

Up to passing to a subsequence whose renumbering we suppress, there is (x̄, ȳ)
such that (x̄n/̄tn, ȳn/̄tn) → (x̄, ȳ) and

dist ((x̄, ȳ),H \W) ≥ η. (4.41)

Let us fix n sufficiently large so that

|(x̄, ȳ)− (x̄n/̄tn, ȳn/̄tn)| ≤
η

2
.

There are two cases to consider depending on ȳ.

# Case one: ȳ > 0. Define the test functions

ϕn(x, y) = |t− 1|2 + |x− x̄n/̄tn|2 + |y − ȳn/̄tn|2. (4.42)

Using (4.41), (x̄, ū) ∈ IntW. By the definition of W, it follows that w − ϕn
attains a maximum value of 0 at the point (1, x̄n/̄tn, ȳn/̄tn) on Bη̃(1, x̄, ȳ) for
some η̃ that is uniform in n sufficiently large. From Theorem 1.1.(i), it follows
that, for n sufficiently large,

v
1/̄tn − ϕn (where v

1/̄tn = vε
∣∣
ε=1/̄tn

) (4.43)

has an interior maximum in Bη̃(1, x̄, ȳ) at some point (tn, xn, yn) such that

(tn, xn, yn) → (1, x̄, ȳ) as n→ ∞. (4.44)

Clearly, for n sufficiently large, yn > 0. Using (1.8), we find

∂tϕn − 1

t̄n
∆ϕn + |∇ϕ|2 ≤ V (· t̄n, · t̄n, · t̄n)− 1 at (tn, xn, yn). (4.45)
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Let us note that, by explicit computation and the convergence (4.44), the left
hand side of (4.45) tends to zero as n→ ∞. Hence,

1 ≤ lim inf
n→∞

V (tnt̄n, xnt̄n, ynt̄n).

On the other hand, we have

V (tnt̄n, xnt̄n, ynt̄n) = exp
{
−t̄nv

1/̄tn(tn, xn, yn)
}

≤ exp
{
−t̄n

(
v

1/̄tn(1, x̄n/̄tn, ȳn/̄tn)− ϕn(1, x̄n/̄tn, ȳn/̄tn) + ϕn(tn, xn, yn)
)}

= V (t̄n, x̄n, ȳn) exp {t̄n (−ϕn(tn, xn, yn))} ≤ V (t̄n, x̄n, ȳn),
(4.46)

since (xn, yn) is the location of the maximum of (4.43). Here we also used the
form of ϕn to deduce that ϕn(1, x̄n/̄tn, ȳn/̄tn) = 0.

Putting together (4.46) and (4.45), we deduce that

1 ≤ lim inf
n→∞

V (t̄n, x̄n, ȳn).

This is precisely (4.40), which completes the proof in this case.

# Case two: ȳ = 0. Fix any (small) δ > 0, and define the test function

Φδ(y) = 1 +
δy

1 + y
.

It is easy to observe that

Φ′
δ(0)

Φδ(0)
= δ, Φδ(0) = 1, and − Φ′′

δ ≤ 2Φδ for y ≥ 0. (4.47)

As in the previous case, we may find a sequence (tn, xn, yn) ∈ Bη̃(1, x̄n/̄tn, ȳn/̄tn)
that are locations of maxima of

max

{
v

1/̄tn +
1

t̄n
log Φδ (t̄ny) , u

1/̄tn +
1

t̄n
log

(
ν

µ
− δ

2κµ

)}
− ϕn (4.48)

Here, ϕn is as in (4.42). Using the form of ϕn and the fact that w(1, ·, ·) ≡ 0 on
Bη(x̄, ȳ), it follows that

(tn, xn, yn) → (1, x̄, ȳ). (4.49)

If ȳ > 0, then repeat the proof of case one. Henceforth suppose ȳ = 0 in (4.49),
i.e. yn → 0. There are exactly three remaining subcases to consider here.

Subcase one: yn = 0 for infinitely many n and the maximum is
attained by the u term in (4.48). Momentarily, let

ϕ̃n(t, x, y) = ϕn(t, x, y)−
1

t̄n
log Φδ(t̄ny).
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It is clear that all t and x derivatives of ϕ̃n tend to zero at (tn, xn, yn) as n→ ∞
due to the convergence (4.49). Thus, we use (1.8) to find, at (tn, xn, yn),

0 ≥ ∂tϕ̃n − 1

t̄n
D∂xxϕ̃n +D|∂xϕ̃n|2 + νet̄n(u

1/̄tn−v1/̄tn) − µ

≥ o(1) + νet̄n(u
1/̄tn−v1/̄tn) − µ

≥ o(1) + ν

(
µ

ν − δ/2κ

)
− µ = o(1) + µ

(
ν

ν − δ/2κ
− 1

)
> 0,

where the third inequality follows from the fact that, by assumption, at (tn, xn, 0),

v
1/̄tn +

1

t̄n
log Φδ (0)︸ ︷︷ ︸

=0

≤ u
1/̄tn +

1

t̄n
log

(
ν

µ
− δ

2κµ

)
and the last inequality follows by taking n sufficiently large. This is a contra-
diction. Hence, this subcase cannot occur.

Subcase two: yn = 0 for infinitely many n and the maximum is
attained by the v term in (4.48). We argue using the equation for the
boundary condition of v in (1.8). Indeed, we find, at (tn, xn, 0),

−2ȳn
t̄n

− δ = ∂yϕ̃n ≥ κ
(
µet̄n(v

1/̄tn−u1/̄tn) − ν
)

≥ κ

(
ν − δ

2κ
− ν

)
= −δ

2
,

where, in the second inequality, we used that, by assumption

v
1/̄tn +

1

t̄n
log Φδ (0)︸ ︷︷ ︸

=0

≥ u
1/̄tn +

1

t̄n
log

(
ν

µ
− δ

2κµ

)
.

This is clearly a contradiction when n is sufficiently large. Hence, this subcase
cannot occur.

Subcase three: yn > 0 for all n sufficiently large. We argue similarly
as in the first case, except using the equation for the boundary condition of v
in (1.8) in place of the equation for u. It is clear that all derivatives of ϕn tend
to zero at (tn, xn, yn) as n→ ∞ due to the convergence (4.49).

Thus, we find, at (tn, xn, yn),

0 ≥ ∂tϕ̃n − 1

t̄n
∆ϕ̃n + |∇ϕ̃n|2 + 1− V (· t̄n, · t̄n, · t̄n)

≥ o(1)−
(
−Φ′′

δ (t̄nyn)

Φ(t̄nyn)
+

Φ′
δ(t̄nyn)

2

Φδ(t̄nyn)2

)
+

∣∣∣∣o(1) + Φ′
δ(t̄nyn)

Φδ(t̄nyn)

∣∣∣∣2 + 1− V (· t̄n, · t̄n, · t̄n)

≥ o(1)− 2δ + 1− V (· t̄n, · t̄n, · t̄n).

In the last inequality, we used (4.47). Thus, we have

lim inf
n→∞

V (tnt̄n, xnt̄n, ynt̄n) ≥ 1− 2δ. (4.50)
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Next, we use that (tn, xn, yn) is the location of a maximum of (4.48). Using
this and then the positivity of log Φδ, we find

v
1/̄tn(tn, xn, yn) ≥ v

1/̄tn(1, x̄n/̄tn, ȳn/̄tn)−
1

t̄n
log Φδ(ȳn) +

1

t̄n
log Φδ(t̄nyn)

≥ v
1/̄tn(1, x̄n/̄tn, ȳn/̄tn)−

1

t̄n
log Φδ(ȳn),

which, after undoing the Hopf-Cole transform, yields

V (tnt̄n, xnt̄n, ynt̄n) ≤ V (t̄n, x̄n, ȳn)

(
1 +

δȳn
1 + ȳn

)
≤ V (t̄n, x̄n, ȳn) (1 + δ) .

Combining this with (4.50) and using that ȳn → 0, by assumption of the case
two, we deduce

lim inf
n→∞

V (t̄n, x̄n, ȳn) ≥
1− 2δ

1 + δ
.

Letting δ → 0, this is precisely (4.40), finishing the proof of case two and, thus,
the lower bound of V .

We now use the lower bound on V to deduce the lower bound on U .

Proof of the bound on U in (1.13). We argue by contradiction. Suppose there
is a sequence (t̄n, x̄n) such that t̄n → ∞, and

dist

(
1

t̄n
(x̄n, 0),H \W

)
≥ η,

but
lim
n→∞

U(t̄n, x̄n, ȳn) <
µ

ν
. (4.51)

Let

Un(t, x) = U(t+ t̄n, x+ x̄n) and Vn(t, x) = V (t+ t̄n, x+ x̄n, y).

