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Abstract. This paper is concerned with the following spatiotemporal population-toxicant
model with toxicant-taxis in a bounded domain Ω ⊂ Rn(n ≥ 1) with inhomogeneous Robin
boundary conditions

ut = d∆u+ χ∇ · (u∇w) + u(1− u)− σuw, x ∈ Ω, t > 0

wt = ε∆w − µw − λuw, x ∈ Ω, t > 0,

(d∇u+ χu∇w) · ν = 0, ∇w · ν = ξ(h(x, t)− w), x ∈ ∂Ω, t > 0

u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ Ω,

where u = u(x, t) and w = w(x, t) denote the population density and toxicant concentration
at location x and time t, respectively. Here the toxicant enters the environment through the
boundary with a temporally and spatially heterogeneous ambient toxicant density h(x, t). Under
suitable assumptions on h(x, t), we first establish the global existence of classical solutions in
two-dimensional spaces (n = 2). Moreover, we show that every solution (u,w) converges to
(1, 0) uniformly if h(x, t) decays to zero as t→∞ with a mild rate satisfying

lim
t→∞

∫ t+1

t

‖h(·, τ)‖L1(∂Ω)dτ = 0.

If h(x, t) ≡ h(x) 	 0 with 0 < h0 = supx∈∂Ω h(x), we establish the existence of non-constant
positive steady states in all dimensional spaces (n ≥ 1) under the condition

0 < h0 < h∗ := min
{ 1

σ
,
d

χ

}
.

We further show that this non-constant steady state is unique and globally asymptotically stable
if h0 is sufficiently small. On the other hand, we prove that the species u is uniformly persistent
if σ < 1/h0, while the toxicant-only steady state is globally asymptotically stable if σ > 1/Mh

with some constant Mh > 0 smaller than h0.

1. Introduction and main results

Due to anthropogenic activities such as industrial effluents and increased urbanization in
recent decades, a great deal of toxicants and pollutants have been discharged into lakes and
rivers. This seriously threatens the living organisms in these aquatic ecosystems. Toxicant
increase in aquatic ecosystems has adverse effects on biospecies behavior, population growth,
community structure and ecosystem integrity (see review articles [1, 4, 30]). It is therefore of
paramount importance to understand the deleterious effects of toxicants on aquatic population
dynamics and identifying the key factors determining the persistence or extinction so that suit-
able water quality standards and regulatory measures can be enacted to protect aquatic species
and maintain ecosystem diversity. Towards this goal, various mathematical models describing
the population-toxicant interactions were proposed such as the ordinary differential equation
models [12–15, 18, 19], matrix population models [11, 16, 33, 34], reaction-advection-diffusion
equations [36, 38, 39] and so on. These existing models were focused on the influence of toxicants
on the population growth rate or on the environmental carrying capacity, without considering
the spatial movement such as dispersion, transport and spatial avoidance of toxicants, etc.
In fact, individuals may exhibit various toxicant-induced behavioral changes including spatial
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movement (cf. [3, 5, 30]). In the literature, reaction-advection-diffusion equations in one di-
mension have been used to describe the motion and transport process of river pollutants alone
(cf. [27, 31]). The first reaction-advection-diffusion model considering the population-toxicant
interactions with dynamical toxicants in a polluted river was proposed in a paper [39] with
Danckwerts boundary conditions, where sufficient conditions for the population persistence or
extinction were found based on the eigenvalue theory. The model proposed in [39] assumed that
species and toxicants only undertook random diffusion. In reality, many aquatic species can
detect and avoid toxicants (i.e. spatial avoidance) [2, 35]. Taking into account this essential
factor, a spatiotemporal population-toxicant system with (negative) toxicant-taxis model was
proposed in [10] as follows:

ut = d∆u+ χ∇ · (u∇w) + u(1− u)− σuw, x ∈ Ω, t > 0,

wt = ε∆w + h(x)− µw − λuw, x ∈ Ω, t > 0,

∇u · ν = ∇w · ν = 0, x ∈ ∂Ω, t > 0,

(1.1)

where u(x, t) and w(x, t) represent the density of species and toxicant at location x ∈ Ω and time
t, and Ω denotes the bounded habitat in Rn(n ≥ 1) with smooth boundary ∂Ω. All parameters
are positive, where d and ε denote the random diffusion coefficients of the species and the
toxicant, respectively. The toxicant-taxis term χ∇ · (u∇w) entails that the species can evade
toxicants (i.e., the movement of individuals away from the gradient of toxicant concentration).
The term u(1 − u) − σuw accounts for the population growth under the influence of toxicants
where σ is the toxicant-induced death rate. In the second equation of (1.1), h(x) is the toxicant
input rate, µ is the decay rate of toxicant due to the detoxification and λ denotes the uptake
rate of toxicant by the aquatic species. The global existence of classical solutions of (1.1) in two
dimensions (n = 2) with h(x) ∈ C(Ω̄) was established in [10]. When h(x) = h0 is a positive
constant, the global stability of constant steady states and spatial patterns of (1.1) were further
studied in [10] showing that the value of h0 is critical for the persistence of species while the
toxicant-taxis may introduce spatial patterns. Recently, the existence of non-constant positive
steady states of (1.1) under certain conditions was established in [9] by the Leray-Schauder
degree theorem when h(x) is a positive constant.

The model (1.1) is based on the following assumptions: (a) the aquatic system under consid-
eration is a closed environment where both the species and the toxicant cannot cross the habitat
boundary due to homogeneous Neumann boundary conditions, which particularly implies that
toxicants are not discharged into the aquatic system through the habitat boundary, but through
other ways like rainfall mixed with toxic emissions (e.g., acid rain); (b) the toxicant input rate
h is independent of time. However, in reality toxicants may enter aquatic systems (lake or
river) through the boundaries such as industrial/agricultural runoff or polluted surface water.
In addition, both anthropogenic activities and environmental changes vary seasonally. Clearly,
these situations violate the assumptions (a) and (b) and are not described by the model (1.1).
To this end, we update the model with toxicants permeating through the habitat boundary via
a Robin-type boundary condition

ut = d∆u+ χ∇ · (u∇w) + u(1− u)− σuw, x ∈ Ω, t > 0,

wt = ε∆w − µw − λuw, x ∈ Ω, t > 0,

(d∇u+ χu∇w) · ν = 0, ∇w · ν = ξ(h(x, t)− w), x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ Ω.

(1.2)

The boundary conditions in (1.2) indicate that no aquatic species can cross the habitat boundary,
while the toxicant with ambient density h(x, t) enters or leaves the habitat through the boundary
with an exchange coefficient ξ > 0.

The main results of this paper include the global well-posedness (global boundedness and
stabilization of solutions), as well as existence and globally asymptotic stability of non-constant



TOXICANT-TAXIS MODEL WITH ROBIN BOUNDARY CONDITIONS 3

steady states of (1.2). The global boundedness and stabilization of solutions to (1.2) are asserted
in the following theorem.

Theorem 1.1 (Global boundedness and stabilization). Let Ω ⊂ R2 be a bounded domain with
smooth boundary. Assume that the initial data (u0, w0) ∈ [W 1,∞(Ω)]2 with u0, w0 	 0 and the
following assumption on h(x, t) holds:

(H0) h(x, t) ∈ C∞(∂Ω× [0,∞)) is a nonnegative bounded function satisfying

‖ht(·, t)‖L∞(∂Ω) ≤ C for all t > 0,

where C > 0 is a constant independent of t.

Then the system (1.2) with χ ≥ 0 has a unique nonnegative global classical solution (u,w) ∈
[C0([0,∞)× Ω̄) ∩ C2,1((0,∞)× Ω̄)]2, such that

‖u(·, t)‖L∞ + ‖w(·, t)‖W 1,∞ ≤M, for all t > 0,

where M > 0 is a constant independent of t and σ. Furthermore, if h(x, t) satisfies

lim
t→∞

∫ t+1

t
‖h(·, τ)‖L1(∂Ω)dτ = 0, (1.3)

then the solution (u,w) converges to (1, 0) uniformly as t→∞.

Remark 1.1. The conditions (H0) and (1.3) can be fulfilled by a wide range of functions which
decay slowly in time, such as h(x, t) = (1 + t)−pζ(x) for any p > 0 or non-monotone function
like h(x, t) = e−λt(sin t+ 1)ζ(x) with λ > 0, where ζ(x) is a bounded nonnegative function.

Theorem 1.1 states that if the ambient toxicant density h(x, t) depends on time and decays
to zero as t→∞, the global classical solution will converge to (1, 0) uniformly as t→∞. Below
we aim to consider the asymptotic behavior of solutions if h(x, t) is stationary in time. That
is, we consider h(x, t) ≡ h(x) 	 0 (i.e. h(x) is nonnegative but not identical to zero) and is
smooth on ∂Ω. Clearly the global existence and boundedness of classical solutions established in
Theorem 1.1 hold true. We are interested in the existence and global stability of non-constant
steady states of (1.2) which satisfy

0 = d∆U +∇ · (χU∇W ) + U(1− U)− σUW, x ∈ Ω,

0 = ε∆W − µW − λUW, x ∈ Ω,

(d∇U + χU∇W ) · ν = 0, ∇W · ν = ξ(h(x)−W ), x ∈ ∂Ω.

(1.4)

In the sequel, we denote

sup
x∈∂Ω

h(x) := h0 > 0. (1.5)

It is straightforward to check that if (1.4) admits a solution, then it must be non-constant.
Clearly the system (1.4) has a toxicant-only steady state (0, w∗), where w∗ = w∗(x) is the
unique non-constant positive solution of the following system{

0 = ε∆w∗ − µw∗, x ∈ Ω,

∇w∗ · ν = ξ(h(x)− w∗), x ∈ ∂Ω.
(1.6)

We observe that the solution of (1.6) must be non-constant if exists. Also, the existence of
solutions to system (1.6) can be obtained by the method of upper-lower solutions in view of that
0 and h0 are a sub-solution and a super-solution, respectively. The uniqueness is a consequence
of the strong maximum principle and Hopf boundary point lemma.

Apart from the toxicant-only semi-trivial steady state (0, w∗), we can show that if h0 > 0 is
suitably small, then (1.6) admits a unique non-constant solution which is globally asymptotic
stable, as given in the following theorem.
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Theorem 1.2. Let Ω ⊂ Rn (n ≥ 1) be a bounded domain with smooth boundary. Assume h is
non-trivial, nonnegative and stationary, i.e. h = h(x) 	 0, and that h0 = supx∈∂Ω h(x) satisfies

0 < h0 < h∗ := min
{ 1

σ
,
d

χ

}
.

Then the system (1.2) admits a positive non-constant classical steady state solution (U(x),W (x)) ∈
C2+α(Ω̄)× C2+α(Ω̄) satisfying (1.4) with

`∗ ≤ e
χ
d
W (x)U(x) ≤ `∗, 0 < W (x) ≤ h0, (1.7)

where `∗ = min
0≤z≤h0

`(z) and `∗ = max
0≤z≤h0

`(z) with `(z) = (1−σz)e
χ
d
z. Moreover, (U,W ) is unique

and, if n = 2 and if h0 > 0 is sufficiently small, then it is globally exponentially stable.

Remark 1.2. The condition σh0 < 1 is imposed to obtain the positivity of non-constant steady
states. The condition χh0 < d is used to prove the continuous dependence of the mapping
V → W [V ] in Lemma 3.2, but it can be removed if µ is large or λ is small (see Remark 3.1).
Particularly if χ = 0, the mere condition σh0 < 1 suffices to warrant the existence of (U,W ).

The results of Theorem 1.2 do not address the global dynamics of (1.2) when h0 > 0 is not
sufficiently small. The following theorem will partly elucidate this question.

Theorem 1.3. Let Ω ⊂ R2 be a bounded domain with smooth boundary. Assume h is non-
trivial, nonnegative and stationary and denote h0 = supx∈∂Ω h(x) > 0. Let (u,w) be the solution
of the time-dependent problem (1.2) obtained in Theorem 1.1, then the following results hold.

(1) If σh0 < 1, then u > 0 is uniformly persistent, namely there is a constant δ0 > 0
independent of initial data such that lim inf

t→∞
inf
x∈Ω

u ≥ δ0.

(2) If σMh > 1, then (u,w) converges to (0, w∗) uniformly and exponentially as t → ∞,
where Mh := min

x∈Ω̄
w̃∗(x) and 0 < w̃∗(x) ≤ h0 satisfies{

0 = ε∆w̃∗ − (µ+ λM)w̃∗, x ∈ Ω

∇w̃∗ · ν = ξ(h(x)− w̃∗), x ∈ ∂Ω,
(1.8)

and M > 0 is the constant given in Theorem 1.1 and Mh > 0 is independent of σ.

Remark 1.3. Since Mh > 0 is independent of σ, the condition σMh > 1 is non-empty as long
as σ > 0 is large enough. Theorem 1.3(2) implies that, for fixed parameters d, ε, µ, χ, λ,
ambient toxicant density h(x) and initial data, the solution (u,w) will exponentially converge
to (0, w∗) (i.e., the aquatic species will go extinction) provided that the toxicant’s lethality σ is
strong. The global dynamics of system (1.2) with h(x, t) = h(x) 	 0 remains open for the case
1/h0 ≤ σ ≤ 1/Mh.

1.1. Discussion and biological interpretations. In this paper, we analyze a spatiotemporal
population-toxicant model with toxicant-taxis in a bounded domain. In previous work, toxicants
are introduced into the model at a positive rate inside the domain. Here we study the system
under the assumption that the toxicant enters the model only via the boundary, which can
be more realistic in many situations when the domain represents a lake and pollutants are
introduced into the lake due to human activities in surrounding areas. Under the assumption
(H0), we first establish the well-posedness of the time-dependent problem in Theorem 1.1. In
case the ambient toxicant density is independent of time (i.e. h = h(x)), we demonstrate in
Theorem 1.2 the existence of non-constant equilibrium solutions (U(x),W (x)). Furthermore,
we also prove the global attractivity of such nonconstant equilibrium solutions when ‖h‖∞ is
sufficiently small. This means that the long-time dynamics of the system, and particularly the
population level of the organism, can be estimated using the solution to the stationary problem.
Finally, we inquire the situation when ‖h‖∞ is not necessarily small, and obtain a sufficient
condition which says that (i) the organism population persists when ‖h‖∞ is small while (ii) a
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large ambient toxicant density h (in some appropriate sense according to Theorem 1.3) leads to
the extinction of the organism.

