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Abstract

How individuals move across a landscape determines their opportunities to gather resources and their
risk to adverse conditions. Studying how their movement evolves in response to landscape quality is there-
fore paramount to understanding the fate of populations. We consider a landscape consisting of several
adjacent patches where landscape quality differs between patches but is constant within each patch. The
movement strategy of individuals consists of random dispersal within each patch and some patch prefer-
ence to move between patches. Accordingly, our model consists of a system of reaction-diffusion equations
for the population density on each patch together with matching conditions for the population density and
flux at boundaries between patches. In the linear form of our model, we study the principal eigenvalue, its
existence and its dependence on movement parameters. In the nonlinear form of our model, we study steady
states, their existence and their stability with respect to invasion by a population with a different movement
strategy. We find that lower random dispersal rates evolve when patch preferences are fixed; that the evo-
lution of patch preferences depends on the arrangement of habitat quality in the landscape when dispersal
rates are fixed; and that simultaneous evolution of both can lead to the so-called Ideal Free Distribution,
which is a well-established concept in movement ecology. These findings provide theoretical insight into
how dispersal and habitat selection coevolve in heterogeneous landscapes.
© 2026 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC
license (http://creativecommons.org/licenses/by-nc/4.0/).
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1. Introduction

The evolution of movement strategies in spatially heterogeneous landscapes is a fundamen-
tal question in theoretical ecology and evolutionary biology. It concerns how organisms should
optimally move across a landscape whose local habitat quality varies spatially. The movement
decisions that individuals make in order to exploit resources and avoid dangers can profoundly
influence their ability to persist in a given landscape. Hence, studying optimal movement behav-
ior is particularly relevant as human activity often leads to increasing landscape fragmentation,
which, in turn, triggers a decline in population abundance and diversity.

Reaction-diffusion models have long served as a theoretical framework for describing spa-
tiotemporal population dynamics [6]. In the context of strictly random movement strategies, a
fundamental and fairly general result is that in temporally constant environments with a spatial
optimum, there is selection against random dispersal [10,17,22,27]; whereas there is selection for
dispersal if there is no spatially optimal location [4,51]. Selection for dispersal is also possible
when individuals move with a combination of directional and random movement strategy. Exam-
ples of nonrandom movement include movements conditional on habitat quality such as gradient
sensing (see [3] and references therein), or when individuals are pushed in one direction by ex-
ternal forces such as wind or water flow [30,33]. These results hold across different modeling
frameworks, for example in so-called patch models (see [28,53] and references therein). In those
models, a landscape is divided into discrete patches and the population densities on the patches
as well as their movement between patches are described by systems of ordinary differential
equations.

A more recent modeling approach combines continuous and discrete landscape structure in so-
called patchy reaction-diffusion equations [36]. This approach is inspired by landscape ecology,
which conceptualizes landscapes as consisting of multiple spatial regions (“patches”), each of
which is relatively homogeneous within but differs from the adjacent patches. Differences may
result from natural sources of environmental heterogeneity, such as variations in topography,
soil, or vegetation, or they may arise due to anthropogenic disturbances, including agricultural
development and urban expansion, which lead to habitat fragmentation. This piecewise con-
stant landscape is represented in patchy reaction-diffusion equations for population dynamics
by piecewise constant parameter functions, for example diffusion coefficients and growth rates.
In addition, patchy reaction-diffusion models require matching conditions for the density and
flux of a population across a boundary or interface between two patches. These conditions en-
capsulate movement behavior and patch preference of individuals [40], which were treated too
simplistically in early patch models [19,41,45]. With mechanistically derived matching condi-
tions that allow modeling of asymmetric boundary movement and habitat selection behavior, the
framework became much more biologically realistic and widely applicable [34,36,37,46,52], and
also generated novel analytical investigations [21,48]. Compared to reaction-diffusion equations
with smooth parameter functions, patchy reaction-diffusion equations require fewer and possi-
bly more easily accessible parameters. Compared to patch models based on ordinary differential
equations, patchy reaction-diffusion equations give more insight into the spatial distribution of a
population within each patch.

Despite the recent surge in ecological applications of patchy reaction-diffusion equations,
there are only relatively few studies that consider evolutionary aspects, some for processes of
spatial spread on unbounded domains [44], others for steady states on bounded domains [35],
which we consider here. Specifically, Maciel and coworkers considered a two-patch model with
interface conditions as described above and studied the evolution of movement behavior at an
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interface [35]. They determined the ideal free dispersal (IFD) strategy in this case and showed
that it is an evolutionarily steady state (ESS). An ideal free dispersal strategy is one that leads
to individuals being distributed proportional to the available resource [20]. An ESS represents
a movement strategy such that a population using an ESS cannot be invaded by a population
using any other strategy [38]. Most existing work has, however, focused on two patches (or two
periodically alternating patch types in the case of an unbounded landscape), although there is
related work using patchy reaction-diffusion equations with three patches of identical quality
in a river network [50]. When there are three or more patches, there can be different network
geometries and different orientations of up/downstream [23], therefore the arguments for two-
patch case do not lend for easy generalization to multiple patches. More general questions of
how behavioral traits such as dispersal and patch preference evolve in three and more patches or
patch types require further investigation.

We consider a population residing in a landscape consisting of multiple patches in a one-
dimensional spatial domain. While we state and prove many of our results in the case of three
patches, we add remarks indicating how these proofs can be generalized to any number of adja-
cent patches. The dispersal rates and growth rates of individuals vary from patch to patch, and
movement between patches is characterized by location-dependent preferences. Dispersal rates
and patch preferences are the evolvable traits that we consider. In the study of our model, the
principal eigenvalue of a linearized model is crucial for many of the relevant biological questions
such as the invasion or persistence of a species. We therefore devote large sections to the analysis
of the eigenvalue problem, in particular to the question of how the principal eigenvalue depends
on model parameters. We then study the nonlinear model in the framework of adaptive dynamics
[16], i.e., we determine the IFD strategy and show that it is not only an ESS, which means that
other strategies are unsuccessful against it (see above), but also a neighborhood invader strategy
(NIS), which means that it is successful in the presence of other strategies [2].

We describe our model in detail in Section 2 and give the necessary analytical results on
existence and uniqueness of solutions in Section 3, where we also introduce the notions of sub-
and supersolutions that are relevant in subsequent sections. The bulk of our work is in Section 4,
where we study the properties of the principal eigenvalue of the linearized model. The analysis
of various aspects of the nonlinear model is in Section 5. We end with a discussion of possible
applications, as well as similarities and differences with the existing literature.

2. Model description

We describe the movement and demography of a population in a patchy landscape by using
reaction-diffusion equations on each patch and appropriate interface matching conditions to con-
nect patches. The model with three patches extends recently studied models on two patches (or
two patch types periodically arranged); see [34,36]. We number patches from left to right with
lengths L;,i =1,2,3 and set L = L{ + Ly + L3 (see Fig. 1), and denote the patches as

P=(@,Ly), P,=(Li,Li+Ly), and P3=(Li+ Lo L). 2.1

On patch i, the density of the species is denoted by u;(x, t). It satisfies the reaction-diffusion
equation

Ui g = diui vx + riu; (1 - %) . xeP., 1>0, 2.2)
1
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Fig. 1. Arrangement of three adjacent patches with lengths L;. The probabilities of moving left at interface between
patches Pj, Pj+1 are denoted by aj, Jj =1,2. The return arrows at x = 0 and x = L indicate no-flux boundary conditions
at those ends.

where d; is the diffusion coefficient, r; is the growth rate of the species in patch i, and K;
represents the carrying capacity of patch i. All parameters are assumed positive. Individuals can
move between adjacent patches but cannot leave the set of patches. Accordingly, we impose
no-flux boundary conditions at 0 and L, i.e.,

urx(0,0)=0 and w3, (L,t)=0. 2.3)

Movement between patches conserves the density of individuals leading to the flux-matching
conditions

diuy x(L1,t) =doup x(L1,t) and doup (L1 + La,t) =dsuz x (L1 + L2, 1). 2.4)

At the interface between patches 1 and 2 (and 2 and 3), individuals may have a preference for
moving to one or the other. We denote by o1 (resp. a) the probability that an individual at L
(resp. L1 + Ly) moves to the left and by 1 — o1 (resp. 1 — «2) the probability that an individual
moves to the right. This leads to the density matching conditions [36]:

(I —ap)diui(Ly,t) =aidauz(Ly, t), (2.5)
(1 —ap)dous (L1 + La, t) = and3uz (L1 + Lo, 1). (2.6)

It is sometimes useful to consider the triple of functions (u1, u2, u3) as one function u on [0, L],
while keeping in mind that this function is multi-valued at L and L + L.