By parabolic regularity theory and using (4.51), we can pass to a sequence so
that

lim
j→∞

Uj(0, 0) = lim
j→∞

Uεj (tj , xj) <
ν
µ , and (Uj , Vj) → (U∞, 1) in C1,2

loc ,

where U∞ is a solution to

∂tU∞ −D∂xxU∞ = ν − µU∞ in R2 and 0 ≤ U∞ ≤ ν
µ . (4.52)

In (4.52), we used that, for all fixed (t, x) and large enough n,

dist

(
1

t+ t̄n
(x̄n, 0),H \W

)
≥ η

2
,
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so that the previous proof implies that

Vn(t, x) = V (t+ t̄n, x+ x̄n, 0) → 1.

Noticing that, for any t0 > 0,

U = ν
µ (1− e−µ(t+t0))

is a subsolution to (4.52). Since U(t0, ·) = 0 ≤ U∞(t0, ·), we may apply the
comparison principle to deduce that

µ

ν
> U∞(0, 0) ≥ U(0, 0) =

ν

µ

(
1− e−µt0

)
.

Taking t0 → ∞, we obtain a contradiction. This concludes the proof.

5. Using the control problem to compute w: w = max{J, 0}

In this section, we prove Theorem 1.3, namely, w = max{J, 0}. Our approach
is to use Freidlin’s condition. It first appeared in [16, Section 2] as “condition
(N).” Roughly, it says that the optimal paths in (1.25) that lead to the front
at time t remain at or beyond the front at all intermediate times s ≤ t. Let us
note that Freidlin’s context was a bit different from ours being boundary-less;
nonetheless, the proof may be easily adapted.

First, we make some simplifications. By the scaling invariance (1.28), we
need only consider t = 1 and γ ∈ H1(0, 1). Next, we define some notation. Let
the “action” of the Lagrangian L̂ be

A(γ) :=

∫ 1

0

L̂(γ(s), γ̇(s))ds. (5.1)

Let us now define Freidlin’s condition.

Definition 5.1 (Freidlin’s condition). Let J be given in (1.25) and define

P = {(t, x, y) ∈ (0,∞)×H : J(t, x, y) > 0}.

We say that J satisfies (F) if, for each (t, x, y) ∈ ∂P ,

J(t, x, y) = inf {A(γ) : γ ∈ N(t, x, y) and (s, γ(s)) ∈ P for s ∈ (0, t)} . (F)

Lemma 5.2. The value function J satisfies condition (F).

Proof. Without loss of generality, we take t = 1. Additionally, we note that it
is enough to show that the minimizer γ satisfies (s, γ(s)) ∈ P̄ for all s ∈ [0, 1].
Indeed, by replacing any (nontrivial) γ by

γε(s) =

{
γ (s(1 + ε)) if s ≤ 1

1+ε ,

γ(1) if s ≥ 1
1+ε ,
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we see that

lim
ε↘0

A(γε) = A(γ) and, for all ε > 0, A(γ) < A(γε).

We consider two cases along the lines of Proposition 2.13: (i) y = 0 or x2+y2 =
4; (ii) x2 + y2 > 4 and y > 0.

In the case (i), γ(s) = s(x, y) and γ̇(s) = (x, y). Then J(1, x, y) = 0 and
the form of L̂ in (1.27) implies L̂(γ(s), γ̇(s)) ≡ 0. A direct computation using
Lemma 2.15 gives

J(s, γ(s)) = sJ(1, x, y) = 0.

Hence, (s, γ(s)) ∈ P̄. This completes the proof of this case.
In case (ii), we apply Proposition 2.13 again to find

γ(s) =

{
(cr, 0)s if s ≤ τ0,

(cr, 0)τ0 + cf(s− τ0) if s ≥ τ0

with cr > c∗(π/2) and |cf | < 2. It follows easily that when s ≤ τ0,

J(s, γ(s)) = sLr(cr) > 0.

When s ≥ τ0,
J(s, γ(s)) = (s− τ0)Lf(cf) + τ0Lr(cr),

and we see that this is strictly decreasing in s ∈ [τ0, 1] because |cf | < 2. Since
J(1, γ(1)) = 0, it follows that, when s ∈ [τ0, 1),

J(s, γ(s)) > 0.

We conclude that (s, γ(s)) ∈ P for all s ∈ (0, 1). This completes the proof.

5.1. The proof of Theorem 1.3

We now use Freidlin’s condition to show that w = max{J, 0}.

Proof of Theorem 1.3. Let I(t, x, y) = max{J(t, x, y), 0}. It is easy to see that
I satisfies the continuity requirements of the uniqueness result Corollary Ap-
pendix A.2. As a result, it suffices to verify that I is a strong solution to
(1.9)-(1.21). First, we verify that it is a strong subsolution. Indeed, in {I ≤ 0},
there is nothing to prove. In {I = J} = P = {J > 0}, J satisfies{

Jt +Hf(∇J) = 0 in P ∩ {y > 0},
Jt + F (∇J) = 0 on P ∩ {y = 0}.

See, e.g. [3, Theorem 2.9] for the corresponding properties of J . It follows easily
that I is a strong subsolution, as claimed.

Next, we verify that I is a strong supersolution to (1.9)-(1.21). Obviously,
I ≥ 0. Suppose I−φ has a local minimum at (t0, x0, y0). If (t0, x0, y0) ∈ P, then
I = J in a neighborhood of (t0, x0, y0) and this again follows from [23, Theorem
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6.4]. If (t0, x0, y0) ∈ Int {(t, x, y) : J ≤ 0}, then I ≡ 0 in a neighborhood
of (t0, x0, y0), so that the supersolution property follows from the fact that
H(0, 0) > 0 and F (0, 0) > 0.

It remains to consider the case (t0, x0, y0) ∈ ∂P. Using the dynamic pro-
gramming principle (Lemma 2.15), we find

J(t0, x0, y0) = inf
γ∈N(t0,x0,y0)

{∫ t0

τ

L̂(γ(s), γ̇(s)) ds+ J(τ, γ(τ))

}
,

where we recall the definition (1.26) of N . Since J satisfies condition (F), it
follows that at the minimizing path γ, I(s, γ(s)) = J(s, γ(s)) for s ∈ [0, t0].
Based on this observation, and that I ≥ J , it follows that

I(t0, x0, y0) = inf
γ∈N(t0,x0,y0)

{∫ t0

τ

L̂(γ(s), γ̇(s)) ds+ I(τ, γ(τ))

}
.

This equality implies by standard arguments (see [23, Theorem 6.4]) that at the
point (t0, x0, y0), {

φt +H(∇φ) ≥ 0 if y0 > 0,

φt + F (∇φ) ≥ 0 if y0 = 0.

Hence, I = max{J, 0} is a strong solution to (1.9)-(1.21). This completes the
proof.

6. Conical domains

In this section, we discuss the extension of our result to conical domains and
non-compactly supported initial data. Nearly all results follow analogously, so
we only briefly outline the main steps of the proof where changes are necessary.
For simplicity, we only consider the case

µ = µ̃, ν = ν̃, and κ = κ̃.

6.1. The case when diffusion is the same on both roads

In Theorem 1.6, there are two main claims. First, it states that vε, uε con-
verge to a common limit wa in Cloc. This follows exactly as in the nonconical
case a = π/2. Further, in the process, we can deduce that

min{∂twa +Hf(∇wa), wa)} = 0 in R+ × Ωa (6.1)

and that the boundary conditions on R+ × {0} × R+

min{wa, ∂twa + F (∇wa)} = 0, (6.2)

min{w̃a, ∂tw̃a + F (∇w̃a)} = 0, (6.3)

are satisfied in the strong sense. (Note that the boundary condition at (t, x, y) =
(t, 0, 0) is not necessary thanks to Lemma 4.2). Recall, from (1.33), that
w̃a(t, x, y) := wa(t,Ψ(x, y)). We omit the proof of these facts.

Second, it states that wa is given in terms of Ja. It is contained in the
following:
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Proposition 6.1. Let a ∈ (0, π/2], and suppose (D,κ, µ, ν) = (D̃, κ̃, µ̃, ν̃). Then

wa(t, x, y) = max{Ja(t, x, y), 0} for t > 0, (x, y) ∈ Ωa, (6.4)

where Ja is defined by (1.34), and, moreover,

Ja(t, x, y) = min{J(t, x, y), J(t,Ψa(x, y))}, (6.5)

where J : [0,∞)×H is given by (1.25).

Proof. The equality (6.5) is simple to check using Lemma 2.3.(i) or simply from
the variational problem (1.34), so we omit the details. We focus instead on (6.4).
Since the uniqueness of wa can be established in an analogous way as in Ap-
pendix Appendix A, it remains to show that max{Ja, 0} is a weak solution to
(6.1)-(6.2)-(6.3).