Sketch of proof ideas. The inhomogeneous Robin boundary conditions incapacitate the direct
L2-estimate method as in [10] to obtain the global existence of solutions to system (1.2). Instead,
inspired by some ideas in [7, 24], we first use change of variables to reformulate system (1.2)
with homogenized boundary conditions. Then we study the reformulated problem based on
subtle energy estimates and semigroup theory to derive the global boundedness of solutions by
frequently switching between the estimates of the original and changed variables (see Section 2).
To study the global stability of the constant steady state (1, 0), we first use the condition (1.3)
to derive that lim

t→∞
‖w(·, t)‖L∞ = 0. Then we show ‖u(·, t)−1‖L∞ → 0 as t→∞ by constructing

a Lyapunov energy function based on the generalized relative entropy inequality associated with∫
Ω(u − 1 − lnu). To achieve this, we use Harnack’s inequality to show that inf

x∈Ω
u(x, t) has a

positive lower bound for large time, by which we show that the entropy energy
∫

Ω(u− 1− lnu)

is equivalent to the L2-energy
∫

Ω(u− 1)2. With this crucial finding, we employ the dissipation
of Lyapunov energy function to show that lim

t→∞
‖u(·, t)−1‖L2 = 0. By deriving the boundedness

of ‖u‖Cθ for t > 1, we finally obtain that u→ 1 uniformly as t→∞ and complete the proof of
Theorem 1.1.

The existence of non-constant positive solutions determined by (1.4) was proved in virtue of
Schauder’s fixed point theorem. To this end, we first transfer the no-flux boundary condition
of U into the homogeneous Neumann boundary condition and split the system (1.4) into two
subsystems to construct a solution map. Based on suitable estimates for the solutions of two
subsystems, we show that this solution map is continuous and relatively compact and hence
yields a fixed point by the Schauder fixed point theorem. With the method of energy estimates,
we further prove the solution of (1.4) is unique and globally asymptotically stable if h0 > 0 is
small, which proves Theorem 1.2.

To show the persistence result asserted in Theorem 1.3-(1), we derive an inequality

d

dt

∫
Ω
u =

∫
Ω
u(1− u− σw) ≥ δ

∫
Ω
u,

form some small constant δ > 0 under the condition σh0 < 1. Then the persistence is obtained
by repeatedly using Harnack’s inequality. To study the global asymptotic stability of toxicant-
only state (0, w∗) with large σ, the key is to show that inf

x∈Ω
w(x, t) has a positive lower bound

independent of σ as time is large. In fact, using the comparison principle and energy estimates,
we find σ inf

x∈Ω
w(x, t) ≥ σMh−1

2 for large time and hence

d

dt

∫
Ω
u =

∫
Ω
u(1− u− σw) ≤ 1− σMh

2

∫
Ω
u, (1.9)

which implies ‖u(·, t)‖L1 → 0 exponentially t→∞ if σMh > 1. Then ‖u(·, t)‖L∞ → 0 as t→∞
follows by the interpolation inequality and boundedness of ‖u(·, t)‖Cθ for t > 1. Finally using
the energy estimates, we derive ‖w(·, t)−w∗‖L∞ → 0 exponentially as t→∞, which completes
the proof of Theorem 1.3-(2).

The rest of this paper is arranged as follows. In Section 2, we reformulate the problem
(1.2) into a problem with homogenous Neumann boundary conditions and establish the global
boundedness of solutions (i.e. Theorem 1.1) by the delicate bootstrap argument. The existence
and stability of non-constant steady states asserted in Theorem 1.2 are proved in Section 3.
Finally, we prove Theorem 1.3 in Section 4.

2. Boundedness and Stabilization: Proof of Theorem 1.1

In this section, we shall prove the global boundedness of solutions to the system (1.2), which
consists of the local existence of solutions and the global a priori estimate of solutions. To
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this end, we first homogenize the boundary conditions by introducing some transformations
and establish the local existence of solution for the transformed system, from which the local
existence of solution for the original system (1.2) follows.

2.1. Reformulation of the problem with homogenized boundary conditions. To prove
the boundedness of solutions, we first introduce a transformation to homogenize the boundary
conditions. Noting the assumptions on h(x, t) in (H0), and using [24, Theorem 9.4 in Chap. 1],
we can find some bounded functions g1 ∈ C∞(Ω̄) and g2 ∈ C∞(Ω̄× [0,∞)) satisfying

‖g1‖L∞ + ‖∇g1‖L∞ + ‖∆g1‖L∞ ≤ γ1 in Ω, (2.1)

and
‖g2‖L∞ + ‖∇g2‖L∞ + ‖∆g2‖L∞ + ‖g2t‖L∞ ≤ γ2 in Ω× (0,∞), (2.2)

with some positive constants γi(i = 1, 2) such that ν · ∇g1(x) = ξ on ∂Ω and

g2(x, t) = h(x, t) and ∇g2 · ν = 0, on ∂Ω× (0,∞).

Motivated by an idea of [7], we introduce the following transformation

ũ = ue
χ
d
w and w̃ = eg1(g2 − w), (2.3)

and then using the facts (d∇u+ χu∇w) · ν = 0 and ∇w · ν = ξ(h− w) on ∂Ω, we have

∇ũ · ν = ∇w̃ · ν = 0, on ∂Ω× (0,∞). (2.4)

Using the transformation (2.3), we have

ũt =e
χ
d
wut +

χ

d
ue

χ
d
wwt =: I1 + I2. (2.5)

On the other hand, with some simple calculations, we have

d∇u+ χu∇w = de−
χ
d
w∇ũ,

which implies that

d∆u+∇ · (χu∇w) = de−
χ
d
w∆ũ− χe−

χ
d
w∇w · ∇ũ.

Then we can rewrite I1 as follows

I1 = e
χ
d
wut =e

χ
d
w[d∆u+∇ · (χu∇w)] + e

χ
d
wu(1− u)− σe

χ
d
wuw

=d∆ũ− χ∇w · ∇ũ+ ũ(1− e−
χ
d
wũ)− σũw.

(2.6)

Similarly, we can rewrite I2 as follows:

I2 =
χ

d
ue

χ
d
wwt =

χ

d
ue

χ
d
w[ε∆w − µw − λuw]

=
χε

d
∇ · (ũ∇w)− χε

d
∇w · ∇ũ− χµ

d
ũw − χλ

d
e−

χ
d
wwũ2.

(2.7)

Substituting (2.6) and (2.7) into (2.5), and using the fact w = g2 − e−g1w̃ =: γ(w̃), we obtain
ũt = d∆ũ+ χε

d ∇ · [ũ∇γ(w̃)]− χ(ε+d)
d ∇γ(w̃) · ∇ũ+ F1(ũ, w̃), x ∈ Ω, t > 0,

w̃t = ε∆w̃ − µw̃ − 2ε∇g1 · ∇w̃ + F2(ũ, w̃), x ∈ Ω, t > 0,
∂ũ
∂ν = ∂w̃

∂ν = 0, x ∈ ∂Ω, t > 0,

ũ(x, 0) = ũ0(x), w̃(x, 0) = w̃0(x), x ∈ Ω,

(2.8)

where

F1(ũ, w̃) = ũ− χµ+ dσ

d
ũγ(w̃)−

(
1 +

χλ

d
γ(w̃)

)
e−

χ
d
γ(w̃)ũ2

and
F2(ũ, w̃) = ε(|∇g1|2 −∆g1)w̃ + eg1 [g2t − ε∆g2 + µg2 + λe−

χ
d
γ(w̃)ũγ(w̃)],

as well as
ũ0 = u0e

χ
d
w0 and w̃0 = eg1(g2(·, 0)− w0).
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Then for the transformed system (2.8), we can invoke the semigroup estimates method as in
[7, Proposition 2.6] to establish the local existence of classical solutions with the fixed-point
theorem. We skip the proof details for brevity and state the local existence result for the
original system (1.2) as follows.

Lemma 2.1 (Local existence). Let Ω ⊂ R2 be a bounded domain with smooth boundary and
the hypotheses (H0) hold. Assume (u0, w0) ∈ [W 1,∞(Ω)]2 with u0, w0 	 0. Then there exists
Tmax > 0 such that the problem (1.2) has a unique classical solution (u,w) ∈ [C0([0, Tmax) ×
Ω̄) ∩ C2,1((0, Tmax)× Ω̄)]2 satisfying u,w > 0 for all t > 0. Moreover

if Tmax <∞, then ‖u(·, t)‖L∞ + ‖w(·, t)‖W 1,∞ →∞ as t↗ Tmax.

Moreover, we can show the solution (u,w) of (1.2) has the following basic estimates.

Lemma 2.2. Let (u,w) be the solution of (1.2) obtained in Lemma 2.1. Then for all t ∈
(0, Tmax), it holds that

‖u(·, t)‖L1 ≤M0 :=

∫
Ω
u0 + |Ω|, (2.9)

and

‖w(·, t)‖L∞ ≤M1 := max
{
‖w0‖L∞ , ‖h(x, t)‖L∞(∂Ω×(0,∞))

}
. (2.10)

Proof. Integrating the first equation of (1.2) by parts, we have

d

dt

∫
Ω
u+

∫
Ω
u = 2

∫
Ω
u−

∫
Ω
u2 − σ

∫
Ω
uw = −

∫
Ω

(u− 1)2 − σ
∫

Ω
uw + |Ω| ≤ |Ω|,

which gives (2.9) by Grönwall’s inequality. Moreover, (2.10) follows directly from the comparison
principle. �

Below, we recall two basic results.

Lemma 2.3 ([26]). Let Ω ⊂ R2 be a bounded domain with smooth boundary and u ∈ W 1,2(Ω).
Then for any ε > 0, there exists a constant Cε > 0 such that

‖u‖3L3 ≤ ε‖∇u‖2L2‖u ln |u|‖L1 + Cε(‖u‖2L1‖u ln |u|‖L1 + ‖u‖L1).

Lemma 2.4 ([37]). Let y(t) ∈ C1([0,∞)) and g(t) ∈ C0([0,∞)) be nonnegative functions
satisfying

y(t) ≤ y(0)e−Λt +

∫ t

0
e−Λ(t−s)g(s)ds, for all t > 0,

with some Λ > 0. Then if g(t) is bounded on [0,∞) and satisfies∫ t+1

t
g(s)ds→ 0 as t→∞,

we have
y(t)→ 0 as t→∞.

2.2. A priori estimates. In this subsection, we derive some a priori estimates of solutions based
on the coupled energy estimate method. Noting the no-flux boundary condition on u and the
fact ‖w(·, t)‖W 1,∞ ≤ c1‖w̃(·, t)‖W 1,∞ + c2, we are motivated to establish the a priori estimates
of solutions for the following system:

ut = d∆u+ χ∇ · (u∇w) + u(1− u)− σuw, x ∈ Ω, t > 0,

w̃t = ε∆w̃ − µw̃ − 2ε∇g1 · ∇w̃ + F3(u, w̃), x ∈ Ω, t > 0,

(d∇u+ χu∇w) · ν = 0, ∇w̃ · ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), w̃(x, 0) = w̃0(x) = eg1(g2(·, 0)− w0), x ∈ Ω,

(2.11)

with w̃ = eg1(g2 − w) and

F3(u, w̃) = ε(|∇g1|2 −∆g1)w̃ + eg1(g2t − ε∆g2 + µg2 + λuw). (2.12)
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Lemma 2.5. Let (u, w̃) be the solution of (2.11). Then it holds that

d

dt

∫
Ω
u lnu ≤ K1

∫
Ω
|∇w̃|4 −

∫
Ω
u2 lnu+

∫
Ω
u lnu+K2, (2.13)

where K1 and K2 are positive constants independent of t and σ.

Proof. Multiplying the first equation of (2.11) by lnu+ 1 and integrating the resulting equation
by parts, along with the fact −u lnu ≤ 1

e for all u ≥ 0, and Young’s inequality

−χ
∫

Ω
∇w · ∇u ≤ d

∫
Ω

|∇u|2

u
+
χ2

4d

∫
Ω
u|∇w|2,

we derive

d

dt

∫
Ω
u lnu =− d

∫
Ω

|∇u|2

u
− χ

∫
Ω
∇w · ∇u−

∫
Ω

(lnu+ 1)u2

+

∫
Ω

(lnu+ 1)u− σ
∫

Ω
u(lnu+ 1)w

≤χ
2

4d

∫
Ω
u|∇w|2 −

∫
Ω

(lnu+ 1)u2 +

∫
Ω
u lnu+

∫
Ω
u+

σ

e

∫
Ω
w

which, together with facts
∫

Ω u ≤M0 in (2.9) and ‖w(·, t)‖L∞ ≤M1 in (2.10), gives

d

dt

∫
Ω
u lnu ≤ χ2

4d

∫
Ω
u|∇w|2 −

∫
Ω
u2 lnu−

∫
Ω
u2 +

∫
Ω
u lnu+ c1, (2.14)

where c1 := M0 + σM1|Ω|
e . Using Young’s inequality, one has

χ2

4d

∫
Ω
u|∇w|2 ≤

∫
Ω
u2 +

χ4

64d2

∫
Ω
|∇w|4. (2.15)

Substituting (2.15) into (2.14) gives

d

dt

∫
Ω
u lnu ≤ χ4

64d2

∫
Ω
|∇w|4 −

∫
Ω
u2 lnu+

∫
Ω
u lnu+ c1. (2.16)

Using (2.1), (2.2) and noting ‖w(·, t)‖L∞ ≤M1, one can derive that

‖w̃(·, t)‖L∞ = ‖eg1(g2 − w)‖L∞ ≤ ‖eg1‖L∞(‖g2‖L∞ + ‖w‖L∞) ≤ eγ1(γ2 +M1) =: γ3, (2.17)

and hence

|∇w| = |∇g2 − e−g1∇w̃ + w̃e−g1∇g1| ≤ |∇g2|+ e|g1||∇w̃|+ e|g1||∇g1||w̃|
≤ eγ1 |∇w̃|+ γ2 + γ1γ3e

γ1 ,
(2.18)

which gives

χ4

64d2

∫
Ω
|∇w|4 ≤ χ4

64d2

∫
Ω

[eγ1 |∇w̃|+ γ2 + γ1e
γ1 ]4

≤ χ4e4γ1

d2

∫
Ω
|∇w̃|4 +

χ4(γ2 + γ1γ3e
γ1)4|Ω|

d2
,

which substituted into (2.16) gives (2.13) and thus completes the proof of Lemma 2.5. �

Lemma 2.6. There are some positive constants K3,K4 and K5 independent of t and σ such
that the solution of (2.11) satisfies

d

dt

∫
Ω
|∇w̃|2 + 2µ

∫
Ω
|∇w̃|2 +K3

∫
Ω
|∇w̃|4 ≤ K4

∫
Ω
u2 +K5. (2.19)
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Proof. Integrating the second equation of (2.11) multiplied by −∆w̃ and using the homogeneous
Neumann boundary condition ∇w̃ · ν = 0 on ∂Ω, we find that

1

2

d

dt

∫
Ω
|∇w̃|2 + ε

∫
Ω
|∆w̃|2 + µ

∫
Ω
|∇w̃|2 = 2ε

∫
Ω
∇w̃ · ∇g1∆w̃ −

∫
Ω
F3(u, w̃)∆w̃. (2.20)

With (2.1) and Young’s inequality, we have

2ε

∫
Ω
∇w̃ · ∇g1∆w̃ ≤ ε

4

∫
Ω
|∆w̃|2 + 4ε

∫
Ω
|∇g1|2|∇w̃|2 ≤

ε

4

∫
Ω
|∆w̃|2 + 4εγ2

1

∫
Ω
|∇w̃|2. (2.21)

Using the definition of F3(u, w̃) in (2.12), and the estimates in (2.1), (2.2) and (2.17), one has

|F3(u, w̃)| ≤ε(|∇g1|2 + |∆g1|)|w̃|+ e|g1|(|g2t|+ ε|∆g2|+ µ|g2|+ λuw)

≤ε(γ1 + 1)γ1γ3 + eγ1(γ2 + εγ2 + µγ2 + λM1u)

≤γ4(1 + u),

(2.22)

with γ4 := ε(γ1 + 1)γ1γ3 + eγ1(γ2 + εγ2 + µγ2 + λM1). Then using Young’s inequality, one can
derive that

−
∫

Ω
F3(u, w̃)∆w̃ ≤

∫
Ω
|F3(u, w̃)||∆w̃| ≤ γ4

∫
Ω

(1 + u)|∆w̃|

≤ ε

4

∫
Ω
|∆w̃|2 +

2γ2
4

ε

∫
Ω
u2 +

2γ2
4

ε
|Ω|.