The quality of the i-th patch is expressed in terms of the population dynamics parameters r;
and K;, which depend on the species in question. Higher values of r; and K; indicate higher land-
scape quality. The diffusion coefficient describes the movement response of individuals to local
patch quality. It may therefore depend on patch quality. For example, we expect that individuals
move slowest when quality is high and fastest when it is low. Similarly, patch preferences may
depend on the relative quality of the two adjacent patches. In general, we expect that individu-
als at the interface between two patches preferentially choose to move into the patch of higher
quality.

Eventually, we are interested in the evolution of movement behavior. One way to look at this
is through the (random) dispersal ability. To deal with the three (potentially different) dispersal
parameters, we write the individual parameters as multiples of an overall dispersal propensity (d)
and a scaling factor that depends on the environment (d;), i.e., d; = dd;. This allows us to study
certain limiting cases (d — oo or d — 0) while keeping the ratios between the d; constant. In
particular, varying d does not affect the interface matching conditions since they only depend on
those ratios.
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Similarly, we might want to look at limiting cases of the directed movement behavior as
encapsulated by the patch preferences «j. These only appear in the interface conditions. We
form the ratios z; =« /(1 — a;), which range from 0 to co. The limit z; — 0 means that all
individuals move to the right, while z; — 0o means that all individuals move to the left.

Since our model is not just a standard reaction-diffusion equation, we present basic prelimi-
nary results on existence and various related topics in the next section.

3. Preliminaries

We present some basic analytical results for equations (2.2) with boundary and matching
conditions (2.3)—(2.6) in this section. In particular, we prove that the maximum principle holds,
that certain a priori estimates are available, and that a dominant eigenvalue exists. These results
are inspired by corresponding results for the two-patch model in [35]; see also [21].

Consider the following problem

Liu; = fi(x), xebk,
uix(0) =u3, (L) =0,

3.1)
diurx (L) = dauoy(L1), ui(L1) =kiua(Ly),
dourx (L1 + Lp) =dsusx (L1 + L2), ua (L1 + L) = kaus(L1 + L2),
where £; = —dij—; —ci(x),i=1,2,3 and
o) da ar d;
k= -, d k= —. 3.2
! l—Olldl an 2 1—0[2d2 ( )

To simplify notation, we sometimes write £ = (L1, L2, L3).

Proposition 3.1. Suppose that u; solve (3.1) with ¢i(x) <0 and fi(x) > 0,% 0. Then u; > 0
on Pi.

Proof. It follows from the classical maximum principle and the Hopf boundary lemma that a
negative minimum cannot occur at the interior of any of the P; and not at the boundary points
0 and L either. Therefore, it can only occur at the interfaces, given by x = L{ or x = L1 + L».
Suppose that the minimum occurs at x = L. Then u,(L1) < 0, by applying the Hopf boundary
lemma in the subinterval [0, L1]. According to the matching conditions, we have uy,(L1) < 0.
This means that the minimum of #, must be attained eitherin (L1, L1+ Ly)oratx = L;+ L,.1In
the first case, then u; = const < 0. But from the equation for u», we have that 0 > —c(x)ur =
f2(x) > 0, 0, which is a contradiction. In case the minimum of u, is attained at x = L| +
L,, then we repeat the same argument to deduce that 3 must attain an internal minimum in
(L1 + Lj, L3) (since x = L3 is not possible thanks to the Hopf boundary lemma). But then
u3 = const < 0 and we have a contradiction as before. Hence, u; > 0 on I_’i.

Now suppose that f1(x) >0, 0. Then u; > 0 on P; by the strong maximum principle. Based
on the matching conditions, we have u(L1) > 0, so that u» > 0 on P, by the strong maximum
principle. Similarly, we can obtain u3 >0 on P3. O
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Proposition 3.2. Suppose that c;(x) < 0. Given fi(x) € C (P;), there is a unique solution u; €
C%(P)) of (3.1) with

lutllea s, + luzllea ey + lusliea sy < Cll filles, + 1 f2lesy + 1 53lezy)-  (B3)
Proof. First, we consider the following decoupled problem:s,
—d;ii; xy — cill; = fi, x€P
with Neumann boundary conditions on each P;. By the maximum principle, we get the estimates
laille2c < Cll fillecs, (3.4)

on each patch.
Next, we define y; to be the solution of

—diy1xx —c1(X)y1 =0, x € P;, and y1(0) =1, y1,(0)=0.

By similar arguments as in [35, Proposition 3.4], we obtain yjx(L1) > 0. The same reasoning
shows that ys3, defined as the solution of

—d3y3.xx —c3(x)y3 =0, x € P3, and y3(L) =1, y3,(L) =0,

satisfies y3, (L1 + L) < 0. On P,, we define two functions, y> and yy, as the solutions of

—doyxx —2(x)y =0, x € P

with boundary conditions y,(L{ + L) = 1, yax (L1 + L2) =0 and y4(L1) = 1, yax(L1) =0,
respectively. By the same reasoning as above, these satisfy y>,(L1) < 0 and ysx (L1 + L2) > 0.
Finally, we define

up =i +ayyr, up=1do+axy, +aays, uz=1usz~+azys,

for parameters (ay, ..., as). These functions u; satisfy the differential equations and the bound-
ary conditions in (3.1). To satisfy the interface matching conditions in (3.1), we must have

diyix(Li)ar —dayrx(L1)az =0,
yi(L1)ar —kiy2(Li)ay — kiag = kyup(Ly) —uy(Ly),
d3y3x (L1 + L2)az — dayax (L1 + L2)as =0,
a —kays(Ly + La)az + ya(L1 + L2)as = kou3(Ly + La) — ua (L1 + L2).

The equations are linear in (ay, .. ., a4) and hence can be written in matrix form. The determinant
of the resulting matrix is
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d1y1x (L) [k1d3ys3x (L1 + L) (1 — y2(L1)ya(L1 + L2))
+ kikodry2(L1)y3(L1 + Lo)yax (L1 + Lo)] + dayox (L) [d3y1(L1)y3x (L1 + L2)ya(L1 + L)
—koday1 (L1)y3(L1 4+ L2)yax (L1 + L2)] > 0.

Hence, there is a unique solution for (ay, ..., as) that depends on d;, ¢; and k;, but not on f;,

where i = 1,2,3, j = 1, 2. Therefore, the solution u; satisfies the estimate in the statement of
the proposition. O

By similar arguments as in Proposition 3.2, we obtain the following result.

Propos_ition 3.3. Suppose that ci(x) < 0. Given f;(x) € L2(P)), there is a unique solution u; €
W22(P;) of (3.1) with

||u1||w2.2(}51) + ||u2||W2.2(132) + ||u3||W2.2([)3) = C(”fIHLZ([)l) + ||f2||L2(}32) + ||f3||L2(133))~

Next, we consider the eigenvalue problem corresponding to the operator £ from (3.1), i.e.,

Ligi=Api, x€P,

@1x(0) = @3, (L) =0,

dip1x(L1) = drpox (L1), @1(L1) =k1g2(L1),

drpax (L1 + L2) = dsgar (L1 + L2), g2(L1 + La) = kogs(L1 + L2).

(3.5)

Using Propositions 3.1-3.3, we obtain the existence of the principal eigenvalue for (3.5) from
the Krein-Rutman theorem [49]. We denote this eigenvalue by A1 (L), which is simple and has a

positive eigenfunction ¢ = (¢;). We shall normalize (¢;) by max sup ¢; = 1.
! XEP,'
We define super- and sub-solutions of L¢ = 0 associated with the interface and boundary
conditions in (3.5). To simplify notation, we let X = CZ(P}) x C>(Py) x C*(P3).

Definition 3.1. A function ¢ = (¢;) € X is called a supersolution of £ with the interface and
boundary conditions in (3.5), if ¢ satisfies

Ligi=0, xePp,

@1x(0) <0, @3:(L) =0,

@1(L1) =ki@2(L1), di@1x(L1)” = dagor (L)Y,

@2(L1 4+ L) =ko@3(Ly + L2), dagox(Ly + L2)~ = d3@3, (L1 + L) ™.

(3.6)

The supersolution ¢ is called a strict supersolution if it is not a solution of (3.6) with all inequality
signs replaced by equality signs. A subsolution is defined in a similar way with all the inequality
signs above reversed.