First, notice that J by the monotonicity of ϑ 7→ J(t, sinϑ, cos vt) (Lemma 2.3.(i)),
it follows that Ja = J and J̃a = J̃ on the subdomain Ωa/2. Hence, Ja satisfies
in viscosity sense

∂tJa +Hf(∇Ja) = 0 in R+ × Ωa (6.6)

away from the line Γa/2, and satisfies in the strong sense{
∂tJa + F (∇Ja) = 0

∂tJ̃a + F (∇J̃a) = 0
on R+ × {0} × R+. (6.7)

Additionally, it is Lipschitz continuous, so it satisfies (6.6) in the classical sense
almost everywhere. One can then argue via a approximation argument and
stability of subsolution that Ja satisfies (6.6) in the viscosity sense everywhere
in R+ × Ωa (see, e.g., [2, Chapter II, Proposition 5.1] in a related context).
Thus, Ja is a strong subsolution of (6.6)-(6.7).

On the other hand, since Ja is the minimum of two solutions, it is a strong
supersolution to (6.6)-(6.7). We deduce that Ja is a strong solution to (6.6)-
(6.7). Finally, it follows by the arguments in Section 5 that max{Ja, 0} is a
strong solution to (6.1)-(6.2)-(6.3) in Ωa. This completes the proof.

6.2. The case with unequal diffusion on the two roads

Consider the case when the diffusion rate on the roads are different in (1.32).
Precisely, we assume that

D̃ > D > 2.

because, in the case where D ≤ 2, the road Γ0 does not play a role in the
propagation. Because we wish to compare objects with different diffusivities,
let us write, for any D̃ > D > 2,

w(D,D̃)
a
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to be the solution to (6.1) and, on R+ × {0} × R+,

min{w(D,D̃)
a , ∂tw

(D,D̃)
a + F (D)(∇w(D,D̃)

a )} = 0, (6.8)

min{w̃(D,D̃)
a , ∂tw̃

(D,D̃)
a + F (D̃)(∇w̃(D,D̃)

a )} = 0. (6.9)

We have added the additional superscript to denote the dependence onD and D̃,

and w̃
(D,D̃)
a = w

(D,D̃)
a (t,Ψa(x, y)). The convergence of vε, uε to w

(D,D̃)
a follows

analogously as in the previous case. Finally, we update our notation similarly
for

J (D,D̃)
a .

The main complication here is that the analogue of (6.4)-(6.5) may not hold.
Indeed, (6.4)-(6.5) is true because the optimal paths in Ja, defined as in (1.34)
with the two Lr terms there taking into account the respective diffusivity D
or D̃, will clearly only interact with the road closest to the endpoint. When
1 ≪ D ≪ D̃, it is not immediate to rule out that optimal paths near Γ0 (the
road associated to the smaller diffusivity D) will use the “very fast” road Γa

(the road associated to the larger diffusivity D̃) for some time before passing
passing through the field to use the “fast, but not as fast” road Γ0. This is
an interesting question worthy of future investigation. Our goal, however, is to
deduce some immediate results from our developed theory, so we do not pursue
it further here.

We first immediately find a lower bound on wa via the comparison principle.

Lemma 6.2. Let (κ, µ, ν) = (κ̃, µ̃, ν̃) and let D < D̃. Let a ∈ (0, π/2). Then

w(D,D̃)
a (t, x, y) ≥ w(D̃,D̃)

a = max{0,min{J (D̃,D̃)
a (t, x, y), J (D̃,D̃)

a (t,Ψa(x, y))}}.

Proof. The first inequality follows directly from the fact that all Hamiltonians

are increasing in D̂, meaning that w(D̃,D̃) is a subsolution to the equation satis-

fied by w(D,D̃). The second equality is simply Proposition 6.1 with our updated
notation.

In fact, one can completely characterize w
(D,D̃)
a in some cases when the roads

do not interact, just as they do not interact in the identical diffusion case. This
happens if, for instance, |D − D̃| is small while a is fixed or if a ↗ π/2 while
D, D̃ > 1 are fixed.

Theorem 6.3. Let a ∈ (0, π/2] and let D̃ > D > 1. Suppose

J (D̃,D̃)(1, r sin(π/2 − 2a), r cos(π/2 − 2a)) ≤ J (D,D)(1, r, 0) for all r ≥ 0,

then

w(D,D̃)
a (t, x, y) = max

{
0,min{J (D,D)(t, x, y), J (D̃,D̃)(t,Ψa(x, y))}

}
in (0,∞)×H.
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Proof. Define

Ĵ(t, x, y) = min{J (D,D)(t, x, y), J (D̃,D̃)(t,Ψa(x, y))}.

First, follow the proof of Proposition 6.1 that Ĵ is a strong solution of the
Hamilton-Jacobi equation (6.8)-(6.9) without the obstacle. Then follow the

proof of Theorem 1.3 to conclude that w
(D,D̃)
a = max{0, Ĵ}.

Next, we consider the complementary case when the angle a is small and D̃
is large relative to D. In this case, we prove that the speed of the faster road
remains the same as in the half plane class, while the speed on the slower road
can sometime be enhanced. Let us introduce the following notation: for D̂, let

c∗(ϑ, D̂)

be the directional spreading speed associated with (D,κ, µ, ν) on H, as in (1.31),
and, for D̂0, D̂a, we let

c∗a(ϑ, D̂0, D̂a)

be the directional spreading speed on Ωa associated to diffusivity D̂0 on Γ0 and
diffusivity D̂a on Γa.

Proposition 6.4. Fix a ∈ (0, π/4). The spreading speed on the fast road Γa is
unchanged by the slow road:

c∗a(π/2 − 2a,D, D̃) = c∗(π/2, D̃). (6.10)

Furthermore, if 2 csc(2a) > c∗(π/2, D), there exists D̃min > 2 such that

c∗a(π/2) > c∗(π/2, D) whenever D̃ > D̃min. (6.11)

Before beginning the proof, we make a note of the case a ≥ π/4. It is clear
that (6.10) will hold for a ≥ π/4. Intuitively this is because the slow road is
even farther from the fast road Γa. Our proof does not directly carry over for
technical reasons, although we do not anticipate serious issues developing a new
proof. It appears that one should, roughly, define the supersolution not purely

by J (D̃), but also using (x2 + y2)/4t − t on a certain part of the domain. We opt
for simplicity and omit this case.

On the other hand, we believe that (6.11) should not hold for any choice of
D̃ and D when a ≥ π/4. The reason for this is, roughly, that Γ0 and Γa are
anti-aligned (the former runs horizontally to the right and the latter runs up
and to the left; see Figure 1). Roughly speaking the presence of the fast road
influence the speed on the slower road if and only if the angle 2a is strictly less
than π/2 and D̃ is large enough.

Proof. Define

w = max{0, J (D̃)(t,Ψa(x, y))}.
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It suffices to prove that w is a strong supersolution to (6.1)-(6.8)-(6.9). Post-
poning this momentarily, we show how to conclude the proof with it assumed.
By comparison,

w(D,D̃)
a ≤ w.

From this it follows that, for all ϑ ∈ [π/2, π/2 − 2a],

c∗a(ϑ,D, D̃) ≥ c∗(π − 2a− ϑ, D̃). (6.12)

From Lemma 6.2, we have that

c∗a(ϑ,D, D̃) ≤ ca∗(ϑ, D̃, D̃) = max{c∗(ϑ, D̃), c∗(π − 2a− ϑ, D̃)}. (6.13)

Specializing (6.12)-(6.13) to the case ϑ = π/2 − 2a, we deduce (6.10).
To understand (6.11), we take ϑ = π/2 in (6.12) and use Proposition 2.12 to

see that

lim
D̃→+∞

c∗a(π/2, D, D̃) ≥ lim
D̃→+∞

c∗(π/2−2a, D̃) ≥ 2 sec(π/2−2a) = 2 csc(2a) > c∗(π/2, D).

This concludes the proof up to establishing that w is a supersolution, as claimed
above.

It remains to prove that w is a strong supersolution to (6.1)-(6.8)-(6.9).
There is nothing to check in the H and on Γa since, there,

w(t, x, y) = w(D̃)(t,Ψa(x, y)),

which satisfies (6.1)-(6.9). Hence, it suffices to check the boundary condition on
Γ0.

Fix any test function φ and suppose that w − φ has a minimum at (t, x, 0)
with t > 0. There are two cases: (a) w(t, x, 0) = 0; (b) w(t, x, 0) > 0. Case (a)
is trivial. Indeed, in this case, because w ≥ 0, we have that φ has a minimum
at (t, x, 0). Thus, φt(t, x, 0) = φx(t, x, 0) = 0. We deduce that

φt +H−
f (∇φ) ≥ 1 > 0. (6.14)

In case (b), we use that J (D̃) ◦Ψa solves (6.1) at the point (t,Ψa(x, 0)) since
Ψa(x, 0) ∈ H. Hence,

φt +Hf (∇φ) ≥ Ĵt +Hf (∇Ĵ) = 0.