(2.23)

Then substituting (2.21) and (2.23) into (2.20), we obtain

d

dt

∫
Ω
|∇w̃|2 + ε

∫
Ω
|∆w̃|2 + 2µ

∫
Ω
|∇w̃|2 ≤ 8εγ2

1

∫
Ω
|∇w̃|2 +

4γ2
4

ε

∫
Ω
u2 +

4γ2
4

ε
|Ω|. (2.24)

Using the Gagliardo-Nirenberg inequality and the fact ‖w̃(·, t)‖L∞ ≤ γ3 in (2.17) again, we have∫
Ω
|∇w̃|4 = ‖∇w̃‖4L4 ≤ c2(‖∆w̃‖2L2‖w̃‖2L∞ + ‖w̃‖4L∞) ≤ c2γ

2
3‖∆w̃‖2L2 + c2γ

4
3 ,

which gives

ε

∫
Ω
|∆w̃|2 ≥ ε

c2γ2
3

∫
Ω
|∇w̃|4 − εγ2

3 . (2.25)

Substituting (2.25) into (2.24), alongside Young’s inequality, one has

d

dt

∫
Ω
|∇w̃|2 + 2µ

∫
Ω
|∇w̃|2 +

ε

c2γ2
3

∫
Ω
|∇w̃|4

≤ 8εγ2
1

∫
Ω
|∇w̃|2 +

4γ2
4

ε

∫
Ω
u2 +

4γ2
4

ε
|Ω|+ εγ2

3

≤ ε

2c2γ2
3

∫
Ω
|∇w̃|4 +

4γ2
4

ε

∫
Ω
u2 + 32εc2γ

4
1γ

2
3 |Ω|+

4γ2
4

ε
|Ω|+ εγ2

3 ,

which gives (2.19). Then we complete the proof of Lemma 2.6. �

Lemma 2.7. Let (u, w̃) be a solution of (2.11). Then we have

‖u lnu‖L1 + ‖∇w̃‖L2 ≤ K6, (2.26)

where K6 > 0 is a constant independent of t and σ.

Proof. Multiplying (2.19) by K1
K3

, and combining it with (2.13), we obtain

d

dt

(∫
Ω
u lnu+

K1

K3

∫
Ω
|∇w̃|2

)
+ 2µ

(∫
Ω
u lnu+

K1

K3

∫
Ω
|∇w̃|2

)
≤
∫

Ω

(
−u2 lnu+

K1K4

K3
u2 + (1 + 2µ)u lnu

)
+K2 +

K1K5

K3
.

(2.27)
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Define F(u) := −u2 lnu+ K1K4
K3

u2 +(1 + 2µ)u lnu. Then F(u) is a continuous function in [0,∞)
such that

lim
u→0
F(u) = 0 and lim

u→∞
F(u) = −∞,

which implies that there exists a constant c1 > 0 such that∫
Ω

(
−u2 lnu+

K4K1

K3
u2 + (1 + 2µ)u lnu

)
=

∫
Ω
F(u) ≤ c1. (2.28)

Substituting (2.28) into (2.27) and letting c2 := c1 +K2 + K1K5
K3

, we have

d

dt

(∫
Ω
u lnu+

K1

K3

∫
Ω
|∇w̃|2

)
+ 2µ

(∫
Ω
u lnu+

K1

K3

∫
Ω
|∇w̃|2

)
≤ c2,

which, together with Grönwall’s inequality, gives∫
Ω
u lnu+

K1

K3

∫
Ω
|∇w̃|2 ≤ c3. (2.29)

From (2.29), one derives ∫
Ω
|∇w̃|2 ≤ K3c3

K1
. (2.30)

Noting the fact −u lnu ≤ 1
e for all u ≥ 0, from (2.29) we have

∫
Ω u lnu ≤ c3 and hence∫

Ω
|u lnu| =

∫
Ω

∣∣∣u lnu+
1

e
− 1

e

∣∣∣ ≤ ∫
Ω

(
u lnu+

1

e

)
+

∫
Ω

1

e
≤ c3 +

2|Ω|
e
. (2.31)

Then the combination of (2.30) and (2.31) gives (2.26). The proof of Lemma 2.7 is finished. �

Next, we shall use the coupled energy estimate method to establish the boundedness of
‖u(·, t)‖L2 . To this end, we first show the following results.

Lemma 2.8. Let (u, w̃) be a solution of (2.11). Then it holds that

d

dt

∫
Ω
u2 +

∫
Ω
u2 + d

∫
Ω
|∇u|2 ≤ K7

∫
Ω
u2|∇w̃|2 +K7, (2.32)

where K7 > 0 is a constant independent of t and σ.

Proof. Multiplying the first equation of (2.11) by 2u, integrating the result with respect to x
over Ω, one has

d

dt

∫
Ω
u2 + 2d

∫
Ω
|∇u|2 = −2χ

∫
Ω
u∇u · ∇w + 2

∫
Ω
u2(1− u)− 2σ

∫
Ω
u2w

≤ d
∫

Ω
|∇u|2 +

χ2

d

∫
Ω
u2|∇w|2 + 2

∫
Ω
u2 − 2

∫
Ω
u3.

(2.33)

Using (2.18), we can derive that

χ2

d

∫
Ω
u2|∇w|2 ≤ χ2

d

∫
Ω
u2[eγ1 |∇w̃|+ γ2 + γ1γ3e

γ1 ]2

≤ 2χ2e2γ1

d

∫
Ω
u2|∇w̃|2 +

2χ2(γ2 + γ1γ3e
γ1)2

d

∫
Ω
u2.

(2.34)

Substituting (2.34) into (2.33), we can find a constant c1 := 2χ2(γ2+γ1γ3eγ1 )2+2d
d such that

d

dt

∫
Ω
u2 + d

∫
Ω
|∇u|2 + 2

∫
Ω
u3 ≤ 2χ2e2γ1

d

∫
Ω
u2|∇w̃|2 + c1

∫
Ω
u2. (2.35)

Using the Young’s inequality, we have

(c1 + 1)

∫
Ω
u2 ≤ 2

∫
Ω
u3 + c2,
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which, substituted into (2.35), gives

d

dt

∫
Ω
u2 +

∫
Ω
u2 + d

∫
Ω
|∇u|2 ≤ 2χ2e2γ1

d

∫
Ω
u2|∇w̃|2 + c2,

which yields (2.32). �

Lemma 2.9. Let (u, w̃) be a solution of (2.11). Then there exists a constant K8 > 0 independent
of t and σ such that

d

dt

∫
Ω
|∇w̃|4 +

∫
Ω
|∇w̃|4 + ε

∫
Ω
|∇|∇w̃|2|2 + ε

∫
Ω
|∇w̃|2|D2w̃|2 ≤ K8

∫
Ω
u2|∇w̃|2 +K8. (2.36)

Proof. From the second equation of (2.11), we have

(|∇w̃|2)t = 2ε∇w̃ · ∇∆w̃ − 2µ|∇w̃|2 − 4ε∇w̃ · ∇(∇g1 · ∇w) + 2∇w̃ · ∇F2(u, w̃)

= ε∆|∇w̃|2 − 2ε|D2w̃|2 − 2µ|∇w̃|2 − 4ε∇w̃ · ∇(∇g1 · ∇w) + 2∇w̃ · ∇F3(u, w̃),
(2.37)

where we have used the identity 2∇w̃ · ∇∆w̃ = ∆|∇w̃|2 − 2|D2w̃|2. Then multiplying (2.37) by
2|∇w̃|2 and integrating the results by parts along with the boundary conditions, we have

d

dt

∫
Ω
|∇w̃|4 + 4µ

∫
Ω
|∇w̃|4 + 2ε

∫
Ω
|∇|∇w̃|2|2 + 4ε

∫
Ω
|∇w̃|2|D2w̃|2

= 2ε

∫
∂Ω
|∇w̃|2∂|∇w̃|

2

∂ν
dS − 4ε

∫
Ω
|∇w̃|2∇w̃ · ∇(∇g1 · ∇w̃)

+ 4

∫
Ω
|∇w̃|2∇w̃ · ∇F3(u, w̃)

= 2ε

∫
∂Ω
|∇w̃|2∂|∇w̃|

2

∂ν
dS − 4ε

∫
Ω

∆w̃|∇w̃|2∇w̃ · ∇g1 − 4ε

∫
Ω

∆g1|∇w̃|4

− 4

∫
Ω

(∇|∇w̃|2 · ∇w̃)F3(u, w̃)− 4

∫
Ω

∆w̃|∇w̃|2F3(u, w̃).

(2.38)

Noting the fact ∇w̃ · ν|∂Ω = 0, from [25, Lemma 4.2], we have ∂|∇w̃|2
∂ν ≤ CΩ|∇w̃|2 on ∂Ω, for

some constant CΩ > 0, which, combined with the following trace inequality [29, Remark 52.7]

‖f‖L2(∂Ω) ≤ δ‖∇f‖L2(Ω) + cδ‖f‖L2(Ω), for some constant δ > 0

enables us to estimate the first term on the right hand of (2.38) as follows:

2ε

∫
∂Ω
|∇w̃|2∂|∇w̃|

2

∂ν
dS ≤ 2εCΩ‖|∇w̃|2‖2L2(∂Ω) ≤

ε

3

∫
Ω
|∇|∇w̃|2|2 + c1

∫
Ω
|∇w̃|4. (2.39)

Moreover, we can use Young’s inequality, (2.1) and the fact |∆w̃| ≤
√

2|D2w̃| to derive

−4ε

∫
Ω

∆w̃|∇w̃|2∇w̃ · ∇g1 ≤ 4
√

2εγ1

∫
Ω
|D2w̃||∇w̃|3

≤ ε
∫

Ω
|D2w̃|2|∇w̃|2 + 8εγ2

1

∫
Ω
|∇w̃|4

(2.40)

and

−4ε

∫
Ω

∆g1|∇w̃|4 ≤ 4ε‖∆g1‖L∞
∫

Ω
|∇w̃|4 ≤ 4εγ1

∫
Ω
|∇w̃|4. (2.41)
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Using (2.22) and Young’s inequality again, one has

− 4

∫
Ω
∇|∇w̃|2 · ∇w̃F3(u, w̃)− 4

∫
Ω

∆w̃|∇w̃|2F3(u, w̃)

≤ 4γ4

∫
Ω
|∇|∇w̃|2||∇w̃|(1 + u) + 4

√
2γ4

∫
Ω
|D2w̃||∇w̃|2(1 + u)

≤ ε

3

∫
Ω
|∇|∇w̃|2|2 + ε

∫
Ω
|D2w̃|2|∇w̃|2 +

20γ2
4

ε

∫
Ω
|∇w̃|2(1 + u)2

≤ ε

3

∫
Ω
|∇|∇w̃|2|2 + ε

∫
Ω
|D2w̃|2|∇w̃|2 +

40γ2
4

ε

∫
Ω
|∇w̃|2 +

40γ2
4

ε

∫
Ω
u2|∇w̃|2

≤ ε

3

∫
Ω
|∇|∇w̃|2|2 + ε

∫
Ω
|D2w̃|2|∇w̃|2 + 4µ

∫
Ω
|∇w̃|4 +

40γ2
4

ε

∫
Ω
u2|∇w̃|2 +

10γ4
4 |Ω|
µε2

.

(2.42)

Then substituting (2.39), (2.40), (2.41) and (2.42) into (2.38), it follows that

d

dt

∫
Ω
|∇w̃|4 +

∫
Ω
|∇w̃|4 +

4ε

3

∫
Ω
|∇|∇w̃|2|2 + 2ε

∫
Ω
|∇w̃|2|D2w̃|2

≤ (1 + c1 + 8εγ2
1 + 4εγ1)

∫
Ω
|∇w̃|4 +

40γ2
4

ε

∫
Ω
u2|∇w̃|2 +

10γ4
4 |Ω|
µε2

.

(2.43)

Using the Gagliardo-Nirenberg inequality along with the fact ‖|∇w̃|2‖L1 = ‖∇w̃‖2L2 ≤ K2
6 from

(2.26), we have

(1 + c1 + 8εγ2
1 + 4εγ1)

∫
Ω
|∇w̃|4 = (1 + c1 + 8εγ2

1 + 4εγ1)‖|∇w̃|2‖2L2

≤ c2‖∇|∇w̃|2‖L2‖|∇w̃|2‖L1 + c2‖|∇w̃|2‖2L1

≤ ε

3

∫
Ω
|∇|∇w̃|2|2 + c3.