Lemma 3.4. If = (¢;) is a supersolution of L and it is nonnegative, then either ¢ =0, or ¢; > 0
in P; foralli.
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Proof. Assume @ # 0 and we shall prove that ¢; > 0 in P; for all i. Suppose that the assertion
is false. Then there exists some point xp € P; such that @i (xg) = 0 for some i. If xg € dP;,
then there are two subcases to consider: (i) ¢1(0) = ¢3(L) = 0, then by the Hopf boundary
lemma, we have ¢1,(0) > 0, and @3,(L) < 0, a contradiction to ¢1,(0) <0, @3,(L) > 0. (ii)
©1(L1) =¢2(L1 + L) =0, then ¢(L1) =0 and ¢3(L1 + L) = 0 via the matching conditions.
From Definition 3.1, it follows that do@r (L1)T < d1@1x(L1)~ <0, and d3@3, (L1 + Lo)T <
dr@2x (L1 + L3)~ < 0. This contradicts the assumption that ¢; > 0. Hence, ¢; > 0 on 9 P;. If
Xo € P;, then ¢; attains its minimum in the interior point x¢, and so it follows from the classical
maximum principle that ¢; = 0 on P;. Furthermore, by the matching conditions and the classical
maximum principle, it can be deduced that ¢ = 0, which contradicts our assumption that ¢ = 0.
Thus, we conclude that ¢; > 0 in P foralli. O

Definition 3.2. We say that £ admits the maximum principle if any supersolution ¢ = (¢;) € X
of £ is nonnegative. !

Theorem 3.5. The following statements are equivalent:

(1) L admits the maximum principle;
@) r(L)>0;

(iii) L has a strict supersolution ¢ = (¢;), which is nonnegative and not identically zero.

Proof. (i) = (ii). Suppose that A1(£) < 0. Then for the corresponding principal eigenfunction
¢; > 01in P;, we have

Li(=¢i) =2M(L)(—¢i) =0, x€P
(=91)x(0) = (—¢3)x (L) =0,
(=o)(L1) =ki(=¢2)(L1), di(—=@1)x(L1) =da(—¢2)x(L1),
(=92)(L1 + L2) = ko (—@3)(L1 + L2), do(—¢2)x (L1 + L2) = d3(—¢3)x (L1 + L2).
3.7
By applying the maximum principle to —¢;, we derive that —¢; > 0 in P;, a contradiction with
the positivity of ¢;.
(i1) = (iii). Obviously, the corresponding principal eigenfunction ¢; > 0 is a strict supersolu-
tion of L.
(iii) = (i). For any given supersolution ¢ of L, if ¢ > 0, then there is nothing to prove.
Assume for contradiction that infp, ¢; < 0 for some i.
Let ¢ be a strict supersolution of £, then ¢ # 0 and infp, ¢; > O for all i by Lemma 3.4. Then
consider ¥ = ¢ + kg, where k > 0 is chosen such that min (inf P, wi) =0. Then by Lemma 3.4
]

again, we deduce that ¥ = 0. However, this implies that ¢ = —k¢. So it ¢ is simultaneously a
supersolution and a strict subsolution, which is a contradiction. 0O

Here, we give two comparison lemmas for the principal eigenvalue of (3.5). These principles
are extensions of the corresponding results for scalar equations in [26, Lemmas 1.3.12-1.3.13].

1 Different authors have proposed different formulations of a maximum principle or a strong maximum principle. Our
definition follows Gilbarg and Trudinger’s book but differs slightly from that in [18].
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Lemma 3.6. Suppose there exists a function w = (w;) € X and a constant A such that w; > 0 in

P; is a supersolution of (3.5) in the sense that

Liw; > lw;, x € P,

wix(0) <0, w3, (L) 20,

wi(L1) =kiwa(Ly), dywix(L1)~ = dowa (LT,

wa (L1 + L2) = kows (L1 + L2), dywa, (L1 + L)~ > d3ws, (L1 + Lo)*.

(3.8)

Then L1(L) > A, and equality holds iff w; is the corresponding eigenfunction.
Proof. If all the inequalities in (3.8) are equalities, then w; is a solution and it follows that
A1(L) = A. Otherwise, w; is a strict supersolution, then we may apply Theorem 3.5 to the oper-

ator L =L — A to conclude that A{(£) >A. O

Lemma 3.7. Suppose there exists a function w = (w;) € X and a constant ) such that w; is a
nonnegative subsolution of (3.5) in the sense that

[,,'w,' 5)_\11),-, x e P,

wix(0) >0, ws, (L) <0,

wi(L1) =kiwa(Ly), diwix(L1)” < dawae (LT,

wa (L1 + L2) = kows(L1 + L2), dowac (L1 4 L)~ <dsw3, (L1 + L) ™.

Then Ay (L) < A, and equality holds iff w; is the corresponding eigenfunction.
Proof. The proof is analogous to Lemma 3.6 and is omitted. O
4. Analysis of the eigenvalue problem

In this section, we study how the principal eigenvalue depends on the movement-related pa-
rameters, i.e., on the diffusion coefficients (d;) and the preference probabilities at the interfaces
(aj); see Section 2.

The eigenvalue problem consists of the three equations

di@ixx +ci(x)pi +Ap;i =0, xeP i=1,2,3, 4.1)

together with the boundary and interface matching conditions

¢1x(0) =0, (4.2a)
dig1x(L1) = dagax (L1), @1 (L1) = kig2(L1), (4.2b)
drpox (L1 + L) = d3@3x (L1 + L2), 92(L1 + L2) = kap3(L1 + L2), (4.2¢)
@3:(L) =0, (4.2d)

where k; are as in (3.2). As in the preceding section, we shall assume throughout that the eigen-
function is positive and normalized to max; sup s, ¢; = 1.

9
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As indicated in the introduction, we write the diffusion coefficient in each patch as the product
of a patch-dependent rate (d;) and an overall diffusion propensity parameter (d). Hence, we set
d; = dd;. Consequently, the dimensionless parameters k; depend only on d; and are independent
of d. As parameters «; denote probabilities, they range in [0, 1], whereas d; and k; can assume
any positive value.

We begin with a general upper and lower bound of the principal eigenvalue A;.

Lemma 4.1. The principal eigenvalue Ay of (4.1)—(4.2) satisfies

min {—maxc;(x)} <i; < max {—minc;(x)}. 4.3)
i=1,2, XEP; i=1,23  xep;

Proof. We integrate the equations in (4.1) over their respective interval P; and add the results.
The boundary and interface matching conditions ensure that all the terms containing ¢;, disap-
pear. We obtain

L, Li+L, L
A /(mdx—l— / @dx + / @3dx
0 Ly Li+L;
L Li+L> L
- / 1 ()grdy — / e (1) gadx — f &3 (1) gad
0 Ly Li+L;
L Li+L, L
> —maxci(x) | ¢1dx —maxca(x) @2dx — maxcz(x) @3dx
xeP; xeP XeP;
0 Ly Li+L;
Ly Li+L, L
> min{—max ¢ (x), —max cz(x), —max c3(x)} /‘/’ldx+ / @adx + / @3dx
xeP; xeP xeP3
0 Ly Li+L>
Hence,
A1 = min{—max ¢} (x), —max cz(x), —max c3(x)}. 4.4
xeP; xeP xePs

The upper bound follows from similar considerations. O

When c¢;(x) is constant, the eigenfunction ¢;(x) exhibits monotonicity with respect to the
spatial variable x in some special cases.

Lemma 4.2. Let ¢;(x) = ¢; be constants. Then we have the following statements.

(1) If c3 = cp = c1 with at most one equality, then ¢1x(x) > 0in (0, L1], ¢3x(x) >0in [L] +
Ly, L), and ¢2x(L1) > 0, ¢ox (L1 + L2) > 0;

(1) If c3 < cp < c¢1 with at most one equality, then ¢1,(x) <0 in (0, L1], ¢3x(x) <0in [L] +
Ly, L), and ¢2,(L1) <0, ¢2x (L1 + L) <O0.