However, a ∈ (0, π/4) and Lemma 2.3.(i) imply that J (D̃)(t,Ψa(x, y)) is decreas-
ing in y at y = 0. It must be that φy ≤ 0. We deduce that, at (t, x, 0),

φt +H−
f (∇φ) = φt +Hf (∇φ) ≥ 0. (6.15)

Putting together (6.14)-(6.15) and recalling that F (p, q) = max{H−
f (p, q), Hr(q)},

we have
φt + F (∇φ) ≥ 0 at (t, x, 0).

Thus, the proof is complete.
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7. Proofs of technical lemmas

7.1. Lemmas related to the control formulation

7.1.1. Convexity of Hr: Lemma 2.1

Proof. For assertion (iii), we begin by noting that it is enough to establish that
p2q = (g−1(q))2 is convex as a function of q when q ≥

√
1/(D − 1). To this end,

we notice that

d2

dx2
(g−1(q))2 = 2

d

dx

g−1(q)

g′(g−1)(q))
= 2

(
1

g′(g−1)(q))2
− g−1(q)g′′(g−1(q))

g′(g−1(q)3

)
=

2

g′(g−1(q)3

(
1− g−1(q)g′′(g−1(q))

g′(g−1(q)

)
.

Above we used multiple times that

(g−1)′(q) =
1

g′(g−1(q))
.

We claim that
g−1(q)g′′(g−1(q))

g′(g−1(q)
≤ 1,

which is enough to conclude the proof. This is equivalent to establishing that
pg′′(p) ≤ g′(p) for p ≥ 0. By homogeneity, it suffices to prove this under the
assumption thatD−1 = 1, which simplifies the computations somewhat. Hence,
from (1.24), we find

g′(p) =
2p+ µkν

(κν+p)2

2g
and g′′(p) =

2− 2 µkν
(κν+p)3

2g
−

(
2p+ µkν

(κν+p)2

)2
4g3

.

We immediately see that

pg′′(p) ≤ 2p

2g
≤

2p+ µkν
(κν+p)2

2g
= g′(p),

which concludes the proof.

7.1.2. The unique minimizing path follows straight lines: Proposition 2.2

Proof of Proposition 2.2. Observe that Hf ≤ Hr by (1.22). Hence,

Lr(v1) ≤ Lf(v) for all v.

Observe also that Lf and Lr are strictly convex because Hf and Hr are strictly
convex. This is obvious for Hf and is a consequence of Lemma 2.1 for Hr.

Let us first consider the case where y > 0. We claim that any path γ
connecting (0, 0) and (x, y) not of the form (2.1) can be replaced by a path γ̃ of
the form (2.1) with strictly lower cost; that is,

A(γ̃) < A(γ), (7.1)
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where A is defined in (5.1). Let us note that the compactness inherent in paths
of the form (2.1), which, by (7.1) are the optimal “class” of paths, yields the
existence of a minimizer.

Because y > 0, we can define

τ0 := max {s ∈ [0, 1] : γ2(s) = 0} < 1.

First, we claim that

γ̃(s) :=

{
(γ1(s), 0) if s ≤ τ0,

γ(s) if s ≥ τ0

is equal to γ or it has strictly lower cost than γ; that is, (7.1) holds. We argue
assuming that γ̃ ̸= γ.

Then there is (recalling the continuity of γ) an interval (s0, s1) ⊂ (0, τ0) such
that

γ2(s0) = γ2(s1) = 0 and γ2(s) > 0 for all s ∈ (s0, s1).

We immediately see that

A(γ)−A(γ̃) ≥
∫ s1

s0

γ̇2(s)
2

4
ds > 0.

Hence, (7.1) is established.
Either γ̃ is of the form (2.2) or we may let

≈
γ be the modification of it to be

of that form; that is

≈
γ(s) =

{
s
τ0
γ̃(τ0) if s ≤ τ0,

γ̃(τ0) +
s−τ0
1−τ0

(γ̃(1)− γ̃(τ0)) if s ≥ τ0.

Using the strict convexity of Lr and Lf , we see that

A(γ̃) =

∫ τ0

0

Lr

(
˙̃γ
)
ds+

∫ 1

τ0

Lr

(
˙̃γ
)
ds

≥ τ0Lr

( 1

τ0

∫ τ0

0

˙̃γ
)
ds+ (1− τ0)Lr

( 1

1− τ0

∫ 1

τ0

˙̃γ
)
ds = A(

≈
γ(s))

and the above inequality is strict if γ̃ ̸= ≈
γ. This completes the proof of our

claim.
Since any path may be replaced by one of the form (2.1), we see that the

equality in (2.2) holds. Moreover, such paths are parametrized by two parame-
ters, z and τ , living in a compact set. The existence of a minimizer follows easily.
The uniqueness proof follows exactly along the lines of the proof of Lemma 2.8;
that is, given two distinct minimizers, the suitable “average” of them as in (2.12)
will have lower cost, a contradiction. This is standard, so we omit its proof.
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Next, we analyze ∇J . First, it follows from (2.2) that J is locally Lipschitz
and hence differentiable almost everywhere in (0,∞) × H. Next, note that
whenever J is differentiable, it satisfies Jt +H(∇J) = 0 and that the dynamic
programming principle (Lemma 2.15) implies that

Lf (γ̇(s)) =
d

ds
J(s, γ(s)) = Jt(s, γ(s))+γ̇(s)·∇J(s, γ(s)) = 0 for a.e. s ∈ [0, t].

It follows that, at differentiable points (t, x, y) = (t, γ(t)),

H(∇J) = −Jt = γ̇(t) · ∇J − Lf (γ̇(t)).

It follows that ∇J and γ̇(t) are conjugate, i.e.

∇J(t, x, y) = DLf (γ̇(t)) =
1
2 γ̇(t). (7.2)

Since this holds almost everywhere, and that (x, y) 7→ γ̇(t) is continuous (since
it is unique), it follows that ∇J is continuous and (7.2) is true everywhere. This
proves (2.3).

In the case where y = 0, the above work clearly shows that τ0 = 1. The
remainder of the steps follow analogously. The proof is complete.

7.1.3. Fine properties of J : Lemma 2.10

Proof. Suppose that the expression in the square bracket in (2.2) attains a global
minimum at some τ0 ∈ (0, t) and z0 ∈ (0, x). By differentiating the quantity in
square brackets in (2.2) in z, we deduce the optimality condition

0 = −∂xLf

(
(x− z0, y)

1− τ0

)
+ L′

r

(
z0
τ0

)
,

which yields

q0 =
x− z0

2(1− τ0)
= L′

r

(
z0
τ0

)
. (7.3)

Similarly, differentiating in τ at the minimizer τ0, we find

0 = −Lf

(
(x− z0, y)

1− τ0

)
+

(x− z0, y)

1− τ0
· ∇Lf

(
(x− z0, y)

1− τ0

)
+ Lr

(
z0
τ0

)
− z0
τ0
L′
r

(
z0
τ0

)
= q20 + p20 + 1 + Lr

(
z0
τ0

)
− z0
τ0
L′
r

(
z0
τ0

)
.

(7.4)

Let us recall that, since Lr is the Legendre transform of Hr, i.e. Lr(v) =
maxq vq −Hr(q), we have

Hr(q) + Lr(v) = vq provided that q = L′
r(v) or v = H ′

r(q). (7.5)

Applying this in (7.4) and recalling (7.3) yields

q20 + p20 + 1 =
z0
τ0
L′
r

(
z0
τ0

)
− Lr

(
z0
τ0

)
= Hr

(
L′
r

(
z0
τ0

))
= Hr(q0). (7.6)
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Using again (7.5), we find that z0/τ0 = H ′
r(q0). Then (7.6) yields that p0 = pq0

due to (1.22)-(1.23).
Next, note that y = (1− τ0)pq0 > 0, so by the definition of pq0 in (1.23), we

have q0 >
1√
D−1

.

Finally, the form of J in (ii) follows from a direct computation using the
above identities. This completes the proof of (i) and (ii).

7.1.4. Relating Lr(v0) and Hr(q0) when q0 = L′
r(v0): Lemma 2.14

Proof. Since both quantities are strictly convex and have zero derivative at 0,
they are strictly increasing away from the origin. Hence, it is enough to check
the boundary case Lr(v0) = 0.

Additionally, to avoid discussions of regularity, we investigate only the cases
D < 2 and D > 2. Indeed, in these cases, the critical v0 such that Lr(v0) = 2
occurs in the interior of the two cases in the definition (1.19) of Hr where all
quantities are smooth. The case D = 2 holds by continuity.