(2.44)

Substituting (2.44) into (2.43), we obtain (2.36) directly. The proof of Lemma 2.9 is complete.
�

Lemma 2.10. Suppose (u, w̃) is a solution of (2.11). Then it holds that

‖u(·, t)‖L2 + ‖∇w̃(·, t)‖L4 ≤ K9, (2.45)

where K9 > 0 is a constant indenpendent of t and σ.

Proof. Combining (2.32) and (2.36), we can find two positive constants c1 and c2 such that

d

dt

∫
Ω

(
u2 + |∇w̃|4

)
+

∫
Ω

(
u2 + |∇w̃|4

)
+ d

∫
Ω
|∇u|2

+ ε

∫
Ω
|∇|∇w̃|2|2 + ε

∫
Ω
|∇w̃|2|D2w̃|2 ≤ c1

∫
Ω
u2|∇w̃|2 + c2.

(2.46)

Using the Hölder inequality and Young’s inequality, one can find a positive constant κ1 small
enough (which will be chosen later) such that

c1

∫
Ω
u2|∇w̃|2 ≤ c1‖u‖2L3‖∇w̃‖2L6 ≤ κ1‖∇w̃‖6L6 + c3‖u‖3L3 . (2.47)

Noting the facts ‖u lnu‖L1 ≤ K6 and ‖u‖L1 ≤M0, and using Lemma 2.3, one has

c3‖u‖3L3 ≤ d‖∇u‖2L2 + c4. (2.48)

Then substituting (2.47) and (2.48) into (2.46), it holds that

d

dt

∫
Ω

(
u2 + |∇w̃|4

)
+

∫
Ω

(
u2 + |∇w̃|4

)
+ ε

∫
Ω
|∇|∇w̃|2|2 + ε

∫
Ω
|∇w̃|2|D2w̃|2

≤ κ1

∫
Ω
|∇w̃|6 + c2 + c4.

(2.49)
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Using the Gagliardo-Nirenberg inequality and the fact ‖∇w̃‖L2 ≤ K6 in (2.26), we obtain∫
Ω
|∇w̃|6 = ‖|∇w|2‖3L3 ≤ c5

(
‖∇|∇w̃|2‖2L2‖|∇w|2‖L1 + ‖|∇w̃|2‖3L1

)
≤ c5K

2
6‖∇|∇w̃|2‖2L2 + c5K

6
6 .

(2.50)

Substituting (2.50) into (2.49), and choosing κ1 = ε
c5K2

6
, we can derive that

d

dt

∫
Ω

(
u2 + |∇w̃|4

)
+

∫
Ω

(
u2 + |∇w̃|4

)
≤ c6,

which gives (2.45) directly by using Grönwall’s inequality. Then we complete the proof of Lemma
2.10. �

Lemma 2.11. Let (u, w̃) be a solution of the system (2.11). Then we can find a positive constant
K10 independent of t and σ such that

‖u(·, t)‖L4 ≤ K10. (2.51)

Proof. We multiply the first equation of (2.11) with u3 and integrate it by part over Ω to have

1

4

d

dt

∫
Ω
u4 = −3d

∫
Ω
u2|∇u|2 − 3χ

∫
Ω
u3∇u · ∇w +

∫
Ω
u4 −

∫
Ω
u5 − σ

∫
Ω
u4w

≤− d
∫

Ω
u2|∇u|2 +

9χ2

8d

∫
Ω
u4|∇w|2 +

∫
Ω
u4 −

∫
Ω
u5,

which, together with the fact |∇w| ≤ eγ1 |∇w̃|+ γ2 + γ1γ3e
γ1 in (2.18), gives

d

dt

∫
Ω
u4 +

∫
Ω
u4 + d

∫
Ω
|∇u2|2 ≤9χ2

2d

∫
Ω
u4|∇w|2 + 5

∫
Ω
u4 − 4

∫
Ω
u5

≤c1

∫
Ω
u4|∇w̃|2 + c2

∫
Ω
u4 − 4

∫
Ω
u5,

(2.52)

where c1 := 9χ2e2γ1

d and c2 := 9χ2(γ2+γ1γ3eγ1 )2+5d
d . From (2.45), we have ‖u2‖L1 = ‖u‖2L2 ≤ K2

9

and ‖∇w̃‖L4 ≤ K9. Then using the Gagliardo-Nirenberg inequality and Young’s inequality, we
can derive that

c1

∫
Ω
u4|∇w̃|2 ≤ c1

(∫
Ω
u8

) 1
2
(∫

Ω
|∇w̃|4

) 1
2

≤ c3

(
‖∇u2‖

3
2

L2‖u2‖
1
2

L1 + ‖u2‖2L1

)
‖∇w̃‖2L4

≤ c3K
3
9‖∇u2‖

3
2

L2 + c3K
6
9

≤ d‖∇u2‖2L2 + c4.

(2.53)

Again, using Young’s inequality, we have

c2

∫
Ω
u4 ≤ 4

∫
Ω
u5 + c5. (2.54)

Substituting (2.53) and (2.54) into (2.52), we have

d

dt

∫
Ω
u4 +

∫
Ω
u4 ≤ c4 + c5,

which together with Grönwall’s inequality gives (2.51). Then the proof of Lemma 2.11 is finished.
�

Lemma 2.12. The solution (u, w̃) of (2.11) satisfies

‖∇w̃(·, t)‖L∞ ≤ K11, (2.55)

where K11 > 0 is a constant independent of t and σ.
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Proof. Applying the variation-of-constants formula to the second equation of (2.11), we have

w̃(·, t) = e(ε∆−µ)tw̃0 − 2ε

∫ t

0
e(ε∆−µ)(t−s)∇g1 · ∇w̃ +

∫ t

0
e(ε∆−µ)(t−s)F3(u, w̃),

which gives

∇w̃(·, t) = ∇e(ε∆−µ)tw̃0 − 2ε

∫ t

0
∇e(ε∆−µ)(t−s)∇g1 · ∇w̃ +

∫ t

0
∇e(ε∆−µ)(t−s)F3(u, w̃). (2.56)

Applying the well-known semigroup estimate with homogeneous Neumann boundary conditions
to (2.56), we can derive that

‖∇w̃(·, t)‖L∞ ≤‖∇e(ε∆−µ)tw̃0‖L∞ + 2ε

∫ t

0
‖∇e(ε∆−µ)(t−s)∇g1 · ∇w̃‖L∞

+

∫ t

0
‖∇e(ε∆−µ)(t−s)F3(u, w̃)‖L∞

≤c1‖∇w̃0‖L∞ + 2εc1

∫ t

0
(1 + t−

3
4 )e−(ελ1+µ)(t−s)‖∇g1 · ∇w̃‖L4

+ c1

∫ t

0
(1 + t−

3
4 )e−(ελ1+µ)(t−s)‖F3(u, w̃)‖L4 ,

(2.57)

where λ1 is the first nonzero eigenvalue of −∆ with homogeneous Neumann boundary condition.
Using (2.1) and (2.45), we have

‖∇g1 · ∇w̃‖L4 ≤ γ1‖∇w̃‖L4 ≤ γ1K9. (2.58)

On the other hand, from (2.22) and (2.51), one can derive that

‖F3(u, w̃)‖L4 ≤ γ4‖1 + u‖L4 ≤ c2. (2.59)

Substituting (2.58) and (2.59) into (2.57), and using the fact
∫∞

0 (1 + t−
3
4 )e−(ελ1+µ)(t−s) < ∞,

we have

‖∇w̃(·, t)‖L∞ ≤c1‖∇w̃0‖L∞ + c1(2εγ1K9 + c2)

∫ ∞
0

(1 + t−
3
4 )e−(ελ1+µ)(t−s) ≤ c3,

which gives (2.55). �

Proof of Theorem 1.1 (global existence). From Lemma 2.12, we have ‖∇w̃(·, t)‖L∞ ≤ c1,
which together with the fact w = g2 − e−g1w̃ gives

‖∇w(·, t)‖L∞ = ‖∇g2 − e−g1∇w̃ + w̃e−g1∇g1‖L∞ ≤ γ2 + γ1γ3e
γ1 + eγ1‖∇w̃‖L∞

≤ γ2 + γ1γ3e
γ1 + eγ1c1.

(2.60)

With (2.60) and the Moser iteration (cf. see [17, Lemma 1]), from the first equation of (1.2),
we can derive the boundedness of ‖u(·, t)‖L∞ . Then the existence of global classical solutions
follows from the extensibility criterion in Lemma 2.1. �

2.3. Global stabilization. In this subsection, we show that if h(x, t) satisfies (1.3), then every
solution (u,w) of (1.2) converges to (1, 0) uniformly in Ω̄ as t→∞. Before embarking on this,
we first improve the regularity of u and w by the standard parabolic regularity theorem.

Lemma 2.13. Let (u,w) be the nonnegative global classical solution of (1.2) obtained in Theorem
1.1. Then there exist θ ∈ (0, 1) and C > 0 such that

‖u‖
Cθ,

θ
2 (Ω̄×[t,t+1])

≤ C for all t ≥ 1 (2.61)

and

‖w‖
C2+θ,1+ θ

2 (Ω̄×[t,t+1])
≤ C for all t ≥ 1. (2.62)
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Proof. We can rewrite the first equation of (1.2) as follows

ut = ∇ ·A(x, t, u,∇u) +B(x, t, u)

with

A(x, t, u,∇u) = d∇u+ χu∇w, B(x, t, u) = u(1− u)− σuw.
From the boundedness results obtained in Theorem 1.1, we know that there exist two positive
constants c1 and c2 such that ‖u(·, t)‖L∞ ≤ c1 and ‖w(·, t)‖W 1,∞ ≤ c2. Then we can check that

A(x, t, u,∇u) · ∇u = (d∇u+ χu∇w) · ∇u
≥ d|∇u|2 − χu|∇u||∇w|

≥ d

2
|∇u|2 − χ2

2d
u2|∇w|2

≥ d

2
|∇u|2 − χ2c2

1c
2
2

2d

(2.63)

and

|A(x, t, u,∇u)| = |d∇u+ χu∇w| ≤ d|∇u|+ χ|u||∇w| ≤ d|∇u|+ c1c2χ, (2.64)

as well as

|B(x, t, u)| = |u(1− u)− σuw| ≤ c1(1 + c1 + σc2). (2.65)

Then applying [28, Theorem 1.3] and using (2.63)-(2.65), we obtain (2.61). Moreover, we can
use the standard parabolic regularity with (2.61) to derive (2.62) directly. �

Then we have the following results on the global convergence of w.

Lemma 2.14. Let (u,w) be the solution obtained in Theorem 1.1, and assume (1.3) holds.
Then it follows that

lim
t→∞
‖w(·, t)‖L∞ = 0. (2.66)

Proof. We integrate the second equation of (1.2) alongside boundary condition ∇w · ν + ξw =
ξh(x, t) to have

d

dt

∫
Ω
w = ε

∫
Ω

∆w − µ
∫

Ω
w − λ

∫
Ω
uw

= −εξ
∫
∂Ω
w + εξ

∫
∂Ω
h(x, t)− µ

∫
Ω
w − λ

∫
Ω
uw,

which gives
d

dt

∫
Ω
w + µ

∫
Ω
w ≤ εξ

∫
∂Ω
h(x, t) = εξ‖h(·, t)‖L1(∂Ω),

and hence ∫
Ω
w ≤ e−µt

∫
Ω
w0 + εξ

∫ t

0
e−µ(t−s)‖h(·, t)‖L1(∂Ω)ds. (2.67)

Then with (1.3), and applying Lemma 2.4, we can derive from (2.67) that

lim
t→∞
‖w(·, t)‖L1 = 0. (2.68)

On the other hand, from Theorem 1.1, we know ‖∇w(·, t)‖L∞ ≤ c1. Then using the Gagliardo-
Nirenberg inequality, we can derive that

‖w‖L∞ ≤ c2(‖∇w‖
2
3
L∞‖w‖

1
3

L1 + ‖w‖L1) ≤ c2c
2
3
1 ‖w‖

1
3

L1 + c2‖w‖L1 ,

which together with (2.68) gives (2.66).
�
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Next, we show ‖u(·, t) − 1‖L∞ → 0 as t → ∞. To this end, we first apply the Harnack’s
inequality to show that u(·, t) has a lower bound for large t, which will be essentially used later.
More precisely, we have the following results:

Lemma 2.15. Let (u,w) be the solution obtained in Theorem 1.1, and assume that (1.3) holds.
Then there exists a T0 > 0 such that for all t ≥ T0

inf
x∈Ω

u(x, t) ≥ ζ1, (2.69)

where ζ1 > 0 is a constant independent of t.

Proof. Using the transformation ũ = ue
χ
d
w, from the first equation of (1.2), we can derive that{

ũt = d∆ũ− χ∇w · ∇ũ+ ũ
[
1 + χε

d ∆w − χµ+dσ
d w −

(
1 + χλ

d w
)
e−

χ
d
wũ
]
, x ∈ Ω,

∂ũ
∂ν = 0, x ∈ ∂Ω.

(2.70)

From Theorem 1.1, we know there exists a constant c1 > 0 such that

‖u(·, t)‖L∞ + ‖w(·, t)‖L∞ ≤ c1. (2.71)

Moreover, from Lemma 2.13, we know that

‖∆w(·, t)‖L∞ ≤ c2, for all t ≥ 1. (2.72)

Hence using (2.71) and (2.72), we can find a constant c3 > 0 such that∥∥∥1 +
χε

d
∆w − χµ+ dσ

d
w −

(
1 +

χλ

d
w

)
e−

χ
d
wũ
∥∥∥
L∞
≤ c3, for all t ≥ 1. (2.73)

With (2.73) in hand, and applying Harnack’s inequality (see [20, Theorem 2.5] and [23, Page
12]), from (2.70) we can find a constant c4 > 0 such that

sup
x∈Ω

ũ(x, t) ≤ c4 inf
x∈Ω

ũ(x, t), for all t ≥ 1. (2.74)

Noting that ũ = ue
χ
d
w and using (2.71), one derives from (2.74) that

sup
x∈Ω

u(x, t) ≤ c5 inf
x∈Ω

u(x, t), for all t ≥ 1. (2.75)

On the other hand, since ‖w(·, t)‖L∞ → 0 as t → ∞, there exists t1 > 0 such that for all
t ≥ t1 > 1, we have

σ‖w(·, t)‖L∞ ≤
1

2
. (2.76)

Integrating the first equation of (1.2) and using (2.76), then for all t ≥ t1 > 1 one has

d

dt

∫
Ω
u =

∫
Ω
u−

∫
Ω
u2 − σ

∫
Ω
uw

≥ (1− σ‖w‖L∞)

∫
Ω
u−

∫
Ω
u2

≥ 1

2

∫
Ω
u−

∫
Ω
u2.