10
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Proof. Let us consider case (i). Integrating the first equation of (4.1) over (0, x), x < Ly, we
have

X
dig1x(x) = —(c1 +/\1)/<P1ds-
0

Similarly, we have

Yy
dr92x(y) — drpax (x) = —(c2 -Hn)/(ﬂzds, Li<x<y=<Li+Ly,
X

L

d3@3x (y) = (c3 +)»1)/¢3d8, Li+Ly<y<L.
y

When x = L,y =L + Ly, we can obtain that

Li+L>

L L
0=(c1 +M)f<ﬂ1dx+(62+)»1) @2dx + (c3 + A1) / @3dx
0

Ly Li+L,
L Li+L, L
> (c1+ A1) /cpldx+ / @adx + / @3dx
0 L Li+L,

Hence, c; + X1 < 0. Similarly, we have ¢34+ A1 > 0. Therefore, @1, (x) > 0in (0, L1], ¢3x(x) >0
in [L1 + L, L). Moreover, we have ¢, (L1) > 0 and @2, (L1 4+ L») > 0 based on the interface
conditions. 0O

4.1. The properties of the principal eigenvalue with respect to diffusion

The question of how the principal eigenvalue depends on the movement behavior of the pop-
ulation has been studied in many contexts [6,10,24,26,39,51]. It can give important insights into
optimal movement rates for population persistence or the evolution of dispersal ability. We study
this question for our patch model. To indicate the parameter dependence, we denote the principal
eigenvalue by A; = A (d) and by ’ the derivative with respect to this parameter d.

Lemma 4.3. Let A1 = A1 (d) be the principal eigenvalue of (4.1)—(4.2). Then )‘/1 (d) = 0. More-
over, )»’1 (d) > 0 for all d > 0 unless there is a constant ko such that c;(x) = kg in P; foralli. In
the latter case, we have A (d) = ko for all d > 0.

Remark 4.4. In the jargon of population dynamics, this lemma establishes the reduction prin-
ciple [1]. In the next section, we state as a consequence of this lemma the evolution of slow

dispersal (Theorem 5.9).

11
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Proof. We differentiate equations (4.1)-(4.2) with respect to d (denoted by ') and obtain

digiex +ddig) . +ci (V)] + Mg, = —1|(d)g;, x€P 4.5)

with boundary and matching conditions

@l (0) =g} (L) =0,
dig) (L1) = dagly (L1), ¢} (L1) = k1¢h(Ly), (4.6)
drgy (L1 + Ly) = d3gy (L1 + L2), ¢y (L1 + L2) = kol (L1 + Lo).

Multiplying the equations of (4.5) by ¢1, k19> and k1 ka3, respectively, integrating the equations
over [0, L], [L1, L1 + L7], and [Lq + L, L], respectively, and adding the results, we obtain

L Li+L> L
21 (@) f prdx + / kigpydx + / kikapydx
0 Ly Li+L>
Ly
= /671<p1,xx<p1 +ddi¢] . @1 + 1 (X)@| @1 + Mi@|prdx
0 (4.7)
Li+Ly
+ ki / drp2,xx 92 + ddog) . 2 + C2(X)P5 02 + 1 @hpadx
Ly
L
+ kiks / d303 xx@3 + dd3g . 3 + c3(X)P503 + M1 @5@3dx.
Li+Ly
By using the boundary and matching conditions (4.6), we obtain
Ly Li+L»> L
/dglfﬂi,xxfﬂldx + / kldczz(pé’xx(pzdx + / klkzdczg(pé,”gogdx
0 L Li+L
‘ e (4.8)
Ly Li+L»> L
= /djlgol,xxﬁpidx + / kldg2(p2,xx(pédx + / k1k2dj3(p3,xx¢édx'
0 Ly Li+L>

Substituting (4.8) into (4.7), we have

12
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L Li+Ly L
- (d) /(plzdx—k / kl‘ﬂ%dx+ / klkzwgdx
0 Ly Li+L»

Ly Ly
= /6?1901,“(/)1 + [ (ddi@y xx + c1(x)@1 + A191) @) dx

0 0

Li+L> Li+Ly
+ / kidaa xx 2 + / ki(ddag xx + c2(x)p2 + h1g2)@hdx

Ly Ly

4.9)
L L

+ / kikods g3 xx 3 + / kika(dd33 xx + c3(x)@3 + A193)@hdx
Li+Loy Li+L,
L Li+L> L

=/071<ﬂ1,xx<ﬂ1 + / kidag2 xx 2 + / kikod3 93 x5 03
0 Ly Li+L;
Ly Li+L, L

= —/a?upfx — / k1€72¢%,x - / k1k2673<ﬂ§,x <0.
0 Ly Li+L>
Hence, 1 (d) > 0 for all d, i.e., A1 (d) is non-decreasing in d > 0.

Suppose )Jl (d) =0 for some d > 0, then it follows that ¢; , =01in P; forall i i.e., ¢; = ¢; in
P; for some constant c¢;. This happens if and only if

ci(x)=r(d) fori=1,2,3.

Hence, we deduce that if ¢; (x) = k¢ for some constant ko independent of i, then A;(d) = ko for
all d > 0. Otherwise, we have A’l(d) >O0foralld >0. O

Lemma 4.5. In the limit of large diffusion, we obtain

L Li+L L
Jo ter(x)dx + % le]+ Zeo(x)dx + ﬁ IL1+L2 c3(x)dx

L+ %L2+ ﬁl@

lim Ai(d) =— (4.10)
d— 00

Proof. Dividing (4.1)-(4.2) by d, we find

digiex + 1(ci(x) + 11(@)gi =0, x € P,

01:(0) = @3, (L) =0,

dig1x(L1) = dogac (L1), 91(L1) = k12 (L),

dr@ac (L1 + L) = d3g3x (L1 + L), 92 (L1 4 Ly) = kogs (L1 + Ly).

We now let d — 0o. As 11(d) is bounded, so is the term multiplying ¢; in the differential
equation. Hence, by standard L” estimates for elliptic equations, we obtain a (sub-)sequence of

13
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corresponding eigenfunctions that converge weakly in Wz”’_(ﬁ,-). By a suitable Sobolev embed-
ding, this gives us a strongly convergent sequence in C'(P;). Hence, we have (¢;) = (@ico)s
where @;~o satisfies

dipicoxx =0, x € P,

Ploo,x 0) = P300,x (L) = 0,

di19100,x(L1) = drp200.x (L1), P100(L1) = k19200 (L1),

@200 (L1 + L2) = d3¢300,x (L1 + L), p200(L1 + L2) = ka@3ee (L1 + L2).

Hence, ¢;~ is constant on each patch. By the interface matching conditions, we have ¢, = c,
P00 = ki and @300 = ﬁ for some positive constant c¢. The constant ¢ is chosen such that
¢ =min{l, k1, k1k2}, ensuring that max; SUp j, Pico = 1.

Integrating the equations of (4.1) over [0, L], [L1, L1 + L2], [L1 + L2, L], respectively, and
adding the results, we have

L Li+L, L
r(d) /<p1dx + / @2dx + / @3dx
0 L Li+L,
L Li+Ly L
=— / d191,xx + c1(x)@1dx — / dr2 xx + c2(x)padx — / d3¢3 xx + c3(x)@3dx.
0 L Li+Ly

According to the boundary and matching conditions, we have

Ly Li+Ly L
/dl(pl,xx + / d2‘p2,xx + / d3§03,xx =0.
0 L, Li+L,

Letting d — oo, we obtain the desired result

Jo er@groodx + [ 2 (1) @a0edx + [, €3(X)@300dx
L Li+L L
0 ' @1o0dx + lel+ 2 gaoodx + fL1+L2 $300dx

fOL' c1(x)dx + % fLLl]+L2 cr(x)dx + ﬁ fLL]+L2 c3(x)dx

L+ %Lz-{- ﬁL3

lim A;(d) =—
Jim @

Lemma 4.6. In the limit of small diffusion, we find

lim A1(d) = min{—maxcy(x), —max cz(x), —maxc3(x)}. “4.11)
d—0 xeP; xeP, X€P3

Proof. According to (4.4), we have

X1(d) = min{—max c| (x), —max c2(x), —max c3(x)}
xeP xepP, XeP3

14
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forall d > 0.
Next, we prove

limsup A1 (d) < min{—maxc;(x), —max cz(x), —maxc3(x)}, 4.12)
d—0 xeP; xepP, xeP;

which is equivalent to proving

limsup A (d) < —maxc; (x), i=1,2,3.
d—0 )CEP,'

For any xg € Py, fix 0 < r < dist(xo, d P1), and let 1 and ¢ be the principal eigenvalue and
eigenfunction of the problem

1.xx + 1161 =0 in B, (xp), ¢1 =0 on 3B, (x0).
Noting that ¢; > 0 in B, (xo) and ¢1 = 0 on 9B;(xp), up to multiplication of ¢ by a positive

constant, one may assume that ¢1 > ¢ in B, (xo) and @1 (x)) = ¢1(x;) > 0 for some x;, € B, (x).
Hence, by the maximum principle, we have @1, ¢ (x) > ¢1 xx(x(). Then,

ddy 1 (x() = —ddi 1 xx (x) > —dd1 91 cx (x}) = c1(x0)P1 (x0) + A1 (d)p1 (x().