Let us first consider the case when D < 2, where we need to show L(v0) < 0
implies H(q0) < 2. To this end, we claim that Lr(2) = 0 and Hr(L

′
r(2)) = 2.

Let v0 = 2 and q0 = 1. Indeed, in this case

q0 <
1√
D − 1

so that Hr(q) = q2 − 1 for q near q0. Hence,

H ′
r(q0) = 2q0 = v0,

which implies that
Lr(v0) = v0q0 −Hr(q0) = 0.

Additionally, Hr(q0) = 2. This concludes the proof in this case.
Next, consider the case D > 2, where we need to show that L(v0) ≤ 0 implies

H(q0) < 2. In this case, the additional g term in Hr plays a role. Fix v0 such
that

Lr(v0) = 0,

and let q0 = L′
r(v0). Recall that, also, v0 = H ′

r(q0). If

q0 ≤ 1√
D − 1

.

then

Hr(q) = q2 + 1 ≤ 1

D − 1
+ 1 < 2.

Hence, we consider the case where

q0 >
1√
D − 1

. (7.7)

We have
Hr(q0) = Hr(q0) + Lr(v0) = q0v0 = q0H

′
r(q0). (7.8)
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Let us compute the right hand side and show that it is less than 2. Recall that
Hr(q) = q2 + p2q + 1, where pq0 = g−1(q) due to (7.7). Then:

q0H
′
r(q0) = q0[2q0 + 2g−1(q0)(g

−1)′(q0))] = 2
[
q20 + q0g

−1(q0)(g
−1)′(q0))

]
= 2

[
Hr(q0)− 1− p2q0 +

pq0g(pq0)

g′(pq0)

]
= 2

[
Hr(q0)− 1 +

pq0
g′(pq0)

(
− pq0g

′(pq0) + g(pq0)
)]
.

(7.9)

We claim that
−pq0g′(pq0) + g(pq0) > 0. (7.10)

If that were true, then (7.8)-(7.9) implies that

Hr(q0) > 2Hr(q0)− 2,

which, after rearrangement, yields the claim.
We now prove (7.10). We do this by direct computation using that g(pq0) =

q0 > 0 and pq0 > 0 by (7.7):

g(pq0)
(
g(pq0)− pq0g

′(pq0)
)
=

(
p2q0 + 1 +

µp

κν + pq0

)
−
(
p2q0 +

1

2

µp

κν + pq0

κν

κν + pq0

)
> 0.

This concludes the proof.

7.2. Proofs of lemmas relating to w∗ and w∗

7.2.1. The upper bound on uε, vε: Lemma 4.1

Proof of Lemma 4.1. Following [14, Lemma 2.1], it is easy to see that the desired
bounds hold for vε away from the boundary. Hence, we focus on obtaining a
bound for vε and uε near the boundary. To this end, we simply construct a
supersolution and appeal to the (parabolic) comparison principle.

First we obtain a bound on for |x|, |y| ≤ ε/2C0. Fix α, β > 0 to be chosen.
Let

v̄(t, x, y) = αt− εβ log
(
1− C2

0y
2

ε2

)
− εβ log

(
1− C2

0x
2

ε2

)
+ εγ and

ū(t, x) = αt− εβ log
(
1− C2

0x
2

ε2

)
.

(7.11)

Clearly (uε, vε) < (ū, v̄) at t = 0 due to (1.3) and (7.11). Hence, we need only
show that (ū, v̄) is a supersolution to (1.8). Note that we use here the finiteness
of T .
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One immediately sees that, for |x|, |y| < C0/ε,

v̄t−ε∆v̄ + |∇v̄|2 + (1− e−v̄/ε)

≥ α− ε

(
2βC2

0

ε

1− C2
0y

2

ε2

+
4βC4

0y
2

ε3

(1− C2
0y

2

ε2 )2
+

2βC2
0

ε

1− C2
0x

2

ε2

+
4βC4

0x
2

ε3

(1− C2
0x

2

ε2 )2

)

+

∣∣∣∣∣
2βC2

0y
ε

1− C2
0y

2

ε2

∣∣∣∣∣
2

+

∣∣∣∣∣
2βC2

0x
ε

1− C2
0x

2

ε2

∣∣∣∣∣
2

= α+
4β(β − 1)C4

0y
2

ε2(1− C2
0y

2

ε2 )2
+

4β(β − 1)C4
0x

2

ε2(1− C2
0x

2

ε2 )2
− 2βC2

0

1− C2
0y

2

ε2

− 2βC2
0

1− C2
0x

2

ε2

When x ≥ ε/2C0 the second and third terms dominate after increasing β, and
the above is positive. When x ≤ ε/2C0, the first term dominates after increasing
α, and the above is positive. Hence

v̄t−ε∆v̄+|∇v̄|2+(1−e−v̄/ε) ≥ 0 in (0,∞)×(− ε/C0, ε/C0)×(0, ε/C0). (7.12)

A similar computation shows that

ūt − εDūxx +D|ūx|2 + νe
ū−v̄

ε − µ = 0 in (0,∞)× (− ε/C0, ε/C0). (7.13)

after further increasing α and β, if necessary, depending on D and µ.
Finally, notice that, when y = 0,

v̄y = 0 < κ(µeγ − ν) = κ(µe
v̄−ū

ε − ν), (7.14)

after increasing γ. The combination of (7.12), (7.13), and (7.14), along with the
comparison principle, shows that (uε, vε) < (ū, v̄) for all t > 0. This concludes
the proof on the set (0,∞)× [− ε/2C0, ε/2C0]× [0, ε/2C0].

We now consider the complement of the above set; that is, max{|x|, |y|} ≥
ε/2C0. For any time interval [0, T ], we again define supersolutions: for α, β, γ > 0
to be determined, let

v̄(t, x, y) = αt+ β

√
x2 + (ε/2C0)2 + y + x2 + y2

t
+ εγ and

ū(t, x) = αt+ β
|x|+ x2

t
+ εγ.

Up to increasing α, β, γ, clearly (uε, vε) < (ū, v̄) on the parabolic boundary
of our set; that is, at t = 0 and max{|x|, |y|} > ε/2C0 or when t ∈ (0, T ] and
max{|x|, |y|} = ε/2C0. For the former, this is obvious because ū, v̄ = +∞, and for
the latter, this is clear from the supersolution (7.11) evaluated at max{|x|, |y|} =
ε/2C0.

Hence, we need only show that (ū, v̄) is a supersolution to (1.8). We check
only that (7.12) holds, as the other inequalities follow by similar methods
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as (7.12) and along the lines of the work above. Indeed, for |x|, |y| such that
max{|x|, |y|} ≥ ε/2C0, we find

v̄t − ε∆v̄ + |∇v̄|2 + (1− e−v̄/ε)

≥ α− β

√
x2 + (ε/2C0)2 + y + x2 + y2

t2
− βε

t

(
2C0/ε

((2C0x/ε)2 + 1)3/2
+ 2

)
+
β2

t2

(
x2
( 1√

x2 + (ε/2C0)2
+ 2
)2

+ (1 + y)2
)

≥ α− β

√
x2 + (ε/2C0)2 + y + x2 + y2

t2
− β

t
(2C0 + 2ε)

+
β2

t2

(
x2
( 1√

x2 + (ε/2C0)2
+ 2
)2

+ (1 + y)2
)
.

It is clear that the third term after the last inequality can be absorbed in the first
and last terms (depending on whether t is large or small), up to increasing α and
β so that α ≥ 2C0β and β ≥ 2C0. Additionally, the second term is nonnegative
after increasing β. Indeed, the y-component of the last term clearly dominate
the y-component of the second term. When x is at least ε/2C0, it is easy to see
that the fourth term is bounded below by

β2

t2
(1 + 2x)2

which is clearly larger than the x-component of the second term. When x <
ε/2C0, we “borrow” from the y-component:

β2

t2

(
x2
( 1√

x2 + (ε/2C0)2
+ 2
)2

+ (1 + y)2
)
≥ β2

t2
(1 + 2y + y2)

while the second term satisfies:

−β
√
x2 + (ε/2C0)2 + y + x2 + y2

t2
≥ − β

t2

( ε√
2C0

+ y +
ε2

4C2
0

+ y2
)
.

It is clear that, up to increasing β, the sum of these two is non-negative. We
deduce that

v̄t − ε∆v̄ + |∇v̄|2 + (1− e−v̄/ε) ≥ 0.

As noted above, the rest of the argument that (ū, v̄) is a supersolution to (1.8)
follows similarly. We deduce that (uε, vε) ≤ (ū, v̄), which finishes the proof.