(2.77)

Furthermore using (2.75), we can derive that∫
Ω
u2 ≤ sup

x∈Ω
u(x, t) ·

∫
Ω
u ≤ c5 inf

x∈Ω
u(x, t) ·

∫
Ω
u ≤ c5

|Ω|

(∫
Ω
u

)2

, for all t ≥ t1 > 1. (2.78)

Substituting (2.78) into (2.77) yields

d

dt

∫
Ω
u ≥ 1

2

∫
Ω
u− c5

|Ω|

(∫
Ω
u

)2

,

which allows us to obtain

lim inf
t→∞

∫
Ω
u ≥ |Ω|

2c5
> 0. (2.79)
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Using (2.75) again, we can derive that for all t ≥ t1 that

1

|Ω|

∫
Ω
u(x, t) ≤ sup

x∈Ω
u(x, t) ≤ c5 inf

x∈Ω
u(x, t), (2.80)

which together with (2.79) gives

lim inf
t→∞

inf
x∈Ω

u(x, t) ≥ 1

2c2
5

> 0

and hence (2.69) holds. �

Lemma 2.16. Assume the assumption (1.3) holds. Then the solution (u,w) of (1.2) satisfies

lim
t→∞
‖u(·, t)− 1‖L2 = 0 (2.81)

Proof. Multiplying the first equation of (1.2) by u−1
u , and integrating the results by parts, we

have

d

dt

∫
Ω

(u− 1− lnu) + d

∫
Ω

|∇u|2

u2
+

∫
Ω

(u− 1)2 = −χ
∫

Ω

∇u · ∇w
u

− σ
∫

Ω
uw + σ

∫
Ω
w

≤ d
∫

Ω

|∇u|2

u2
+
χ2

4d

∫
Ω
|∇w|2 + σ

∫
Ω
w,

which gives

d

dt

∫
Ω

(u− 1− lnu) +

∫
Ω

(u− 1)2 ≤ χ2

4d

∫
Ω
|∇w|2 + σ

∫
Ω
w. (2.82)

Using Taylor’s expansion, we have

u− 1− lnu =
1

2ζ2
(u− 1)2 ≥ 0, (2.83)

where ζ between 1 and u. Using the boundedness of ‖u(·, t)‖L∞ and Lemma 2.15, we know that
for some T1 ≥ 1, there exist two positive constants c1 and c2 such that

c1 ≤ u(·, t) ≤ c2 for some t ≥ T1,

which combined with (2.83) gives

1

c2
2

∫
Ω

(u− 1)2 ≤
∫

Ω
(u− 1− lnu) ≤ 1

c2
1

∫
Ω

(u− 1)2, for some t ≥ T1. (2.84)

Substituting (2.84) into (2.82), we can derive for all t ≥ T1 that

d

dt

∫
Ω

(u− 1− lnu) + c2
1

∫
Ω

(u− 1− lnu) ≤ χ2

4d

∫
Ω
|∇w|2 + σ

∫
Ω
w. (2.85)

On the other hand, using the Gagliardo-Nirenberg inequality and (2.62), we can derive that

‖∇w‖L2 ≤ c3(‖D2w‖
2
3

L2‖w‖
1
3

L1 + ‖w‖L1) ≤ c4(‖w‖
1
3

L1 + ‖w‖L1) for t ≥ T1,

which together with (2.68) gives

χ2

4d

∫ t+1

t

∫
Ω
|∇w|2 + σ

∫ t+1

t

∫
Ω
w → 0, as t→∞. (2.86)

With (2.86), we apply Lemma 2.4 to (2.85) and get∫
Ω

(u− 1− lnu)→ 0, as t→∞. (2.87)

Then the combination of (2.84) and (2.87) gives∫
Ω

(u− 1)2 ≤ c2
2

∫
Ω

(u− 1− lnu)→ 0 as t→∞,

which gives (2.81). Then we complete the proof of Lemma 2.16. �
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Next, we show that ‖u(·, t)− 1‖L∞ → 0 as t→∞.

Lemma 2.17. Assume the assumption (1.3) holds. Then the solution (u,w) of (1.2) satisfies

lim
t→∞
‖u(·, t)− 1‖L∞ = 0. (2.88)

Proof. By Lemma 2.13, we have

sup
t≥1
‖u(·, t)‖Cθ(Ω̄) ≤ c1.

Thanks to the Arzelà-Ascoli Theorem, we may pass to a sequence t = tk →∞ and assume that

u(·, tk)→ v uniformly in C0(Ω̄).

But then v ≡ 1 due to Lemma 2.16. Hence, by the uniqueness of subsequential limit, it follows
that u(·, t)→ 1 as t→∞ uniformly in Ω̄. Then we complete the proof of Lemma 2.17. �

Now we are in a position to prove global stability result asserted in Theorem 1.1.

Proof of Theorem 1.1 (global stabilization). The global stability of (1, 0) stated in Theo-
rem 1.1 is a consequence of Lemma 2.14 and Lemma 2.17. �

3. Non-constant steady state: Proof of Theorem 1.2

3.1. Existence. In this section, we first use the Schauder fixed point theorem to prove the
existence of non-constant positive solutions to the system (1.4) under some conditions on pa-
rameters. Then we show that the solution is unique if h0 = supx∈∂Ω h(x) is small. Before proving
our main results, we first use the transformation

V = Ue
χ
d
W (3.1)

to rewrite the elliptic system (1.4) as follows:
0 = d∇ · (e−

χ
d
W∇V ) + e−

χ
d
WV (1− e−

χ
d
WV )− σe−

χ
d
WWV, x ∈ Ω,

0 = ε∆W − µW − λe−
χ
d
WWV, x ∈ Ω,

∇V · ν = 0, ∇W · ν = ξ(h(x)−W ), x ∈ ∂Ω.

(3.2)

Our idea of using the Schauder fixed point theorem to prove the existence of positive solutions to
the system (3.2) can be roughly described below. Given any non-negative function V ∈ C0(Ω̄),
we first consider the following elliptic problem{

0 = ε∆W − µW − λe−
χ
d
WWV, x ∈ Ω,

∇W · ν = ξ(h(x)−W ), x ∈ ∂Ω
(3.3)

and show that (3.3) admits a non-negative solution W ∈ C1+α(Ω̄). This generates a solution
map T1 : C0(Ω̄) → C1+α(Ω̄) such that T1(V ) = W . With this generated solution W (x), we
further consider the problem{

0 = d∇ · (e−
χ
d
W∇V ) + e−

χ
d
WV (1− e−

χ
d
WV )− σe−

χ
d
WWV, x ∈ Ω,

∇V · ν = 0, x ∈ ∂Ω,
(3.4)

and show that (3.4) admits a non-negative solution V̂ . This generates another solution map

T2 : C1+α(Ω̄) → C2(Ω̄) such that T2(W ) = V̂ . Now we define a composite map T = T2 ◦ T1 :
C0(Ω̄) → C0(Ω̄) and show that T has a fixed point, namely there is a V ∈ C0(Ω̄) such that
T (V ) = V and W = T1(V ). Then this pair (V,W ) yields a classical solution to (3.2).

In the following, we shall denote T1(V ) =: W [V ] and T2(W ) =: V [W ]. We first show the
existence of solutions to (3.3) for given V ∈ C0(Ω̄).
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Lemma 3.1. For any given non-negative function V ∈ C0(Ω̄), system (3.3) has a solution
W [V ] ∈ C1+α(Ω̄) with 0 < α < 1− n

p satisfying

0 ≤W [V ] ≤ h0, for all x ∈ Ω̄, (3.5)

where h0 = supx∈∂Ω h(x).

Proof. Take a sequence Vj ∈ Cθ2(Ω̄) with θ2 ∈ (0, 1) such that Vj → V uniformly in Ω. Observe
that 0 and h0 form a pair of strict sub/supersolutions for (3.3). It follows by monotone iteration
scheme that there exists a minimal solution Wj = W [Vj ] ∈W 2,p(Ω) such that 0 < Wj < h0; see,
e.g. [23, Corollary 1.2.4]. Moreover, by Lp estimate, we see that Wj is bounded uniformly in
W 2,p(Ω). Passing to a subsequence, we may assume that Wj converges weakly in W 2,p(Ω) and
strongly in C1+α(Ω̄) to a strong solution W ∈ W 2,p(Ω) to (3.3). This proves the existence of
W = W [V ] ∈ C1+α(Ω̄) satisfying (3.5), where 0 < α < 1− n

p due to the Sobolev imbedding (cf.

[21]) for p > n

‖W‖C1+β(Ω̄) ≤ c1‖W‖W 2,p(Ω) ≤ c2 with β = 1− n

p
. (3.6)

�

Lemma 3.2. If h0χ < d, then the solution obtained in Lemma 3.1 is unique, and the mapping
V →W [V ] from C0(Ω̄) to C1+α(Ω̄) is continuous.

Proof. Our proof is divided into the following two steps:
Step 1. We first prove the uniqueness of solutions under the condition h0χ < d. Assume

that W1 ∈ H1(Ω) and W2 ∈ H1(Ω) are two different solutions of (3.3). Then it holds that{
ε∆(W1 −W2) = µ(W1 −W2) + λV (e−

χ
d
W1W1 − e−

χ
d
W2W2), x ∈ Ω,

∇(W1 −W2) · ν + ξ(W1 −W2) = 0, x ∈ ∂Ω.
(3.7)

Multiplying (3.7) by W1 −W2, and integrating the resulting equation by parts, we have

− ε
∫

Ω
|∇(W1 −W2)|2 − εξ

∫
∂Ω

(W1 −W2)2

= µ

∫
Ω

(W1 −W2)2 + λ

∫
Ω
V (e−

χ
d
W1W1 − e−

χ
d
W2W2)(W1 −W2)

=

∫
Ω

[µ+ λV f ′(W )](W1 −W2)2,

(3.8)

where f ′(z) =
(
1− χz

d

)
e−

χ
d
z and W = θ1W1 + (1− θ1)W2 with θ1 ∈ (0, 1). Since 0 < Wi ≤ h0

for i = 1, 2, we have 0 < W ≤ h0 and then f ′(W ) > 0 in the case of h0χ < d. On the other
hand, since V ∈ C0(Ω̄) is a nonnegative function, we know there exists a constant K > 0 such
that 0 ≤ V ≤ K and then

µ+ λV f ′(W ) ≥ µ > 0, (3.9)

if h0χ < d. Then combining (3.8) and (3.9), we have µ
∫

Ω(W1−W2)2 ≤ 0, which gives W1 = W2.

Step 2. We show the mapping V →W [V ] is a continuous function from C0(Ω̄) to C1+α(Ω̄).
In fact, if we assume that {Vi}i∈N is a sequence in C0(Ω̄) satisfying lim

i→∞
Vi = V, but

lim
i→∞

W [Vi] 6= W [V ], in C1+α(Ω̄). (3.10)

Then there exists a subsequence {Vij}j∈N and a constant δ > 0 such that

‖W [Vij ]−W [V ]‖C1+α(Ω̄) ≥ δ for all j ∈ N. (3.11)

From (3.6), we know that there exists a β∗ ∈ (α, 1) with 0 < α < β such that the sequence
{W [Vij ]}j∈N ∈ C1+β∗(Ω̄). Then by the Arzelá-Ascoli theorem there exists a sub-sequence
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{W [Vijk ]}k∈N converge to Ŵ in C1+α(Ω̄). Since for any k ∈ N, the function W [Vijk ] is a
weak solution of {

ε∆W [Vijk ] = µW [Vijk ] + λe
−χ
d
W [Vijk

]
W [Vijk ]Vijk , x ∈ Ω,

∇W [Vijk ] · ν = ξ(h(x)−W [Vijk ]), x ∈ ∂Ω.
(3.12)

Then sending k →∞ in (3.12), we obtain that Ŵ is a weak solution of{
ε∆Ŵ = µŴ + λe−

χ
d
Ŵ ŴV, x ∈ Ω,

∇Ŵ · ν = ξ(h(x)− Ŵ ), x ∈ ∂Ω.
(3.13)

Noticing Lemma 3.1 with Step 1 implies that (3.13) admits a unique solution W [V ] in C1+α(Ω̄)

for any given non-negative function V ∈ C0(Ω̄), it hence follows that Ŵ = W [V ], which contra-
dicts (3.11). This asserts that the mapping V → W [V ] is continuous from C0(Ω̄) to C1+α(Ω̄).
The proof of Lemma 3.2 is finished. �

Remark 3.1. To prove the mapping V →W [V ] is a continuous function, we used the uniqueness
of solutions to (3.4), which is ensured by (3.9). Here χh0 < d is a sufficient condition to prove
(3.9). However, for all 0 ≤ W ≤ h0 we can easily derive that f ′(W ) ≥ −e−2, which together
with the fact 0 ≤ V ≤ K gives

µ+ λV f ′(W ) ≥ µ− λKe−2. (3.14)

Then from (3.14), we know that if µ > λKe−2, the results in Lemma 3.2 are still hold. Hence
the condition χh0 < d in Lemma 3.2 can be replaced for large µ or small λ.

Next, we shall study the existence of solutions for the system (3.4). First, we construct the
sub- and super-solution of the problem (3.4) as follows.

Lemma 3.3. Let W ∈ C0(Ω̄) be a given function with 0 ≤ W ≤ h0 for all x ∈ Ω̄ and suppose
that σh0 < 1. Define two constants

V∗ = min
x∈Ω̄

(e
χ
d
W − σe

χ
d
WW ) = min

x∈Ω̄
e
χ
d
W (1− σW ), (3.15)

and
V ∗ = max

x∈Ω̄
(e

χ
d
W − σe

χ
d
WW ) = max

x∈Ω̄
e
χ
d
W (1− σW ). (3.16)

Then V∗ and V ∗ are sub-solution and super-solution of (3.4), respectively

Proof. The proof follows by a straightforward computation and is omitted. �

Next, we shall show that system (3.4) admits a unique solution between V∗ and V ∗. Precisely,
we prove the following results.