Dividing by ¢1(x()), we have
M(d) <ddipy —er(xp) <ddypg — inf ¢ (x).
By (x0)
Taking the limsup as d — 0 and letting r — 0, we obtain

limsupA;(d) < —c1(xg), for xg € Py.
d—0

Since xg is arbitrary, we have

limsup A1 (d;) < —maxci(x).
d—0 xeP;

Similar considerations apply to the two other patches. Therefore, (4.12) holds. Combining (4.4)
with (4.12), (4.11) follows. O

4.2. The properties of the principal eigenvalue with respect to patch preference

The question of how the principal eigenvalue depends on the patch preference parameters
has not been studied before. This question is, however, somewhat related to the question of how
the principal eigenvalue depends on directed movement (“advection”), which has been studied
in a variety of contexts; see [3,12,25,30]. To indicate the parameter dependence, we denote the
principal eigenvalue by A1 = A (o, ap).

15
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Lemma 4.7. The total differential of the principal eigenvalue of (4.1)—(4.2) is given by

dri (a1, a2) = 0g A (a1, a)day + g, A1 (e, ap)don,

where 0y, A1 (a1, 02) and 94, A1 (a1, o2) are given by

mdwz(h)(mx (L)
L Li+L L
fo : <pfdx + le1+ 2k1<p§dx + fL.+L2 k1k2<p§dx

Og A1y, a2) =

and

(l_k—(iz)zdw%(h + L2)gax (L1 + L2)

L Li+L L :
Jotetde+ [T kipddx + [, kikagddx

Oup A1y, a2) =

Proof. Differentiating both sides of (4.1)-(4.2) with respect to «, and denoting % =", we

obtain

di@ixx + i ()i + M (ar, @)@ = —hi (a1, @), x€P;
with boundary and matching conditions
@1x(0) = @3, (L) =0,

di1x(L1) = dagna(L1), 61(L1) = g2 oa(L1) +kiga (L),
ooy (L1 + La) = d3@3x (L1 + L), ¢2(L1 + L2) = kag3(L1 + La).

4.13)

(4.14)

(4.15)

(4.16)

4.17)

Multiplying the equations of (4.16) by @1, k192 and k1ka@3, respectively, and integrating the
results over [0, L1], [L1, L1 + L2], and [Lq + Lo, L], respectively, and adding the results, we

obtain
L Li+Ly L
—hi (a1, @) /fpfd)H- / kip3dx + / kikog3dx
0 L Li+L;

Ly
=/d1¢1,xx</>1 +c1(X)@191 + A (o, a2)@re1dx
0

Li+Ly
+ ki / dr2,xx P2 + C2(X) 202 + Ay (a1, a2)@2g2dx
Ly
L

+ kiko / d33, xx @3 + c3(X) 9303 + Ay (a1, a2)@393dx.

Li+L,

16
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By using the boundary and matching conditions (4.17), we obtain

Ly Li+L» L
/dl¢l,xx¢1dx + / k1d2¢2,xx§02dx + / klk2d3¢3,xx(p3dx

0 Ly Li+L>

1
= —mdz(Pz(Ll)QDlx(Ll) (4.19)

Ly Li+L, L

+/d1<m,xx¢1dx—i- / kidr @z, xxp2dx + / kikodz @3 xx@3dx.
0 Ly Li+L,

Substituting (4.19) into (4.18), we have

L Li+Ly L
— il(al, o)) /(plzdx + / klfp%dx + / k1k2<p32dx
0 Ly Li+L,
Ly
= —ﬁdﬂpz(h)wx(h) + /(dw?l,xx +c1(x)e1 + A (ar, a2)pr)@rdx
0
rattz (4.20)
+ / ki(d2@2,xx + c2(x)@2 + A1 (a1, @2)@2)@rdx
L,
L
+ / kika(d3@3 xx + c3(xX)@3 + A1 (o, o2)@3)@3dx
iYLy

1
= —mdzfpz(Ll)(Dlx(Ll)-

Hence, (4.14) follows. The derivation of (4.15) follows the same ideas. O

Our next goal is to investigate the asymptotic behavior of the principal eigenvalue as the patch
preferences o tend to O or 1. The biological interpretation is that when o — 0, individuals
at the interface between patches 1 and 2 have a strong preference for patch 2, whereas when
a1 — 1, they have a strong preference for patch 1 (see Fig. 1). In the limiting cases, all individ-
uals leave the patch or no individuals leave the patch, depending on which side of the interface
we consider. For that reason, we can expect that the matching conditions at the interface will
decouple and become hostile or reflecting conditions accordingly. Therefore, it will be useful to
consider subproblems to our problem, namely eigenvalue problems that are defined on only one
of the three patches or on two adjacent of the three patches. With this in mind, we introduce the
following notation.

17
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Notation. We consider the eigenvalue problem on a single patch

divixx +ci(X)Y +Aihi =0, x € P, 4.21)

with several combinations of reflecting (Neumann) and hostile (Dirichlet) boundary conditions.
We denote by A{v D the principal eigenvalue of the elliptic eigenvalue problem (4.21) with Neu-
mann boundary conditions at the left endpoint and Dirichlet conditions at the right endpoint of
P;. Similarly, we define A{v N, kiDN , and AiDD. In the same way, we may consider the eigen-
value problem on two adjacent patches, say patches 1 and 2, with Neumann conditions at the
left endpoint of P; and Dirichlet conditions at the right endpoint of P, and the usual interface
matching conditions at the boundary point between P; and P,. We denote the corresponding
principal eigenvalue by )le\,/zD-

Lemma 4.8. The principal eigenvalue A1 (a1, ®2) of (4.1)—(4.2) satisfies

Iim XAp(aq, o)
ay,a0—0

= min{/P 2P ANy, (4.22)

Moreover, the limiting cases of the corresponding eigenfunctions are as follows

@ if 1P < min{y PN, then (1,92, 93) = VP A ) in CH(P) x C(P2) %
CH(P3);

(i) 237 = min{ag P 3PNy <IN then (o192, 93) — (0.3 P 43) in €' (Py)
C'(Py) x C'(P3);

(i) if AN =min(ANP 2P AN, then (g1, 92, 93) — (0,0, YNy in C1(Py) x C1 (Py)
Cl(Py);

D D
NP N,

where w{\/ D wé\/ D and wé\f N are eigenfunctions corresponding to and

respectively, while 1}2, 1}3, and 1,33 are the positive solution of the following corresponding prob-
lems:

A cx + 22+ ANVPYL =0, x € Py, datiac (L) =diyriP (L) <0, Yo(Ly + Ly) =0;

4.23)
d393 0 + 33 + AV P =0, x € P3, wat)
d3Va (L1 + L) = daac (L1 + Lp) < 0, Yray (L) =0;

A~ ~ ND A
d3 3 xx +c3(X)Y3 + A 3=0, x € P3,
3Y3.0x F3(X0)V3 + A5 T3 3 “25)

s (L1 + Lo) = dyyy P (L1 + La) <0, Y3 (L) =0.
Proof. We first prove that there is a constant M, independent of & 2, such that ||¢; ez py=M

fori =1, 2, 3. This uniform bound will then ensure that the limit in (4.22) exists.
For ¢, we rewrite equation (4.1) as

1
Plax = —d—](cl(X) + Ar(ay, a2))er.

18
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Since ¢ is bounded by 1 by construction and A1 is bounded by Lemma 4.1, so is ¢; ... Integrat-
ing the first equation of (4.1) over (0, x), x < L, we have

1 X
P1x(x) = a4 /(01 (x) + A1 (o, @2))@rdx.

As before, from the bounds of ¢; and A; it follows that ¢; x is bounded. Since the bounds of
¢1 and A are independent of {¢;};—1, there exists a constant M > 0 independent of {w;}i—1
such that ||¢; ||C2( Py =M. The same reasoning leads to corresponding bounds for ||(p2||cz( )

and ||€03||(12(133)
Before we pass to the limit, we observe that

(e, a2) < minfa] P, aV Py, (4.26)

where and are the principal eigenvalues of the subproblems on patch 1 and patches
1 and 2 respectlvely, with Neumann conditions on the left and Dirichlet conditions on the
right, see (4.21). We obtain this inequality from eigenvalue comparison: The eigenfunction ¢ of
A1 (e, arp) is a strict supersolution of the eigenvalue problem of AN D . Similarly, the pair (¢1, ¢2)
is a strict supersolution of the eigenvalue problem of )‘/1\,/ D Hence, A1 (a1, a2) is bounded by ei-
ther of those eigenvalues.