7.2.2. The lower bound of (U, V ): Lemma 4.2

Proof of Lemma 4.2. Let BR(0) be the open ball in R2 with radius R centered
at the origin and let λR, ϕR(x, y) be, respectively, the principal eigenvalue and
positive eigenfunction of{

−∆ϕR = λRϕR in BR(0), ϕR = 0 on ∂BR(0).

supϕR = 1.
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Next, we fix any R, c > 0 such that λ1(R) =
1
3 , which is possible since λ1(R) =

R−2λ1(0) > 0. Next, we define, for any c > 0 and e ∈ S1

ψc,e(t, x, y) =

{
ϕR((x, y +R)− tce)) if (x, y +R)− tce) ∈ BR(0),

0 otherwise,

Observe that for any c, η > 0 and e = (e1, e2) ∈ S1 satisfying

c2

4
≤ 1

3
, 0 < η <

1

3
, e2 ≥ 0,

it can be directly verified that

(ψc,e)t −∆ψc,e ≤ ψc,e(1− ψc,e) in (0,∞)×H,
−(ψc,e)y ≤ 0 = ψc,e on (0,∞)× ∂H.

Hence, the pair (ψc,e, 0) forms a pair of subsolution to (1.2). By the notion
of generalized subsolution (See [9, Definition 4.2] or [25, Definition 1.1.1]), it
follows that (ψ, 0) is a generalized subsolution, where

ψ(t, x, y) = η sup{ψc,e(t, x, y) : 0 < c ≤ 1, e ∈ S1, e2 ≥ 0}.

By the strong maximum principle, V (1, x, y) > 0 in the closure of H. Hence,
we may choose 0 < η < 1

3 small enough so that ψ(1, x, y) ≤ V (t, x, y) in the
(compact) support of (x, y) 7→ ψ(1, x, y). A comparison principle thus yields
that V (t, x, y) > ψ(t, x, y) for all t ≥ 1 and all (x, y) ∈ H, in particular,

V (t, x, y) ≥ η0 if t ≥ 1, y ≥ R, and |(x, y)| < t/2,

where δ0 is independent of the (t, x, y) in the prescribed ranged.
Next, we claim

V (t, x, y) ≥ η0 if t ≥ 1 and |(x, y)| < t/4. (7.15)

If not, then there exists tk → ∞, 0 ≤ yk ≤ R, |xk| ≤ t/4, such that Vk(t, x, y) :=
V (tk + t, xk + x, y) satisfies Vk(0, 0, 0) = 0. Letting k → ∞, then (up to a

subsequence) yk → y∞ and Vk → Ṽ in compact subsets of R × H2
, where Ṽ

satisfies
Ṽt = ∆Ṽ + Ṽ (1− Ṽ ) in R×H,
−Ṽy(t, x, 0) ≥ −νṼ (t, x, 0), Ṽ (t, x,R) > 0 for (t, x) ∈ R2,

Ṽ (0, 0, y∞) = 0.

(7.16)

Now, the strong maximum principle implies Ṽ (t, x, y) > 0 for y > 0. Hence,
y∞ = 0 and Ṽy(0, 0, 0) > 0 by the Hopf’s lemma. This contradicts the boundary
condition in (7.16). This proves (7.15). Similarly, we can show that there exists
η′0 > 0 such that

U(t, x) ≥ η′0 for t ≥ 1, and |x| ≤ t/8. (7.17)

Finally, (7.15) and (7.17) implies w∗(t, x, y) = 0 for |(x, y)| < t/8. This proves
the lemma.
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Proof of Lemma 4.3. Fix A > 0, and define

u(t, x) = Ax−Qt− ε(Q+ log ν
µ ), and v(t, x, y) = A(x+ y)−Q(t+ ε),

where Q = QA is chosen large enough so that

Qe−Ax ≥ U(0, x) and
νQ

µ
e−A(x+y) ≥ V (0, x, y), Q ≥ max{2A2+1, DA2}.

Then we can verify that (u(t, x), v) is a subsolution to (1.8), and satisfies

u(0, x) ≤ uε(0, x) and v(0, x, y) ≤ vε(0, x, y).

By comparison, we have

uε(t, x) ≥ Ax−QAt− ε(QA + log ν
µ ), vε(t, x, y) ≥ A(x+ y)−QA(t+ ε).

Taking the half-relaxed limit (see (4.1) - (4.2)) as ε→ 0, we have

w∗(t, x, y) ≥ A(x+ y)−QAt.

The desired conclusion follows by setting t = 0 and letting A→ +∞.

7.2.3. Continuity of w∗ and ρ∗: Lemma 4.5

Proof of Lemma 4.5. First we prove that it is enough to establish the following
estimate: for every (x0, y0) with y0 > 0, there is a constant α such that, for
every (x, y) ∈ H satisfying |x− x0|+ |y − y0| ≤ 1, we have

ρ∗(x, y) ≤ ρ∗(x0, y0) + α
(
1 + y

−1/2
0

)
(|x− x0|+ |y − y0|), (7.18)

where α can be chosen uniformly for all (x0, y0) in bounded subsets of H.
By reversing the role of (x, y), (x0, y0) in (7.18), we immediate deduce (4.16)

and that ρ∗ is locally Lipshitz continuous on H. This proves assertion (i). To
prove assertion (ii), we need to understand the behavior at the boundary. Let
us point out that it is enough to establish a C

1/2 bound on H and show that ρ∗

is continuous up to the boundary in y.
The easier piece is continuity up the boundary in y, so we begin there. Since

w∗ is upper semicontinuous, so is ρ∗. We deduce that

lim sup
(x̃,ỹ)→(x,0)

ρ∗(x̃, ỹ) ≤ ρ∗(x, 0). (7.19)

We seek the reverse inequality. We obtain this by applying (7.18) with y = 0
and taking a limit as y0 ↘ 0. Indeed,

ρ∗(x0, 0) ≤ ρ∗(x0, y0) + α(
√
y0 + y0). (7.20)

We deduce from (7.19) and (7.20) that, for any x0,

ρ∗(x0, 0) = lim
y↘0

ρ∗(x0, y).
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Next, we obtain the C
1/2 bound up to the boundary by applying (7.18) a

large, but finite, number of times. Fix (x0, y0), (x1, y1) ∈ H such that

y0 + |x0 − x1|+ |y0 − y1| ≤ 1,

and denote

δ = max{|y0 − y1|, |x0 − x1|} and ε = y0 + δ − y1 ≥ 0.

Notice that ε ≤ 2δ and, hence, it suffices to show that

ρ∗(x0, y0) ≤ ρ∗(x1, y1) + C(
√
δ +

√
ε). (7.21)

We now establish (7.21). For any natural number N we have

ρ∗(x0, y0) = ρ∗(x0, y0)− ρ∗(x1, y0 + ε)

+

N∑
i=1

(
ρ∗(x1, y1 + 2−i+1ε)− ρ∗(x1, y1 + 2−iε)

)
+ ρ∗(x1, y1 + 2−Nε)− ρ∗(x1, y1) + ρ∗(x1, y1)

≤ 2α
δ + |x1 − x0|√

y0 + δ
+

N∑
i=1

2
α2−iε√
y1 + 2−iε

+ 2
α2−Nε
√
y1

+ ρ∗(x1, y1)

≤ 4α
√
δ + 2

∞∑
i=1

α2−i/2
√
ε+

α2−N+1ε
√
y1

+ ρ∗(x1, y1)

≤ 4α
√
δ + Cα

√
ε+

α2−N+1ε
√
y1

+ ρ∗(x1, y1).

Taking N → ∞, we deduce (7.21), which completes the proof of the C
1/2 bound

of ρ∗. This proves assertion (ii).
It remains to establish (7.18). For this purpose, fix (x0, y0) ∈ H2 and let

R = |x0|+ y0. Let α be a constant to be chosen later, and define, for any β,

ϕβ(x, y) = β + α(1 + y
−1/2
0 )

(
|(x− x0, y − y0)|+ |(x− x0, y − y0)|4

)
.

Define
β0 := inf{β : ϕβ > ρ∗ on H}.

By Lemma 4.1, for any α > 0 and β ∈ R, we have ϕβ > ρ∗ for |x| + y large
enough. Thus, β0 is well-defined and there is a touching point (xt, yt) such that

ϕβ0
(xt, yt) = ρ∗(xt, yt), (7.22)

but ϕβ0 ≥ ρ∗ elsewhere. If (xt, yt) = (x0, y0), we deduce (7.18) immediately.
Hence, we consider the case where (xt, yt) ̸= (x0, y0).