Lemma 3.4. Let W ∈ C1+α(Ω̄) be a given function. Then system (3.4) admits a unique positive
solution V [W ] ∈ C2+α(Ω̄) satisfying

V∗ ≤ V [W ](x) ≤ V ∗ for all x ∈ Ω̄, (3.17)

where V∗ and V ∗ are defined by (3.15) and (3.16), respectively.

Proof. First, we introduce a solution space as follows:

X = {V ∈ C0(Ω̄) : V∗ ≤ V ≤ V ∗ },

which is closed and convex. For given Ṽ ∈ X , we assume that V ∈ H1(Ω) is a weak solution of
the following problem{

−d∇ · (e−
χ
d
W∇V ) + κV = κṼ + e−

χ
d
W Ṽ (1− e−

χ
d
W Ṽ )− σe−

χ
d
WWṼ , x ∈ Ω,

∇V · ν = 0, x ∈ ∂Ω,
(3.18)

where κ > 0 is a constant chosen later. This defines a solution operator Φ1[Ṽ ] = V . Next, we
show the operator Φ1 is continuous and Φ1[X ] ⊂ X is relatively compact in X .
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We first show the operator Φ1 is continuous. Since W ∈ C1+α(Ω̄), we can rewrite the first
equation of (3.18) as follows

−de−
χ
d
W∆V + χe−

χ
d
W∇V · ∇W + κV =

(
κ+ e−

χ
d
W − σe−

χ
d
WW

)
Ṽ − e−

2χ
d
W Ṽ 2. (3.19)

Then using the Lp-estimate together with the Sobolev imbedding theorem and Agmon-Douglas-
Nirenberg theorem, it follows from (3.19) with the boundary condition ∇V · ν = 0 on ∂Ω that

‖Φ1[Ṽ1]− Φ1[Ṽ2]‖L∞ ≤‖Φ1[Ṽ1]− Φ1[Ṽ2]‖C1+β(Ω̄)

≤c1‖(κ+ e−
χ
d
W − σe−

χ
d
WW )(Ṽ1 − Ṽ2)− e−

2χ
d
W (Ṽ 2

1 − Ṽ 2
2 )‖L∞

≤c1(κ+ 1 + σ‖W‖L∞)‖Ṽ1 − Ṽ2‖L∞ + c1(‖Ṽ1‖L∞ + ‖Ṽ2‖L∞)‖Ṽ1 − Ṽ2‖L∞

≤c2‖Ṽ1 − Ṽ2‖L∞ ,

where

c2 := c1

(
κ+ 1 + σ‖W‖L∞ + ‖Ṽ1‖L∞ + ‖Ṽ2‖L∞

)
<∞

due to W ∈ C1+α(Ω̄) and Ṽi ∈ C0(Ω̄) for i = 1, 2. Hence the continuity of the operator Φ1 is
proved.

Second, we show that Φ1[X ] is relatively compact in X . In fact, due to W ∈ C1+α(Ω̄) and

Ṽ ∈ C0(Ω̄), we have

‖(κ+ e−
χ
d
W − σe−

χ
d
WW )Ṽ − e−

2χ
d
W Ṽ 2‖L∞ ≤ (κ+ 1 + σ‖W‖L∞ + ‖Ṽ ‖L∞)‖Ṽ ‖L∞ ≤ c3

and

‖χe−
χ
d
W∇W‖L∞ ≤ χ‖∇W‖L∞ ≤ c4.

Then by the elliptic regularity applied to (3.19), we have V ∈ C1+β(Ω̄) for all β ∈ (0, 1), which
implies that Φ1[X ] is relatively compact in X .

At last, we show that Φ1[X ] ⊂ X for large κ. If Ṽ (x) ≥ V∗, we let Ṽ (x) = V∗ + g(x), where
g(x) is a continuous non-negative function satisfying 0 ≤ g(x) ≤ V ∗ − V∗ for all x ∈ Ω̄. Then
from (3.18), we have

− d∇ · [e−
χ
d
W∇(V∗ − V )] + κ(V∗ − V )

= −κg − e−
2χ
d
W Ṽ (e

χ
d
W − Ṽ − σe

χ
d
WW )

= −κg − (V∗ + g)e−
2χ
d
W (e

χ
d
W − V∗ − σe

χ
d
WW ) + g(V∗ + g)e−

2χ
d
W

≤ [(V∗ + g)e−
2χ
d
W − κ]g

≤ (V∗ + V ∗ − κ)g,

(3.20)

where we have used the facts 0 < V∗ ≤ e
χ
d
W (1 − σW ) and 0 ≤ g(x) ≤ V ∗. Then multiplying

(3.20) by [(V∗ − V )+]2 and integrating the result by parts, we have

2d

∫
Ω
e−

χ
d
W |∇(V∗ − V )|2(V∗ − V )+ + κ

∫
Ω

[(V∗ − V )+]3

≤
∫

Ω
(V∗ + V ∗ − κ)g[(V∗ − V )+]2.

(3.21)

By choosing κ large enough such that κ ≥ κ1 := V∗+V
∗, from (3.21), we have

∫
Ω[(V∗−V )+]3 = 0,

and hence V ≥ V∗.
Using similar arguments as above, we can find a constant κ2 > 0 such that V ≤ V ∗ if κ ≥ κ2.

Hence, choosing κ ≥ κ∗ := max{κ1, κ2}, we have V∗ ≤ V ≤ V ∗, which implies Φ1[X ] ⊂ X for
κ ≥ κ∗.

In summary, we have proved the operator Φ1 : X → X is continuous and Φ1[X ] ⊂ X is
relatively compact in X . Then by the Schauder fixed point theorem, there exist a fixed point
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V ∈ X such that Φ1[V ] = V . That is, for a given W ∈ C1+α(Ω̄), there exist a solution V ∈ X
to the system (3.4) and hence{

−de−
χ
d
W∆V + χe−

χ
d
W∇V · ∇W + V = H(V,W ), x ∈ Ω,

∇V · ν = 0, x ∈ ∂Ω,
(3.22)

where

H(V,W ) = V
(

1 + e−
χ
d
W − e−

2χ
d
WV − σe−

χ
d
WW

)
.

Since V ∈ X and W ∈ C1+α(Ω̄), we have that ‖H(V,W )‖L∞ ≤ c5. Then applying the elliptic
regularity estimate to (3.22), we can derive V [W ] ∈ C1+α(Ω̄) with some α ∈ (0, 1). Then
using again the fact W ∈ C1+α(Ω̄), one has ‖H(V,W )‖Cα(Ω̄) ≤ c6, and hence V [W ] ∈ C2+α(Ω̄)

follows by the elliptic regularity again. Moreover the positivity of V [W ] follows from the fact
V ≥ V∗ > 0.

Finally, we shall show the uniqueness of solutions for the system (3.4) with givenW ∈ C1+α(Ω̄)
based on some ideas from [8]. We assume that the problem (3.4) has two different positive
solutions V1 and V2. Then they solve the following equations weakly

−d∇ · (e
−χ
d
W∇Vi)

Vi
= (1− σW )e−

χ
d
W − e−

2χ
d
WVi for i = 1, 2,

and hence

−d∇ · (e
−χ
d
W∇V1)

V1
+
d∇ · (e−

χ
d
W∇V2)

V2
= −e−

2χ
d
W (V1 − V2). (3.23)

Multiplying (3.23) by V 2
1 − V 2

2 , and integrating the result by parts, we have

−
∫

Ω
e−

2χ
d
W (V1 − V2)2(V1 + V2)

= d

∫
Ω
e−

χ
d
W∇V1 · ∇

(
V1 −

V 2
2

V1

)
+ d

∫
Ω
e−

χ
d
W∇V2 · ∇

(
V2 −

V 2
1

V2

)
= d

∫
Ω
e−

χ
d
W

(
|∇V1|2 − 2

V2

V1
∇V1 · ∇V2 +

V 2
2

V 2
1

|∇V1|2
)

+ d

∫
Ω
e−

χ
d
W

(
|∇V2|2 − 2

V1

V2
∇V1 · ∇V2 +

V 2
1

V 2
2

|∇V2|2
)

= d

∫
Ω
e−

χ
d
W

(∣∣∣∇V1 −
V1

V2
∇V2

∣∣∣2 +
∣∣∣∇V2 −

V2

V1
∇V1

∣∣∣2) ≥ 0

which implies that V1 = V2. This completes the proof. �

Lemma 3.5. The mapping W → V [W ] is a continuous function from C1+α(Ω̄) into C0(Ω̄).

Proof. We shall show the conclusion by using the uniqueness of solutions for (3.4). Let {Wi}i∈N
be a sequence in C1+α(Ω̄) satisfying

lim
i→∞

Wi = W.

Arguing by contradiction, we assume

lim
i→∞

V [Wi] 6= V [W ]. (3.24)

Then there exist a constant δ1 > 0 and a subsequence {Wij}j∈N such that for all j ∈ N

‖V [Wij ]− V [W ]‖L∞ ≥ δ1. (3.25)

Since {V [Wij ]}j∈N is uniformly bounded in C2+α(Ω̄) and hence equi-continuous in C2(Ω̄), we

can use the Arzelá-Ascoli theorem to find a sub-sequence {V [Wijk
]}k∈N and V̂ such that

lim
k→∞

‖V [Wijk
]− V̂ ‖C2(Ω̄) = 0. (3.26)
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Since for any k ∈ N, the function V [Wijk
] > 0 satisfies{

0 = d∇ · (e−
χ
d
Wijk∇V [Wijk

]) + e
−χ
d
Wijk V [Wijk

](1− e−
χ
d
Wijk V [Wijk

]− σWijk
), x ∈ Ω,

∇V [Wijk
] · ν = 0, x ∈ ∂Ω,

which together with (3.26) gives{
0 = d∇ · (e−

χ
d
W∇V̂ ) + e−

χ
d
W V̂ (1− e−

χ
d
W V̂ )− σe−

χ
d
WWV̂ , x ∈ Ω,

∇V̂ · ν = 0, x ∈ ∂Ω,
(3.27)

by taking k → ∞. Since the problem (3.27) has a unique positive solution V [W ] for given

W ∈ C1+α(Ω̄), we derive that V̂ = V [W ], which contradicts (3.25). The proof is complete. �

Now we are ready to prove the existence and uniqueness of solutions to (1.4) asserted in
Theorem 1.2.

Proof of Theorem 1.2 (existence and uniqueness). We divide the proof into two steps.
Step 1: Existence. Consider the existence of solutions in the following closed and convex

solution space

X := {V ∈ C0(Ω̄) : V∗ ≤ V ≤ V ∗},
with V∗ and V ∗ are defined by (3.15) and (3.16), respectively. From Lemma 3.1 and Lemma 3.2,
we know that for any V ∈ X , there exists a continuous operator T1: C0(Ω̄)→ C1+α(Ω̄) such that
W = T1[V ] ∈ C1+α(Ω̄) which solves (3.3). For this W = T1[V ], from Lemma 3.4 and Lemma
3.5, we can define a continuous operator T2: C1+α(Ω̄)→ C0(Ω̄) such that V = T2[W ] solving
(3.4). Define a composition operator T : C0(Ω̄)→ C0(Ω̄) as follows:

T [V ] := T2 ◦ T1[V ] = T2[T1[V ]].

Clearly, T is continuous since both operators T1 and T2 are continuous.
From Lemma 3.1, we know that 0 ≤W ≤ h0 and W ∈ C1+α(Ω̄), which together with Lemma

3.4 gives V = T2[W ] ∈ C2+α(Ω̄) and

V∗ ≤ V ≤ V ∗,

and hence T [X ] ⊂ X is relatively compact in X . Hence, by the Schauder fixed point theorem,
the operator T has a fixed point V ∈ X , which in fact belongs to C2+α(Ω̄). Moreover, by the
Schauder estimates, we have W = T1[V ] ∈ C2+α(Ω̄). Hence the pair

(T [V ], T1[V ]) = (V,W )

yields a classical solution to the problem (3.2).
Next, we shall prove the solution pair (V,W ) obtained above is positive. Since 0 < V∗ ≤ V ≤

V ∗, we only need to prove W (x) > 0 for all x ∈ Ω̄. To this end, we first rewrite (3.3) as{
0 = ε∆W − c(x)W, x ∈ Ω,

∇W · ν = ξ(h(x)−W ), x ∈ ∂Ω,
(3.28)

with c(x) = µ + λe−
χ
d
WV > 0. Using the maximum principle [22, Lemma 3.5], we know that

W can not achieve non-positive minimum in Ω and hence for all x ∈ Ω it holds that W (x) > 0.
Then to show W (x) > 0 for x ∈ Ω̄, it remains to show W (x) > 0 if x ∈ ∂Ω. Assume that there
exist some x0 ∈ ∂Ω such that W (x0) < W (x) for all x ∈ ∂Ω. If W (x0) ≤ 0, we can use the
Hopf’s boundary point lemma [22, Lemma 3.4] to derive ξ(h(x0) −W (x0)) = ∇W (x0) · ν < 0,
which contradict the fact W (x0) ≤ 0, and thus W (x) > 0 for x ∈ Ω̄. Hence we prove that (3.2)
admits a positive classical solution (V (x),W (x)) ∈ C2+α(Ω̄)× C2+α(Ω̄) satisfying

0 < V∗ ≤ V (x) ≤ V ∗ and 0 < W (x) ≤ h0, for x ∈ Ω̄,

which yields a positive classical solution (U(x),W (x)) to (1.4) satisfying (1.7) by (3.1).
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Step 2: Uniqueness. To show the uniqueness of the positive classical solution (U(x),W (x))
under the assumptions that h0 is small, we first show that

‖W‖W 1,∞ → 0 as h0 → 0. (3.29)

In fact, using [24, Theorem 9.4 in Chap. 1], we can find a bounded function g ∈ C∞(Ω̄) satisfying

g(x) = h(x) and ∇g · ν = 0 on ∂Ω.