Note that the principal eigenfunction of )\jl\’[zp depends on « (but not on «p) because o de-
termines the interface matching conditions between patches 1 and 2. We can assume that this
principal eigenfunction (¢}, ¢5) is normalized such that [|¢][loo + |95 llcc = 1. By the same rea-
soning as above, we can also assume that it is uniformly bounded in C2.

Finally, we consider the limit as o; — 0. By the Arzela-Ascoli theorem, we can pass to a
subsequence, such that along this subsequence, Aj(ag, a2) — A and o = @; >0 in Cl(f_’,-).
Hence, the limiting functions ¢; satisfy

di @i xx + i ()@ + Ag; =0, x € P, (4.27a)

¢1:(0) =0, ¢1(L1) =0, (4.27b)

di@1x(L1)~ =da@or (L)Y, @2(L1 4 L) =0, (4.27¢)

do@ax (L1 + L2)”™ =d3@3 (L1 + L) T, @3 (L) =0, (4.27d)

@ >0 and maxsupg@; = 1. (4.27e)
b oxep

By passing to a further subsequence, one can also assume that the principal eigenvalue AN D

and its eigenfunction (¢}, ¢5) also converge to some limit )»Nz and (¢}, ¢5), and they sat1sfy a
limiting system of two equations satisfying the conditions (4 27a)-(4.27¢). In particular, (4.26)
then implies that

% <min(3P 3Py (4.28)

Note that the limiting system decouples in the following sense: the equation for ¢ is inde-
pendent of the other two equations but influences the equation for ¢,. The equations for ¢; and
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¢> combined are independent of the equation for ¢3 but they influence the equation for ¢3. This
mathematical observation (which we exploit in the proof below) nicely corresponds to the bi-
ological interpretation of the limit a; = 0: individuals from patch 1 enter patch 2 but not vice
versa; therefore the dynamics on patch 1 are independent of those on patch 2 but influence those
on patch 2. The same consideration applies to the interface between patches 2 and 3.

Next, we prove that the limiting value A is bounded above by the minimum in (4.22). From
(4.28), we already have that A < AJI\/ D Then we note that @3 # 0, since, if @3 =0, then, by the
matching conditions at L1 + L,, we also have ¢, = 0, which, in turn, implies that ¢; = 0, again
by the matching conditions. But not all functions ¢; can equal zero since their maximum must
equal 1. Since @3 5 0, it is a supersolution to the eigenvalue problem of Aé\[ N see “4.21). It
follows by eigenvalue comparison that

L <MV (4.29)

To prove the missing inequality that A < Aé\/ D we first note that from (4.28) we already have
X< X%D. Then we argue for patch 2 in the subproblem of two patches in the same way as we
just did for patch 3 in the full problem on all three patches: we must have ¢} # 0, because if it
was zero, then gbi would be zero as well, which is impossible. Since gbé is not identically zero, it
is a supersolution to the eigenvalue problem of )LJZ\/ D Therefore, by eigenvalue comparison, we
have

WP <P, (4.30)
Hence, we have proved that
A= lim Ai(or, @) <min{AVP 2P VN, 431

o1,0—>

To show the equality (4.22) and the particular form of the eigenfunctions in the limiting cases,
we consider several cases.

Case (i). If ¢; # 0 on Py, then, ¢; is a solution of the eigenvalue problem on P with Neumann
and Dirichlet boundary conditions on the left and right, respectively. In particular, A = )le\/’ D,

Q1= wlND on P;. By (4.31), we have )»{\[D = min{A/]\/D, )\é\n), AévN}. Since ¢ # 0, the inter-
face conditions ensure that ¢, @3 # 0 and that they are positive, strict supersolutions to )»év D and
)\é\/ N, respectively. This implies that )»/1\/ D < min{ké\/ D, )\é\/ N 1, anfi, by app}ying the Fredholm
alternative theorem, that (4.23) (resp. (4.24)) has a unique solution ¥, (resp. ¥3). By uniqueness,
we have (@7, 3) = (Y2, ¥3). Hence, we conclude that

=P <minfP YNy and @1, 02, 03) = VP o ). (432)

Case (ii). If ¢; =0 on P; but ¢, = 0 on P, then, ¢, is a solution of the eigenvalue problem on
P> with Neuman and Dirichlet boundary conditions on the left and right endpoints, respectively.
In particular, A= ké\[ D, Q2= wé\[ D on P>. Arguing as in case (i), we deduce that on patch three,
@3 > 0 1is a positive strict supersolution to Agv N , so that ké\/’ D_j< )»gv N, Therefore, (4.25) has
a unique solution, denoted by 1/}3. Again, uniqueness lets us conclude that
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=P = min AV P NP MV <N and (@1, 62, 33) = 0,9V, ). (433)

Case (iii). If ¢; =0 on P;, and ¢ = 0 on P,, then necessarily ¢3 £ 0 on Ps. In that case, @3 is a
solution of the eigenvalue problem on P3 with Neumann boundary conditions at both endpoints.
In particular, A = Ag\[ N and 03 = %N N on Ps. Hence,
=N =minfaP 2PN and (@1, 6, 33) = (0,0, YY), (4.34)
Finally, by examining the inequalities in (4.32), (4.33) and (4.34), one can observe that if the
minimum value of {)\{v D Aé\/ D ké\/ N } is achieved by kév N (which includes the case when two
or all of them are equal), then case (iii) must hold. If the minimum is achieved by )»év D but not
by ALV, then case (i) must hold. If the minimum is achieved neither by 1) nor by AY'", then
case (i) must hold. This completes the proof. O

Remark 4.9. As noted in the preceding proof, the limiting case of «; = 0 induces directionality
into the system. The dynamics on patches to the left are independent of the dynamics on patches
to the right, but the dynamics on patches to the right are influenced by the dynamics on patches
to the left. The situation is reminiscent of a stream or river where information flows downstream
(to the right) but not upstream (to the left). What we learned intuitively from the predecing
proof is that when we have a (sub-)system of two adjacent patches with flow from upstream to
downstream, then the eigenvalue of the limiting case is bounded above by the minimum of the
decoupled eigenvalue problems on each patch with appropriately chosen boundary conditions at
the interface: Dirichlet conditions at the downstream end of the upstream patch and Neumann
conditions at the upstream end of the downstream patch.

With this insight, the proof of the above lemma can be generalized to any finite number of
linearly arranged patches with interfaces and corresponding movement probabilities between
them. From any given patch, one can trace upstream to find a unique “top” patch. If the limiting
function is identically zero on some patch, then it is necessarily zero on all “upstream” patches; if
the limiting function is not zero on some patch, then it is necessarily positive on all “downstream”
patches as well. This property allows us to generalize to, say, N linearly arranged patches where
movement at the interfaces is, say, to the right. We obtain eigenvalue estimates corresponding to
(4.28) and (4.29) for the first (most upstream) and the last (most downstream) patch and the set
of the top N — 1 patches. Then we proceed by induction.

As the mirror symmetric case of the preceding lemma, if we change the limit from «; — 0 to
aj — 1, we simply switch the direction of the influence or hierarchy. The “river” now flows to
the left, and the following analogous result holds.

Lemma 4.10. The principal eigenvalue L1(a1, op) of (4.1)—(4.2) satisfies

lim  Aq(a1, @2)
ay,0p—1

= min{aN APV ANy (4.35)

Moreover, the limiting cases of the corresponding eigenfunctions are as follows

Q) if AN = minGNN RPN PN, then (o1, 92, 93) — VN, 0,0) in ' (Py) x C () x
Ccl(P;);
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(i) if PN = minN 2PN ADNY <N then (o1, 92, 03) = @i, y PN, 0) in € (Py) x
Cl(Py) x C1(P3);

i) if APV < min{aNN ADPNY, then (1, 92, 93) = (@1, W, WPV in CH(Py) x C(Py) x
Ccl(P3);

where w{\f N, Wg) N and l/I3D N are eigenfunctions corresponding to )‘/1\/ N, AZDN and A3DN , re-

spectively; I/A/l, 1}1, and I/V/z are the positive solution of the following corresponding problems:

A xx + €1 (D) -H»ZDN% =0, x€ P, Y1:(0)=0, di1(L1) =d21/f2DxN(L1) >0;
A e + 1) +25VP1 =0, x € P, 100 =0, diirie(L1) =davpae (L) > 0;
doVra cx + C2(X)V2 + )»?N’ﬁz =0, xe Py, yn(L) =0,

daVae (L1 + Lo) =dyy DN (L) + Lo) > 0.