First, notice that ρ∗(xt, yt) > 0 in this case. Indeed, by the definition of β0
and (4.5),

β0 = ϕβ0
(x0, y0) ≥ ρ∗(x0, y0) ≥ 0, (7.23)
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and hence,

ρ∗(xt, yt) = ϕβ0(xt, yt) > β0 ≥ 0. (7.24)

where the equality follows from (7.22), the strict inequality from (xt, yt) ̸=
(x0, y0) and the form of ϕβ0

.
If yt > 0, then, due to (4.7) and (7.24), the following holds at (x1, yt):

0 ≥ ϕβ0
− (xt, yt) · ∇ϕβ0

+ |∇ϕβ0
|2 + 1

> 0− α̃(xt, yt) ·
(xt − x0, yt − y0)

|(xt − x0, yt − y0)|
(1 + 4|(xt − x0, yt − y0)|3)

+ α̃2

∣∣∣∣ (xt − x0, yt − y0)

|(xt − x0, yt − y0)|
(1 + 4|(xt − x0, yt − y0)|3)

∣∣∣∣2 + 1

≥ −α̃R · (1 + 4|(xt − x0, yt − y0)|3)
− α̃|(xt − x0, yt − y0)|(1 + 4|(xt − x0, yt − y0)|3)
+ α̃2(1 + 4|(xt − x0, yt − y0)|3)2 + 1.

(7.25)

where α̃ = α(1 + y
−1/2
0 ) and R = |x0| + y0. The last term dominates when α,

and hence α̃, is sufficiently large. Indeed, if α ≥ 1 +R, then α̃ ≥ 1 +R and the
last term containing the highest power of |(xt − x0, yt − y0)| implies that (7.25)
is impossible for |(xt−x0, yt−y0)| ≥ C0 for some constant C0 chosen uniformly
in α ≥ 1. By choosing α still larger, we deduce that (7.25) is also impossible for
|(xt − x0, yt − y0)| ≤ C0. Hence, the case yt > 0 is impossible.

Let us now consider the case yt = 0. Notice that (7.25) does not use the
positivity of yt at all, so we again deduce that

ϕβ0
− (xt, 0) · ∇ϕβ0

+ |∇ϕβ0
|2 + 1 > 0 at (xt, yt),

so that, from the second equation of (4.7), we must have

0 ≥ ϕβ0 − (xt, 0) · ∇ϕβ0 +D|(ϕβ0)x|2 +B0((ϕβ0)y) at (xt, yt). (7.26)

We claim that, provided α is chosen large, then

|xt − x0| ≤
C(1 + |x0|2)

√
y0

α
, (7.27)

although we postpone the proof momentarily. Since yt = 0 and y0 > 0, the
definition of ϕβ0

yields

(ϕβ0
)y = α(1 + y0

−1/2) · −y0
|(xt − x0, 0− y0)|

(1 + 4|(xt − x0, 0− y0)|3)

< −
α
√
y0

|xt − x0|
. (7.28)

Plugging (7.27) into (7.28), we find

(ϕβ0)y(xt, 0) <
−α√y0√
C2y0/α2

=
−α2

C(1 + |x0|2)
.
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By choosing α sufficiently large so that (ϕβ0)y(xt, 0) ≤ −κν, we haveB0((ϕβ0)y(xt, 0)) =
+∞ and obtain a contradiction with (7.26).

We now establish (7.27). First, use β0 ≥ 0 (see (7.23)) and Lemma 4.1 to
find

α(1 + y
−1/2
0 )(|xt − x0|+ |xt − x0|4) ≤ ϕβ0

(xt, 0) = ρ∗(xt, 0)

≤ AT (1 + |xt|2) ≤ 2AT (1 + x20 + |xt − x0|2).

Then (7.27) follows after an application of Young’s inequality and suitably in-
creasing α so that the xt −x0 term on the right hand side can be absorbed into
the left hand side, i.e.

α
√
y0

|xt − x0| ≤ 2AT (1 + x20).

By noting that the choice of α depends only on R = |x0| + y0, the proof is
complete.

Appendix A. Comparison principle

In this section, we develop a comparison principle, and, thus, a uniqueness
theorem for strong solutions to

min{w,wt +Hf(wx, wy)} = 0 in (0,∞)×H (A.1)

and
min{w,wt + F (wx, wy)} = 0 on (0,∞)× R× {0}, (A.2)

Written in this form, it is does not seem that classic results (as in [11]) will
apply, and one might think that the ideas of [23, 28, 4] are needed. It turns
out that our situation is significantly simpler because it is not, in some sense,
a true junction problem. Indeed, our problem does not involve two or more
hyperplanes glued together – we have only one hyperplane. Thus, the main
idea is to use the ideas of [28] to deduce a Neumann type boundary condition
on ∂H. Then, after a suitable localization procedure, we may apply the classic
comparison principle for Neumann boundary conditions.

Before we begin, we make a few comments. First, for the comparison result
to hold, we do not need the specific form of Hf and Hr. All we use is that
(q, p) 7→ Hf(q, p) and q 7→ Hr(q) are convex and coercive, and that F (q, p) =
max{H−

f (q, p), Hr(q)}.
Our first main result is the following:

Theorem Appendix A.1 (Comparison principle). Fix any T > 0. Let w and
w be, respectively, strong sub- and supersolutions to (A.1)-(A.2) on (0, T )×H.
If w(0, x, y) ≤ w(0, x, y) for (x, y) ∈ H, then

w ≤ w. on [0, T )×H.
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Before we prove Theorem Appendix A.1, we show how to deduce uniqueness
of (possibly infinite) solutions to (A.1) from it. This is our second main result.

Corollary Appendix A.2 (Uniqueness). Any two functions w : [0,∞)×H →
R ∪ {+∞} satisfying

(i) On [0,∞) × H, w is lower semicontinuous and a strong supersolution
to (A.1),

(ii) On (0,∞)×H, w is finite-valued, continuous, and is a strong subsolution
to (A.1), and

(iii) For t > 0, w(t, 0, 0) ≤ 0, while at t = 0, we have w(0, 0, 0) ≥ 0 and
w(0, x, y) = +∞ for (x, y) ̸= 0.

Proof. We argue by contradiction. Fix any two functions w and w̃ that satisfy
(i), (ii) and (iii). By the arbitrariness of w and w̃, we need only show that
w ≤ w̃.

Any supersolution must necessarily satisfy

w̃(t, x, y) ≥ 0 for all (t, x, y) ∈ (0,∞)× H̄.

Fix τ > 0. Using (iii), we see that

w(τ, 0, 0) ≤ 0 ≤ w̃(0, 0, 0).

Moreover, again using (iii), we have, for all (x, y) ̸= (0, 0),

w(τ, x, y) < +∞ = w̃(0, x, y).

Hence,
w(τ, x, y) ≤ w̃(0, x, y) for all (x, y) ∈ H.

Finally, we immediately see that

w(t+ τ, x, y)

is a subsolution to (A.1).
Applying Theorem Appendix A.1, it follows that

w(t+ τ, x, y) ≤ w̃(t, x, y) for all (t, x, y) ∈ (0,∞)×H.

By the continuity of w on (0,∞)×H, We can then let τ → 0 to obtain w ≤ w̃
on (0,∞)×H, as desired.

Appendix A.1. Strong solution implies Neumann-type boundary condition

We follow the idea of [28], as presented in [4]. For this purpose, we associate
a Neumann-type boundary condition to strong sub- and supersolutions.
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Definition Appendix A.3. Let w : (0,∞) × H → R, and let (t0, x0, y0) ∈
(0,∞) × H be given. We say that the constant vector (−λ, q, p) is an element
of the subdifferential at (t0, x0, y0), a set denoted by D−w(t0, x0, y0), if there
exists r0 > 0 such that

w(t, x, y) ≥ w(t0, x0, y0) + (−λ, q, p) · (t− t0, x− x0, y − y0) + o(|t− t0|+ |x− x0|+ |y − y0|)
for (t, x, y) ∈ {(t′, x′, y′) ∈ (0,∞)×H : |(t′ − t0, x

′ − x0, y
′ − y0)| < r0}.

(A.3)

The superdifferential at (t0, x0, y0), denoted D
+w(t0, x0, y0) is defined similarly

up to reversing the inequality in (A.3).
For a given function ϕ(t, x) (that is, not depending on y), we denote by the

sub and superdifferentials, denoted D−
t,xϕ(t0, x0) and D

+
t,xϕ(t0, x0), analogously.

We now state the boundary condition:

−wy +B(wx) = 0. (A.4)

We choose the notation B to match that of Lions and Souganidis [28]. Then a
(weak) solution of (A.1)-(A.4) is one such that{

min {w,max {−wy +B(wx), wt +Hf(wx, wy)}} ≥ 0 on (0,∞)× R× {0},
min {w,−wy +B(wx), wt +Hf(wx, wy)} ≤ 0 on (0,∞)× R× {0}.