Letting Z(x) = g(x)−W (x) for x ∈ Ω, we can derive from (1.4) that{
ε∆Z − µZ = ε∆g − µg − λUW, x ∈ Ω,

∇Z · ν + ξZ = 0, x ∈ ∂Ω.
(3.30)

Then applying Agmon–Douglis–Nirenberg Lp estimates and using the facts g ∈ C∞(Ω̄), U ∈
C2+α(Ω̄) and 0 < W (x) ≤ h0, from (3.30) we have

‖Z‖W 2,p ≤ c1‖ε∆g − µg − λUW‖Lp ≤ c2(‖∆g‖L∞ + ‖g‖L∞ + ‖U‖L∞‖W‖L∞)

≤ c3(1 + h0),

for all p > 1 and hence

‖W‖W 2,p = ‖g − Z‖W 2,p ≤ c4(1 + h0). (3.31)

Choosing p = 2n in (3.31), and using the Gagliardo-Nirenberg inequality and the fact 0 <
W (x) ≤ h0, one has

‖W‖W 1,∞ = ‖∇W‖L∞ + ‖W‖L∞ ≤ c5‖W‖
2
3

W 2,2n‖W‖
1
3
L∞ + ‖W‖L∞

≤ c6(1 + h0)
2
3h

1
3
0 + h0,

which gives (3.29).
Assume (U1,W1) and (U2,W2) are two different solutions of (1.4). Then from (1.7), we can

derive that

`∗e
−χh0

d ≤ Ui ≤ `∗ for i = 1, 2, (3.32)

where `∗ = min
0≤z≤h0

{e
χ
d
z(1− σz)} and `∗ = max

0≤z≤h0

{e
χ
d
z(1− σz)}.

Let Ũ = U1 − U2 and W̃ = W1 −W2. Then from (1.4) we have
0 = ∇ · [d∇Ũ + χ(Ũ∇W1 + U2∇W̃ )] + Ũ − Ũ(U1 + U2)− σŨW1 − σU2W̃ , x ∈ Ω,

0 = ε∆W̃ − µW̃ − λŨW1 − λU2W̃ , x ∈ Ω,

[d∇Ũ + χ(Ũ∇W1 + U2∇W̃ )] · ν = 0, x ∈ ∂Ω,

∇W̃ · ν + ξW̃ = 0, x ∈ ∂Ω.

(3.33)

Multiplying (3.33) by Ũ , and integrating the result by parts, we have

d

∫
Ω
|∇Ũ |2 +

∫
Ω

(U1 + U2)Ũ2 + σ

∫
Ω
W1Ũ

2

= −χ
∫

Ω
(Ũ∇W1 + U2∇W̃ ) · ∇Ũ +

∫
Ω
Ũ2 − σ

∫
Ω
U2W̃ Ũ .

(3.34)

On the other hand, we can use the Hölder inequality and Young’s inequality to derive

− χ
∫

Ω
(Ũ∇W1 + U2∇W̃ ) · ∇Ũ

≤ d

2

∫
Ω
|∇Ũ |2 +

χ2

2d

∫
Ω
|Ũ∇W1 + U2∇W̃ |2

≤ d

2

∫
Ω
|∇Ũ |2 +

χ2

d
‖∇W1‖2L∞

∫
Ω
Ũ2 +

χ2

d
‖U2‖2L∞

∫
Ω
|∇W̃ |2,

(3.35)
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and

−σ
∫

Ω
U2W̃ Ũ ≤ σ2

∫
Ω
U2W̃

2 +
1

4

∫
Ω
U2Ũ

2. (3.36)

Substituting (3.35) and (3.36) into (3.34), we have

d

2

∫
Ω
|∇Ũ |2 +

∫
Ω

(
U1 +

3

4
U2 − 1− χ2

d
‖∇W1‖2L∞

)
Ũ2 ≤

χ2‖U2‖2L∞
d

∫
Ω
|∇W̃ |2 + σ2

∫
Ω
U2W̃

2,

which, together with (3.32), gives

d

2

∫
Ω
|∇Ũ |2 +

(
7`∗e

−χh0
d

4
− 1− χ2

d
‖∇W1‖2L∞

)∫
Ω
Ũ2

≤ χ2|`∗|2

d

∫
Ω
|∇W̃ |2 + σ2

∫
Ω
U2W̃

2.

(3.37)

We multiply the second equation of (3.33) by W̃ to obtain

ε

∫
Ω
|∇W̃ |2 + µ

∫
Ω
W̃ 2 + εξ

∫
∂Ω
W̃ 2 + λ

∫
Ω
U2W̃

2 = −λ
∫

Ω
W1ŨW̃

≤ µ
∫

Ω
W̃ 2 +

λ2

4µ
‖W1‖2L∞

∫
Ω
Ũ2,

which yields

ε

∫
Ω
|∇W̃ |2 + λ

∫
Ω
U2W̃

2 ≤ λ2

4µ
‖W1‖2L∞

∫
Ω
Ũ2. (3.38)

Let γ∗ := χ2|`∗|2
εd + σ2

λ . Then multiplying (3.38) by γ∗, and adding the result to (3.37), we have

d

2

∫
Ω
|∇Ũ |2 +

(
7`∗e

−χh0
d

4
− 1− χ2

d
‖∇W1‖2L∞ −

λ2γ∗
4µ
‖W1‖2L∞

)∫
Ω
Ũ2 ≤ 0. (3.39)

Noting that `∗ = min
0≤z≤h0

{e
χ
d
z(1− σz)}, we have

`∗ → 1 as h0 → 0. (3.40)

On the other hand, from (3.29) we have ‖W1‖W 1,∞ → 0 as h0 → 0, which together with (3.40)
gives

lim
h0→0

(
7`∗e

−χh0
d

4
− 1− χ2

d
‖∇W1‖2L∞ −

λ2γ∗
4µ
‖W1‖2L∞

)
=

3

4
.

This yields a small constant h∗ < h∗ := min
{

1
σ ,

d
χ

}
such that the following holds if h0 < h∗

d

2

∫
Ω
|∇Ũ |2 + c7

∫
Ω
Ũ2 ≤ 0, (3.41)

for some positive constant c7 ∈ (0, 3
4). Then (3.41) implies Ũ = 0, that is U1 = U2.

Finally with Ũ = 0 and the fact U2 ≥ `∗e−
χh0
d > 0, from (3.38) we obtain

ε

∫
Ω
|∇W̃ |2 + λ`∗e

−χh0
d

∫
Ω
W̃ 2 ≤ 0,

which gives W̃ = 0 and hence W1 = W2. Then the uniqueness of solutions to (1.4) is proved. �
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3.2. Global stability. In this subsection, we further impose that Ω is two-dimensional and
show that the positive non-constant steady state (U,W ) is globally asymptotically stable if
h0 > 0 is sufficiently small. We first use the Harnack inequality again and the fact σh0 < 1 to
derive that inf

x∈Ω
u(x, t) has a positive lower bound as time is large.

Lemma 3.6. Let (u,w) be the solution of the system (1.2) with h(x, t) = h(x) obtained in
Theorem 1.1 and h0 = supx∈∂Ω h(x). If σh0 < 1, then

lim inf
t→∞

inf
x∈Ω

u(x, t) ≥ ζ2, (3.42)

where ζ2 > 0 is a constant independent of t.

Proof. Let ŵ(x, t) be the solution of the following problem
ŵt = ε∆ŵ − µŵ, x ∈ Ω, t > 0,

∇ŵ · ν = ξ(h(x)− ŵ), x ∈ ∂Ω, t > 0,

ŵ(x, 0) = w0(x), x ∈ Ω.

(3.43)

Then using the comparison principle, one has

0 < w(x, t) ≤ ŵ(x, t). (3.44)

Using the method of energy estimates, we can derive from the system (3.43) that

lim
t→∞
‖ŵ(x, t)− w∗(x)‖L∞ = 0, (3.45)

where w∗(x) ∈ C2(Ω̄) is the solution of (1.6). In fact, letting v̂(x, t) = ŵ(x, t) − w∗(x), then
from (3.43) and (1.6) one has

v̂t = ε∆v̂ − µv̂, x ∈ Ω, t > 0,

∇v̂ · ν + ξv̂ = 0, x ∈ ∂Ω, t > 0,

v̂(x, 0) = v̂0(x) = w0(x)− w∗(x), x ∈ Ω.

(3.46)

Then we multiply the first equation of (3.46) by v̂ and integrate the result by parts to obtain

d

dt

∫
Ω
v̂2 + ε

∫
Ω
|∇v̂|2 + µ

∫
Ω
v̂2 + ξε

∫
∂Ω
v̂2 = 0,

which gives

‖v̂(·, t)‖L2 ≤ ‖w0(x)− w∗‖L2e−
µ
2
t ≤ c1e

−µ
2
t. (3.47)

Applying the parabolic regularity, we can derive from (3.46) that ‖v̂(·, t)‖W 1,∞ ≤ c2. Then we
use the Gagliardo-Nirenberg inequality and the fact (3.47) to derive

‖ŵ(·, t)− w∗‖L∞ = ‖v̂(·, t)‖L∞ ≤ c3‖v̂(·, t)‖
1
2

W 1,∞‖v̂(·, t)‖
1
2

L2 ≤ c4e
−µ

4
t,

which proves (3.45).
Noting that 0 < w∗(x) ≤ h0 and using (3.44)-(3.45), we can find t∗ > 1 such that for all

t ≥ t∗ > 1 that

0 < w(x, t) ≤ h0 +
1− σh0

2σ
=

1 + σh0

2
,

and hence

σ‖w(·, t)‖L∞ ≤
1 + σh0

2
< 1, for all t ≥ t∗ > 1. (3.48)

Integrating the first equation of (1.2) and using (3.48), one has

d

dt

∫
Ω
u =

∫
Ω
u−

∫
Ω
u2 − σ

∫
Ω
uw ≥ (1− σ‖w‖L∞)

∫
Ω
u−

∫
Ω
u2 ≥ c1

∫
Ω
u−

∫
Ω
u2

with c1 = 1−σh0
2 > 0.

Then the remaining proofs are the same as those for Lemma 2.15 and will be omitted for
brevity. This completes the proof. �
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Next, we shall study the global stability of the positive (coexistence) steady state under the
smallness assumptions on h0. More precisely, we have the following results.

Lemma 3.7. Let (u,w) be the global solution of (1.2) with h(x, t) = h(x) 	 0 and h0 =
supx∈∂Ω h(x). Assume (U,W ) is the positive non-constant steady state of (1.4) obtained in
Theorem 1.2. Then there exists a ~ > 0 and t∗ > 1 such that the following estimate holds for
all 0 < h0 ≤ ~

‖u(·, t)− U‖L∞ + ‖w(·, t)−W‖L∞ ≤ c1e
−c2t, for all t ≥ t∗, (3.49)

where c1 and c2 are two positive constants independent of t.

Proof. Let ũ = u− U and w̃ = w −W . From (1.2) and (1.4) we can derive that
ũt = ∇ · (d∇ũ+ χu∇w̃ + χũ∇W ) + ũ(1− u− U)− σũw − σUw̃,
w̃t = ε∆w̃ − µw̃ − λuw̃ − λWũ,

(d∇ũ+ χu∇w̃ + χũ∇W ) · ν = 0, ∇w̃ · ν + ξw̃ = 0,

ũ(x, 0) = u0(x)− U, w̃(x, 0) = w0(x)−W.

(3.50)

Then integrating the first equation of (3.50) multiplied by ũ, we have

1

2

d

dt

∫
Ω
ũ2 + d

∫
Ω
|∇ũ|2 +

∫
Ω
ũ2(u+ U − 1) + σ

∫
Ω
wũ2

= −χ
∫

Ω
u∇w̃ · ∇ũ− χ

∫
Ω
ũ∇W · ∇ũ− σ

∫
Ω
Uw̃ũ.

(3.51)

Noting the facts ‖u(·, t)‖L∞ ≤ M and ‖U‖L∞ ≤ c1 due to U ∈ C2(Ω̄), we can use Young’s
inequality to derive that

−χ
∫

Ω
u∇w̃ · ∇ũ ≤ χ‖u‖L∞

∫
Ω
|∇w̃||∇ũ| ≤ d

4
‖∇ũ‖2L2 +

χ2M2

d
‖∇w̃‖2L2 , (3.52)

and

−χ
∫

Ω
ũ∇W · ∇ũ ≤ χ‖∇W‖L∞‖ũ‖L2‖∇ũ‖L2 ≤

d

4
‖∇ũ‖2L2 +

χ2

d
‖∇W‖2L∞‖ũ‖2L2 , (3.53)

as well as

−σ
∫

Ω
Uw̃ũ ≤ σ‖U‖L∞‖w̃‖L2‖ũ‖L2 ≤

ζ2

4
‖ũ‖2L2 +

σ2c2
1

ζ2
‖w̃‖2L2 . (3.54)

Then substituting (3.53), (3.52) and (3.54) into (3.51), we obtain

d

dt

∫
Ω
ũ2 + d

∫
Ω
|∇ũ|2 + 2

∫
Ω
ũ2

(
u+ U − 1− ζ2

4
− χ2

d
‖∇W‖2L∞

)
+ 2σ

∫
Ω
wũ2

≤ 2χ2M2

d
‖∇w̃‖2L2 +

2σ2c2
1

ζ2
‖w̃‖2L2

≤ c2(‖∇w̃‖2L2 + ‖w̃‖2L2),

(3.55)

where c2 = 2χ2M2

d +
2σ2c21
ζ2

. We multiply the second equation of (3.50) by w̃ and integrate the

result by part to obtain

1

2

d

dt

∫
Ω
w̃2 + ε

∫
Ω
|∇w̃|2 + µ

∫
Ω
w̃2 + λ

∫
Ω
uw̃2 + εξ

∫
∂Ω
w̃2 = −λ

∫
Ω
Wũw̃

≤ µ

2

∫
Ω
w̃2 +

λ2‖W‖2L∞
2µ

∫
Ω
ũ2,

which gives

d

dt

∫
Ω
w̃2 + 2ε

∫
Ω
|∇w̃|2 + µ

∫
Ω
w̃2 + 2λ

∫
Ω
uw̃2 + 2εξ

∫
∂Ω
w̃2 ≤

λ2‖W‖2L∞
µ

∫
Ω
ũ2. (3.56)
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Then multiplying (3.56) by c3 = c2
ε + 2c2

µ and adding the result to (3.55), we end up with

d

dt

∫
Ω

(ũ2 + c3w̃
2) + d

∫
Ω
|∇ũ|2 + c2

∫
Ω
|∇w̃|2 + c2

∫
Ω
w̃2

+ 2

∫
Ω
ũ2

(
u+ U − 1− ζ2

4
− χ2

d
‖∇W‖2L∞ −

c3λ
2‖W‖2L∞
µ

)
≤ 0.