The previous two lemmas dealt with the case that all individuals move to the left (Lemma 4.10)
or all move to the right (Lemma 4.8) at both interfaces. Now, we turn to the mixed cases, where
o and a tend to different limits, i.e., individuals move to the left at one interface and to the
right at the other. There are two cases. We start with the case (a1, a2) — (0, 1), when individuals
move to the middle patch (which then is “downstream” of both, patch 1 and 3). Later, we treat
the remaining case («1, ) — (1, 0), when individuals move to the outer patches (so that the
middle patch us “upstream” of both patch 1 and 3).

Lemma 4.11. The principal eigenvalue A (a1, an) of (4.1)—(4.2) satisfies

lim WND AN PNy,

i A1 (a1, @2) = min{
(or1,02)—(0,1)

(4.36)

Moreover, the limiting cases of the corresponding eigenfunctions are as follows

@) 2P =min{p P 20N 2PNy < 2N then (g1, 92, 93) = GNP 2, 0) in € (Pr) x
Cl(Py) x C(P3);
(ii) ifAQ_W = min{3Y P, NN APNY, then (1, 92, 93) — (0, ¥V, 0) in C' (Py) x C' (P) x
Cl(Py);
Qi) if APN =min{aAP, N APNY <N then (o1, 92, 93) = (0,42, yPN) in €1 (Py)
Cl(Py) x C(Py);

where 1//{\/ D wé\/ N and 1//3D N are eigenfunctions corresponding to )‘/1\/ D )ré\[ N and )\%)N , re-
spectively, while > and @2 are the positive solution of the following problems, respectively,

oV xx + C2(X) V2 -H»Jl\ml}z =0, x € Pa, dorac(L1) =d IlfﬁfD(Ll) <0, Yo (L1 + L) =0.
(4.37)

dy ¥ xx + €2V -H»gDN@z =0, x€ Py, Y (L) =0,

- N (4.38)
dryrox (L1 + L) =d337" (L1 + La) > 0.
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Proof. We only outline the proof since the details are similar to the proof of Lemma 4.8 and
the more general insights that resulted from it. By eigenvalue comparison, we have A(1, op) <

min{)»jl\/ D, )\3DN }. Passing to the limit, we obtain
= lim Ay an) <min(VP 2PV,
(er1,02)—(0,1)

Now, since patch 2 is the downstream patch, we deduce that the corresponding part of the eigen-
function satisfies ¢, # 0. Therefore, it is a supersolution to the eigenvalue problem corresponding
to ké\/ N, Hence, we have A < ké\/ N In summary, we proved

% <min{AVP NN APV, (4.39)

Now, to see that the above inequality is an equality, it suffices to observe that exactly one of the
following alternatives holds: (i) ¢; # 0 or @3 £ 0; (i) ¢1 = ¢3 =0 and ¢, # 0. In case (i), we
find that A = A{v D or A3DN , Whereas in case (ii), we have A = Aé\[ N o

Finally, we look at the case where individuals move to the left at the left interface and to the
right at the right interface. In other words, individuals move from the center to the boundary
patches.

Lemma 4.12. The principal eigenvalue L1(a1, op) of (4.1)—(4.2) satisfies

lim Ao, a0) = min{kjl\/N, kzpp’ ké\[/\/}. (4.40)
(a1,02)—>(1,0)

Moreover, the limiting cases of the corresponding eigenfunctions are as follows

(@) if AP < min(AM N N, then (g1, 92, 93) = (1, Y PP, ) in C1(P) x C'(Py) x
Cl(Py);
Qi) if WA =min{af N ADP AVNY <0V, then (o1, 92, 93) > N, 0,0) in € (Py) x
Cl(Py) x C1(Py);
(iii) i AN = min{a N AP ANy <OV, then (g1, 02, 93) — (0,0, YN in €1 (Py) x

Cl(Py) x C1(P3);
wlNN, wZDDandlpévN A{W\/, )»%)D andké\/N, re-

where are eigenfunctions corresponding to

spectively; Y| and Y3 are the positive solution of the following problems, respectively,

d1 V1 x + €1 ()P +)»2DDIZ1 =0, x € P, Y1:(0)=0, diyr1(L1) = dzl//ZDxD(Ll) > 0.
4.41)
d3V3.xx + 30 Y3 + 25 P Y3 =0, x € Ps,

i o ~ (4.42)
d3¥3x (L1 + L2) = datpry, " (L1 4 L) <0, ¥3:(L) =0.

Proof. Again, we only outline the proof, using the insights from the proof of Lemma 4.8 and

subsequent remark. By eigenvalue comparison, we have Aj(o, o2) < min{AZDD, A/l\sz, A?é\/ 1
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where the elements in the set are defined as in (4.21) and “Notation”. By passing to the limit, we
obtain the upper bound

A= lim xl(al,az)gmin{xgm,)\lz ,A%’ . (4.43)
(ay,a2)—(1,0)

Now, since patch 1 (resp. patch 3) is the downstream patch in the limiting system of )_\{VZD
(resp. )_Lgé\/ ), we argue (in a similar fashion as in (4.30) and the corresponding remark) that

P <N and 3PN < V. (4.44)
Combining (4.43) and (4.44), we have again proved
% <min{AVN A PP Ny (4.45)

Finally, to see that the equality holds in (4.45), we divide into the following cases: (i) ¢, ;ﬁ 0;

(11) @2 = 0. In the first case, A = ADD In the latter case, @1 % 0 or @3 # 0, whence A = A
=xN. o

5. Analysis of the positive steady state

In this section, we analyze evolutionarily stable dispersal strategies by studying the positive
steady states of a three-patch model. We begin by examining the existence and qualitative prop-
erties of positive steady states for a single species. This is followed by an invasion analysis in a
two-species system, where dispersal rates and patch preferences are treated as evolutionary traits.
The section concludes with a discussion of the ideal free distribution under specific conditions.

5.1. Existence and qualitative properties of the steady state

The population density u; on the patch P; satisfies the following equations; see (2.2):

uit=diu,-,xx+riu,-(1—1"<—"i), xeP, t>0,

u1x(0,1) =usy (L, 1) =0

diuix(Ly, 1) = dousy (L1, 1), ur(Ly,t) =kiua(Ly, 1),

dauzy(Ly + Lo, t) = dsusy(Ly + Lo, t), ua(Ly + Lo, 1) = kouz(Ly + Lo, 1).

5.1)

We first prove the existence and uniqueness of the positive steady-state solution for model
(5.1). Then, we classify the possible qualitative shapes of this positive steady-state solution.
Finally, based on this classification, we discuss the relationship between the total population
abundance at steady state and the total carrying capacity.

Theorem 5.1. There exists a unique positive steady-state of (5.1), denoted by u}, which is glob-
ally asymptotically stable.
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Proof. Since the single equation for u; in (5.1) is monotone and of logistic type, the existence
and uniqueness of a positive steady state for (5.1) is equivalent to the trivial steady state being
linearly unstable (see [6, Propositions 3.2-3.3] and [26, Appendix C]).

Let (171, ¢;) be the principal eigenpair of

digixx +ridhi +mei =0, xeP

¢1x(0) =¢3x(L) =O,

dig1x(L1) = daox (L1), d1(L1) = ki¢2(L1),

drpox (L1 + Ly) = d3psx (L1 + L), $2(L1 + L2) = kap3(L1 + L2).

(5.2)

1 1

Multiplying the equations of (5.2) by o Tt and W, respectively, and integrating the results

over [0, L1], [L1, L1 + L2], and [Lq + L, L], respectively, and adding the results, we obtain

Ly, 97 1 L+l 93, 1L 93
. 0 d1W+r1dx+Ele d2W+r2dx+mel+de3@+r3dx<O
m= T 1 :
Li+ gL+ gils

Hence, the trivial steady state is unstable, and there is a unique positive steady-state solution,
denoted by u}. By the monotone dynamical system theory [47], u] is globally asymptotically
stable. O

Next, we investigate how model parameters affect the shape of the positive steady-state solu-
tion of the system (5.1). We begin by proving that it has to be monotone on the first and third
patch and that it cannot change slope more than onces on the middle patch.