(A.5)
The first inequality in (A.5) corresponds to supersolutions (along with the con-
dition that w is lower semicontinuous), while the second inequality in (A.5)
corresponds to subsolutions (along with the condition that w is upper semicon-
tinuous). Let us point out that if w is a supersolution to (A.1)-(A.1), it must
be that

w ≥ 0 on (0,∞)× H̄. (A.6)

We now show that strong solutions satisfy the Kirchhoff condition. This
was originally observed by Lions and Souganidis in [28] in a slightly different
context, and we follow their proof.

Lemma Appendix A.4. Let w be a strong subsolution (resp. strong superso-
lution) of (A.1)-(A.2), then it is a weak solution of the Neumann-type condition
(A.1)-(A.4) with coefficient

B(q0) = pq0 ,

where we recall that pq0 ∈ [0,∞) is given by (1.23).

Proof. First, we assume w is a strong subsolution. It suffices to check the condi-
tion on the boundary {y = 0}. Fix (t0, x0, 0) and (−λ, p0, q0) ∈ D+w(t0, x0, 0).
Then

max{H−
f (q0, p0), Hr(q0)} = F (q0, p0) ≤ λ.

If Hf(q0, p0) ≤ λ or w(t0, x0, 0) ≤ 0, then we are finished by (A.5)
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It remains only to argue in the case whereHf(q0, p0) > λ and w(t0, x0, 0) > 0.
In this case, we must show that

p0 ≥ pq0 . (A.7)

Since
H−

f (q0, p0) ≤ λ < Hf(q0, p0), (A.8)

it follows that p0 > 0 (recall (1.17)).
By construction, we have that

Hf(q0, pq0) ≤ Hr(q0) ≤ λ. (A.9)

Since pq0 ≥ 0 and Hf(q0, ·) is increasing on [0,∞), we deduce from (A.8)-(A.9)
that (A.7) holds, as desired.

Next, assume that w is a strong supersolution and (−λ, p0, q0) ∈ D−w(t0, x0, 0).
Then

max{H−
f (q0, p0), Hr(q0)} ≥ λ. (A.10)

We are finished if
−λ+Hf(q0, p0) ≥ 0.

Hence, we consider when
Hf(q0, p0) < λ,

in which case we need to show that p0 ≤ pq0 . By (A.10), we divide into two
cases: (i) H−

f (q0, p0) ≥ λ; (ii) Hr(q0) ≥ λ.
In case (i), H−

f (q0, p0) > Hf(q0, p0), which implies that p0 < 0. By definition,
0 ≤ pq0 . Thus, the proof is complete in this case.

In case (ii), Hf(q0, p0) < λ ≤ Hr(q0). We are, thus, in the setting of
Lemma 4.8.(i), whence we conclude that Hr(q0) = Hf(q0, pq0). It follows that

Hf(q0, |p0|) = Hf(q0, p0) < Hf(q0, pq0).

Since Hf is increasing on [0,∞) and pq0 ≥ 0, we deduce that

p0 ≤ |p0| < pq0 .

This completes the proof.

Appendix A.2. Proof of the comparison principle

Proof of Theorem Appendix A.1. In view of Lemma Appendix A.4, we are nearly
in the classical setting of, e.g., [11, Theorem 7.12]. However, such arguments
rely on the boundedness of the sub- and supersolutions as well as the domain.
In the next three steps, we perform a reduction to this setting.

# Step one: Without loss of generality, we may assume that w is
bounded from above. We claim that wK = min{w − t,K} + t is a strong
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subsolution to (A.1)-(A.2) for each K > 0. Indeed, take a sequence {gj} of
smooth functions satisfying

0 ≤ g′j(r) ≤ 1 and gj(r) ↗ min{r,K} for r ∈ R.

Notice that
|∇gj(w)| ≤ |∇w|.

We claim that
ŵ = gj(w + t)− t

is a viscosity subsolution to (A.1)-(A.2). To see this, first note that we need
only check the set {(t, x, y) : ŵ > 0}. We check this case formally assuming
that w is C1, although it is easy to see that these computations can easily be
made rigorous. For G = Hf , H

−
f or Hr,

∂tŵ +G(∇ŵ) = g′j∂tŵ + g′j − 1 +G(g′j∇w).

Next, since G(0) = 1, and G is convex, it follows that, for any λ ∈ (0, 1) and for
any p,

G(λp) ≤ λG(p) + (1− λ)G(0) = λG(p) + 1− λ.

Here p ∈ R or R2, depending on the choice of G. Hence,

∂tŵ +G(∇ŵ) ≤ g′j∂tŵ + g′j − 1 + g′jG(∇w) + 1− g′j

= g′j (∂tw +G(∇w)) ≤ 0.

Using the stability of strong subsolutions (see, e.g., [4, Theorem 14.2.1]), we take
j → ∞ and deduce that wK = min{w,K} is a strong subsolution to (A.1)-(A.2).

Notice that, if we prove that wK ≤ w for all K, then we deduce that W ≤ w
in the limit K → ∞. We may, thus, assume that w is bounded from above.

# Step two: reduction to a strict subsolution. Without loss of generality,
we may assume that there is η > 0 such that

lim sup
t→T−

w = lim sup
|x|+|y|→∞

w = −∞ and min
{0}×H

(w − w) > 0, (A.11)

while {
min{w, ∂tw +Hf(∇w) + 2η} ≤ 0 on (0, T )×H,
min{w, ∂tw + F (∇w) + 2η} ≤ 0 on (0, T )× ∂H.

(A.12)

It is easy to see that

w̃1(t, x, y) = − K

T − t
− log(1 + |x|2 + |y|2)

is a strong subsolution to (A.1)-(A.2) for K sufficiently large. Thanks to the
convexity of H, H−

f and Hr, the function

wµ = (1− µ)w + µw̃1
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satisfies (A.11)-(A.12) for any 0 < µ < 1 (recall that w is bounded from above
by the previous step). Again, it suffices to show that wµ ≤ w for all sufficiently
small µ > 0.

# Step three: reduction to a compact portion of the boundary and
the conclusion. Let us note that, due to (A.6) and the work in Step two, there
is R > 0 such that the

inf
[0,T ]×H

(w − w) = min
QR

(w − w) < 0,

where

QR = {(t, x, y) ∈ [0, T ]×H : 1/R < t < T − 1/R, |x|+ |y| ≤ R}.

At this point, we are essentially in the classical setting where the standard
technique of double variables can be applied. This can be done in the same
vein as the time independent result [11, Theorem 7.12]. Indeed, on can check
that our Neumann-type boundary condition (A.4) satisfies the conditions stated
there. This concludes the proof.
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Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, 1997.
With appendices by Maurizio Falcone and Pierpaolo Soravia.

[3] Guy Barles, Ariela Briani, Emmanuel Chasseigne, and Cyril Imbert. Flux-
limited and classical viscosity solutions for regional control problems.
ESAIM Control Optim. Calc. Var., 24(4):1881–1906, 2018.

[4] Guy Barles and Emmanuel Chasseigne. On Modern Approaches of
Hamilton-Jacobi Equations and Control Problems with Discontinuities: A
Guide to Theory, Applications, and Some Open Problems, volume 104.
Springer Nature, 2023.

[5] Guy Barles, Lawrence C. Evans, and Panagiotis E. Souganidis. Wave-
front propagation for reaction-diffusion systems of PDE. Duke Math. J.,
61(3):835–858, 1990.

[6] Henri Berestycki, Anne-Charline Coulon, Jean-Michel Roquejoffre, and
Luca Rossi. The effect of a line with nonlocal diffusion on Fisher-KPP
propagation. Math. Models Methods Appl. Sci., 25(13):2519–2562, 2015.

70



[7] Henri Berestycki, Jean-Michel Roquejoffre, and Luca Rossi. Fisher-KPP
propagation in the presence of a line: further effects. Nonlinearity,
26(9):2623–2640, 2013.

[8] Henri Berestycki, Jean-Michel Roquejoffre, and Luca Rossi. The influence
of a line with fast diffusion on Fisher-KPP propagation. J. Math. Biol.,
66(4-5):743–766, 2013.

[9] Henri Berestycki, Jean-Michel Roquejoffre, and Luca Rossi. The shape of
expansion induced by a line with fast diffusion in Fisher-KPP equations.
Comm. Math. Phys., 343(1):207–232, 2016.

[10] Xinfu Chen, Junfeng He, and Xuefeng Wang. Asymptotic propagation
speeds of the Fisher-KPP equation with an effective boundary condition
on a road. Arch. Ration. Mech. Anal., 247(3):Paper No. 33, 35, 2023.

[11] Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions. User’s guide
to viscosity solutions of second order partial differential equations. Bull.
Amer. Math. Soc. (N.S.), 27(1):1–67, 1992.

[12] Laurent Dietrich and Jean-Michel Roquejoffre. Front propagation directed
by a line of fast diffusion: large diffusion and large time asymptotics. J.
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