(3.57)

Due to U → 1 as h0 → 0 and (3.29), there exists a constant ~ > 0 such that if 0 < h0 ≤ ~ one
has

−ζ2

8
≤ U − 1 ≤ ζ2

8
(3.58)

and
χ2

d
‖∇W‖2L∞ +

c3λ
2‖W‖2L∞
µ

≤ ζ2

8
. (3.59)

Noting the fact lim inf
t→∞

inf
x∈Ω

u(x, t) ≥ ζ2 in (3.42), we know that there exists T∗ > 1 such that

inf
x∈Ω

u(x, t) ≥ 3ζ2

4
for all t ≥ T∗ > 1,

which combined with (3.58) and (3.59) gives

u+ U − 1− ζ2

4
− χ2

d
‖∇W‖2L∞ −

c3λ
2‖W‖2L∞
µ

≥ ζ2

4
> 0, (3.60)

for 0 < h0 ≤ ~ and t ≥ T∗ > 1.
Substituting (3.60) into (3.57), we can find a c4 > 0 such that

d

dt

∫
Ω

(ũ2 + c3w̃
2) + c4

∫
Ω

(ũ2 + c3w̃
2) ≤ 0, for all t ≥ T∗ > 1,

which gives

‖u(·, t)− U‖L2 + ‖w(·, t)−W‖L2 ≤ c5e
− c4

2
t, for all t ≥ T∗ > 1. (3.61)

Next we recall the interpolation inequality

‖f‖L∞(Ω) ≤ c6‖f‖
n
n+θ
Cθ(Ω̄)

‖f‖
θ

n+θ
L1(Ω)

for f ∈ L1(Ω) ∩ Cθ(Ω̄). (3.62)

To see that, choose a point x̄ ∈ Ω. Then

f(x̄) ≤ c7

εn

∫
Bε(0)

{
f(x+ x̄) + εθ

|f(x̄)− f(x+ x̄)|
|x|θ

}
dx ≤ c8

(
ε−n‖f‖L1 + εθ‖f‖Cθ

)
.

By choosing ε =

(
‖f‖L1(Ω)

‖f‖
Cθ(Ω̄)

) 1
θ+n

, we deduce (3.62).

Along with the facts supt≥1 ‖u(·, t)‖Cθ(Ω̄) ≤ c9 from Lemma 2.13 and U(x) ∈ C2(Ω̄), and

using (3.61) and (3.62) with n = 2, for all t ≥ T∗ > 1 one has

‖u(·, t)− U‖L∞ ≤ c10‖u(·, t)− U‖
2

2+θ

Cθ
‖u(·, t)− U‖

θ
2+θ

L1

≤ c11‖u(·, t)− U‖
θ

2+θ

L2 ≤ c12e
− θc4

2(2+θ)
t
.

(3.63)

On the other hand, with the facts ‖w(·, t)‖W 1,∞ ≤ c13 and W (x) ∈ C2(Ω̄), we can use Gagliadro-
Nirenberg inequality to derive

‖w(·, t)−W‖L∞ ≤ c14‖w(·, t)−W‖
1
2

W 1,∞‖w(·, t)−W‖
1
2

L2 ≤ c15e
− c4

4
t. (3.64)

Finally the combination of (3.63) and (3.64) gives (3.49). The proof of Lemma 3.7 is complete.
�

Proof of Theorem 1.2 (global stability). The global stability result in Theorem 1.2 is a
consequence of Lemma 3.7. �
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4. Toxicant only steady state: Proof of Theorem 1.3

In this section, we again impose that Ω is two-dimensional and study the global dynamics
of toxicant-only steady state (0, w∗), where 0 < w∗ ≤ supx∈∂Ω h(x) is the unique non-constant
positive solution of (1.6) (see the statement in the Introduction). We first show that the species
u is uniformly persistent and hence the toxicant only steady state (0, w∗) is uniformly strongly
repelling if σ supx∈∂Ω h(x) < 1, as described in the following lemma.

Lemma 4.1. Let (u,w) be the solution of the time-dependent problem (1.2) with u0 	 0. If
σ sup∂Ω×[0,∞) h(x, t) < 1, then the species u is uniformly persistent, i.e. there exists δ0 > 0
independent of initial data such that

lim inf
t→∞

inf
x∈Ω

u(·, t) ≥ δ0.

In particular, if h(x, t) = h(x) satisfies σ supx∈∂Ω h(x) < 1, then the toxicant only steady state
(0, w∗) is uniformly strongly repelling.

Proof. Fix a solution (u,w) of (1.2) with u0 	 0 and denote

h∞ := sup
∂Ω×[0,∞)

h(x, t).

Under the assumption σh∞ < 1, we may choose δ ∈ (0, 1) sufficiently small such that

σh∞ + 3δ < 1.

Define
Nδ := {u(x, t) ∈ C0([0,∞)× Ω̄) : u < δ for (x, t) ∈ Ω̄× [0,+∞)}.

Observe, by the maximum principle, that

w(x, t) ≤ h∞ + sup
x∈Ω

w0e
−µt.

So there exists t0 ≥ 1 such that

w(x, t) ≤ h∞ +
δ

σ
<

1− 2δ

σ
in Ω× [t0,∞). (4.1)

Next, suppose
u(·, t) ∈ Nδ in (t1, t2) for some (t1, t2) ⊂ (t0,∞). (4.2)

It is straightforward to see that t2 <∞, since

d

dt

∫
Ω
u =

∫
Ω
u(1− u− σw) ≥ δ

∫
Ω
u in (t1, t2),

which implies

δ|Ω| ≥
∫

Ω
u(x, t) ≥ eδ(t−t1)

∫
Ω
u(x, t1) in (t1, t2). (4.3)

Therefore, it follows that
lim sup
t→∞

sup
x∈Ω

u(·, t) ≥ δ,

which, combined with Harnack’s inequality (2.75), gives

c5 lim sup
t→∞

inf
x∈Ω

u(·, t) ≥ lim sup
t→∞

sup
x∈Ω

u(·, t) ≥ δ, (4.4)

where c5 > 0 is the Harnack’s constant in (2.75) and we may assume c5 > 1 without loss of
generality. Since δ and c5 > 0 are independent of initial data so long as u0 6≡ 0, the species u is
said to be uniformly weakly persistent [32].

Next we will show that lim inf
t→∞

inf
x∈Ω

u ≥ δ
c25
, where c5 > 1 is the Harnack’s constant in (2.75).

If sup
x∈Ω

u ≥ δ for all t � 1, there is nothing to prove due to Harnack’s inequality (2.75).

Otherwise, by (4.4) we suppose that (4.2) holds for some t1, t2 such that

sup
x∈Ω

u(·, t1) = sup
x∈Ω

u(·, t2) = δ, and sup
x∈Ω

u(·, t) < δ for t ∈ (t1, t2).
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Then we proceed to derive a uniform lower bound for infΩ×(t1,t2) u. Indeed, if supx∈Ω u(·, t1) = δ,

then
∫

Ω u(x, t1) ≥ |Ω| δc5 thanks to Harnack’s inequality (2.75) again. Then (4.3) implies that

δ|Ω| ≥ eδ(t2−t1)|Ω| δ
c5
,

which implies

|t2 − t1| ≤
1

δ
log c5.

Applying (4.3) again, we obtain∫
Ω
u(x, t) ≥ eδ(t−t1)|Ω| δ

c5
≥ |Ω| δ

c5
for all t ∈ (t1, t2).

By Harnack’s inequality, it follows that

c5|Ω| inf
x∈Ω

u(·, t) ≥
∫

Ω
u(x, t) ≥ |Ω| δ

c5
for all t ∈ (t1, t2).

This completes the proof that u is uniformly bounded from below, in the sense that

lim inf
t→∞

inf
x∈Ω

u(·, t) ≥ δ

c2
5

.

This asserts that the species u is uniformly persistent and the proof is complete. �

Next we consider whether (0, w∗) is globally stable if σh0 ≥ 1. In fact, we can show that
(0, w∗) is globally asymptotically stable provided σMh > 1, where Mh := min

x∈Ω̄
w̃∗(x) and w̃∗(x)

is the solution of the system (1.8). More precisely, we have the following results:

Lemma 4.2. Let (u,w) be the solution of the system (1.2) with h(x, t) = h(x) 	 0 and (0, w∗)
is the corresponding toxicant-only steady state. Then if σMh > 1 with Mh is defined in Theorem
1.3, the toxicant only steady state (0, w∗) is globally asymptotically stable with exponential decay
rate.

Proof. We divide our proof into two steps:
Step 1: We first show that ‖u(·, t)‖L∞ → 0 exponentially as t → ∞. From Theorem 1.1,

there exists a constant M > 0 independent of t and σ such that 0 < u(x, t) ≤ M . Let w̃(x, t)
be the solution of the following system

w̃t = ε∆w̃ − (µ+ λM)w̃, x ∈ Ω, t > 0,

∇w̃ · ν = ξ(h(x)− w̃), x ∈ ∂Ω, t > 0,

w̃(x, 0) = w0(x), x ∈ Ω.

(4.5)

Then using the comparison principle, we have

w(x, t) ≥ w̃(x, t). (4.6)

To proceed, we claim that
lim
t→∞
‖w̃(·, t)− w̃∗(x)‖L∞ = 0, (4.7)

where 0 < w̃∗(x) ≤ h0 satisfies (1.8). The existence of unique non-constant positive solution for
the system (1.8) can be proved by the method of super-lower solutions using the same arguments
as for (1.6).

Let Mh := min
x∈Ω̄

w̃∗(x). Then the combination of (4.6) and (4.7) implies there exists t∗ > 1

such that
w(x, t) ≥ w̃(x, t) ≥Mh − δ1, for all t ≥ t∗, (4.8)

with δ1 = σMh−1
2σ > 0. Integrating the first equation of (1.2) and using (4.8), for all t > t∗, we

have
d

dt

∫
Ω
u =

∫
Ω
u(1− u− σw) ≤ (1− σMh + σδ1)

∫
Ω
u =

1− σMh

2

∫
Ω
u. (4.9)
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Since σMh > 1, we can derive from (4.9)

‖u(·, t)‖L1 ≤ e
(1−σMh)(t−t∗)

2

∫
Ω
u(x, t∗) ≤M0e

(1−σMh)(t−t∗)
2 , for all t > t∗. (4.10)

Using (4.10) and the interpolation inequality (3.62) with n = 2, we have

‖u(·, t)‖L∞ ≤ c1‖u(·, t)‖
θ
θ+2

L1 ‖u(·, t)‖
n
θ+2

Cθ
≤ c2e

− θ(σMh−1)

2(2+θ)
t

for t > t∗. (4.11)

Hence, it remains to show (4.7). In fact, letting ṽ(x, t) = w̃(x, t)− w̃∗(x), one has
ṽt = ε∆ṽ − (µ+ λM)ṽ, x ∈ Ω, t > 0,

∇ṽ · ν + ξṽ = 0, x ∈ ∂Ω, t > 0,

ṽ(x, 0) = ṽ0(x) = w0(x)− w̃∗(x), x ∈ Ω.

(4.12)

Then multiplying the first equation of (4.12) by ṽ and integrating the result by parts, we have

d

dt

∫
Ω
ṽ2 + ε

∫
Ω
|∇ṽ|2 + (µ+ λM)

∫
Ω
ṽ2 = ε

∫
∂Ω
ṽ∇ṽ · ν = −ξε

∫
∂Ω
ṽ2 ≤ 0,

and hence

‖ṽ(·, t)‖2L2 ≤ ‖ṽ0‖2L2e
−(µ+λM)t = ‖w0(x)− w̃∗(x)‖2L2e

−(µ+λM)t. (4.13)

Since w̃∗(x) is the steady state for the system (4.5), using the elliptic regularity estimates, one
has w̃∗(x) ∈ C2(Ω̄). Hence from (4.13), we have

‖w̃(·, t)− w̃∗‖L2 = ‖ṽ(·, t)‖L2 ≤ c3e
−µ+λM

2
t. (4.14)

On the other hand, using the parabolic regularity, from (4.5) we derive that ‖w̃(·, t)‖W 1,∞ ≤ c4,
which together with w̃∗(x) ∈ C2(Ω̄) gives

‖w̃(·, t)− w̃∗‖W 1,∞ ≤ c5. (4.15)

Then we can use the Gagliardo-Nirenberg inequality and (4.14)-(4.15) to derive

‖w̃(·, t)− w̃∗‖L∞ ≤ c6‖w̃(·, t)− w̃∗‖
1
2

W 1,∞‖w̃(·, t)− w̃∗‖
1
2

L2 ≤ c7e
−µ+λM

4
t,

which gives (4.7).
Step 2: Next, we shall show that ‖w(·, t)−w∗‖L∞ → 0 with exponential decay rate as t→∞.

To this end, we let v(x, t) = w(x, t)− w∗(x). Then from (1.2) and (1.6), we see that v satisfies
vt = ε∆v − µv − λuv − λw∗u, x ∈ Ω, t > 0,

∇v · ν + ξv = 0, x ∈ ∂Ω, t > 0,

v(x, 0) = w0(x)− w∗(x), x ∈ Ω.

(4.16)

Then multiplying the first equation of (4.16) by v, and integrating the result by parts and using
the fact 0 < w∗(x) ≤ h0, we have

d

dt

∫
Ω
v2 +

∫
Ω
|∇v|2 + µ

∫
Ω
v2 + λ

∫
Ω
uv2 + ξ

∫
∂Ω
v2

= −λ
∫

Ω
w∗uv ≤ λh0

∫
Ω
|uv| ≤ µ

2

∫
Ω
v2 +

λ2h2
0

2µ

∫
Ω
u2,

which, together with (4.11), gives

d

dt

∫
Ω
v2 +

µ

2

∫
Ω
v2 ≤ λ2h2

0

2µ

∫
Ω
u2 ≤ λ2h2

0|Ω|
2µ

‖u‖2L∞ ≤ c8e
−(σMh−1)t

3 , for all t > t∗. (4.17)

Then solving (4.17), one can find α1 = 1
2 min{σMh−1

3 , µ2} > 0 such that

‖w(·, t)− w∗‖L2 = ‖v(·, t)‖L2 ≤ c9e
−α1t, for all t > t∗,



32 HAI-YANG JIN, KING-YEUNG LAM, AND ZHI-AN WANG

which along with the Gagliardo-Nirenberg inequality as well as the facts ‖w(·, t)‖W 1,∞ ≤ c1 and
w∗(x) ∈ C2(Ω̄) gives

‖w(·, t)− w∗‖L∞ ≤ ‖w(·, t)− w∗‖
1
2

W 1,∞‖w(·, t)− w∗‖
1
2

L2 ≤ c10e
−α1t

2 , for all t > t∗. (4.18)

Then the combination of (4.11) and (4.18) completes the proof. �

Proof of Theorem 1.3. Theorem 1.3 is a consequence of Lemma 4.1 and Lemma 4.2. �
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