Lemma 5.2. The positive steady state on the first patch, u} of (5.1) satisfies one of the following
alternatives:

(i) uy is strictly increasing on Py and uy(0) > Ky;

(ii) u7 is strictly decreasing on Py and u7(0) < Ky;

(iii) u} is identically constant on Py and uy(0) = K.
Corresponding statements hold for u§ with > K1 (< K1) replaced by < K3 (> K3). On the
interior of the second patch, u’ cannot have more than one local extremum.

Proof. The steady-state u of (5.1) satisfies the equation

diti xx + rit (1 - %) -0, xeP (5.3)

i

together with the boundary and matching conditions in (5.1).

We note that uy, (L) fall into exactly one of the following three cases: ui,(L) > O,
uix(L1) =0, or uix(L1) < 0. First, we assume u1,(L1) > 0, and prove that u;(x) must be
strictly increasing on Pj. Suppose, for contradiction that u1(x) is not strictly increasing, which
means that there exists at least one internal critical point x; € Py, where u,(x1) = 0. Dividing
the equation of u(x) by [“(—‘I and integrating it over [0, x1], we obtain
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X1 2

/dlKlul—’x—i-nKl =2 Y ax =0 (5.4)
u? K
0

1 1

Integrating the equation of u (x) directly, we get

X1

/rml <1 — 1u(_11> dx =0. (5.5)
0

Subtracting (5.5) from (5.4) yields,

X1 2
2
—up)°dx=0 5.6
/ “1 K 1) (5.6)

0

Therefore, we have u; = K on [0, x1]. By the uniqueness of the solution, this would imply
u1 = Ky on Pj, which contradicts the condition u1,(L1) > 0. Consequently, u(x) is strictly
increasing on P;. We now show that u1(0) > K. Otherwise, if #1(0) = K1, then by uniqueness,
we have u|(x) = K| on Pj, contradicting the strictly increasing property of u(x). If instead
u1(0) < K1, then by continuity, there exists a small ¢y > 0 such that u;(x) < K on [0, €).
Since u1,(0) =0 and uj xx(x) < O for x € (0, €9) by equation (5.3), it follows that u,(x) <0
for x € (0, €p), again contradicting the strictly increasing property of #1(x). Thus, we conclude
that #1(0) > K1, and by monotonicity, u1(x) > K for all x € P;. The arguments in the other
cases for u} and u} are similar.

To see the claim for u3, we note that, by equation (5.3), a local maximum necessarily satisfies
uﬁ < K> while a local minimum necessarily satisfies uﬁ > K,. Hence, at most local extremum is
possible in the interior of P,. O

Theorem 5.3. The positive steady state u; of (5.1) has the following profiles.

@) ;k = K; on each P;, provided that K1 = k1 K> and K> = k> K3.
(1) u ;“ is strictly increasing on each P; with u} > K1, u; < K3, provided that Ky < k1K and
K> < ky K3 and at least one of these two mequalzttes is strict.
(iii) u] is strictly decreasing on each P; with uy < K1, u > K3, provided that K\ > k| K> and
K> > ko K3 and at least one of these two inequalities is strict.

Proof. It suffices to prove cases (i) and (ii) as part (iii) follows from similar arguments as (ii).

(i) Under the conditions on the parameters, one can check that the constant functions u} = K;
on each P; are a solution of the steady-state equations. Since the solution is unique, the claim
follows.

(i) According to Definition 3.1, (k1k2 K3, kp K3, K3) and (Kl, k1 , klkz) are super- and sub-
solutions of (5.3), respectively. Therefore, we have u1(x) > K1 on Pj, and u3(x) < K3 on P3.
From the equation of u1(x), it follows that u; ,x(x) >0, and that u;,(x) >0 on P;. Lemma 5.2
yields either u1x(x) > 0 or uj(x) = K| on P;. Next, we show that u(x) & K. If u;(x) = K1,
then, by the matching conditions and K| < k1 K>, we obtain us, (L) =0 and us(L) < K. If
uy(L1) = K3, then uniqueness yields u;(x) = K> on P,. Repeating the same argument for P3,
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we deduce that u3(x) = K3 on P3. However, this contradicts our assumption that at least one of
the inequalities must be strict. Thus, u2(L1) < K7, and by continuity, there exists a small &1 > 0
such that ua(x) < K2 on [L1, L1 + €1), and by the equation of u2(x), we obtain u2 xr(x) < 0 on
this interval. From the maximum principle, it follows that u>, (L1 + L) < 0. Similarly, based on
the matching conditions and K> < k> K3, we can obtain u3, (L1+L2) < 0and u3(L1+L3) < K3.
By the maximum principle again, we have u3, (L) < 0, which is a contradiction to u3, (L) = 0.
Therefore, u1,(x) > 0 on Py with u;(x) > K. Similarly, we can prove that u3,(x) > 0 on P3
with u3(x) < K3.

Now, we only need to show that u(x) is increasing on P>. Let w = us, (x). Then w satisfies

5.7

dywyx +r2(1 = ¥2)w =0, x € (L1, L1+ L),
w(Ly1) >0, w(Li+ L) >0.

Since dyuy xx + 12 (1 — 1”2—22) up =0, and the inequality

U 2uy
O=dowyx +m|1——=—|w>dwy,+r|1——)w, xe(Li,Li+Ly)),
K> K>

holds when w = u3, then w = u» is a positive strict supersolution of (5.7). Therefore, according
to Theorem 3.5, the maximum principle holds, and it is derived that w > 0 on P», i.e., us(x) is
increasingon P>. 0O

Remark 5.4. Theorem 5.3 shows that under some conditions, steady-state solutions in the three-
patch model are monotone. Previous work showed that steady-state solutions are always mono-
tone in a corresponding two-patch model [19,52]. With the addition of a third patch that we are
studying here, steady states can become non-monotone if the conditions of Theorem 5.3 are not
satisfied, namely in the ‘mixed’ scenario, when K| < k1 K7 and K» > kK3 or K1 > k1 K> and
K5 < ky K3. In that case, solutions can exhibit a local maximum or local minimum in the middle
patch, but there is no simple characterization of when this occurs in terms of model parameters.

Using Lemma 5.2, we can characterize the shape of the positive steady state in terms of the
values of u* on the boundary as follows: If the differences u7(0) — Ky and u3(L) — K3 have
opposite signs, then the corresponding steady-state solution is monotone; if they have the same
sign, then there is a local extremum in the middle patch. Of course, the boundary values are
determined by all model parameters in a nonlinear (and non-obvious) way.

We illustrate two transitions between monotone and non-monotone states by computing the
steady state numerically as the parameter K5 varies while all other parameters are fixed. We note
that the boundary values u7(0) and u3 (L) are increasing with K. In fact, if «™ and u™ are steady-
state solutions with K73 and K3* while all other parameters are the same, and if K; < K;* then
u* < u™*. Our simulations show that as K, increases, the corresponding steady-state solution can
change from having a local minimum in the middle patch to being monotone to having a local
maximum in the middle patch; see Fig. 2. At the transitions from monotone to non-monotone,
the solution is constant on one of the boundary patches; see panels (b) and (e) in Fig. 2. This
corresponds to a degenerate case where the three-patch system effectively reduces to a two-patch
configuration, in which the solution remains monotone across the remaining two patches.

We now turn to the relation between total population abundance and total carrying capacity.
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Fig. 2. Transitions in steady-state profiles as K, increases, where (a) Kp =2; (b) K» =2.95; (c) K =6; (d) K» = 10;
(e) Ko =13.5; (f) K» = 20. Other parameters are: K| =5, K3 =9,d1 =2,dy =3, d3 =4, r1 =12, =8, r3 =3,
a; =ap =0.2and L; =3 for i =1, 2, 3. The dashed lines correspond to the respective carrying capacities. With our
choice of parameters, the inequalities K1 > k1 K> and Ky > kp K3 become 3 < Ky <40/3 ~ 13.3. They are satisfied in

panels (c) and (d).
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Theorem 5.5. If

uj (Ly) K> uy (L1 + L)
d; Lx ——k— d2"7|: k—:| 0, 5.8
ui(Ly) [ " ] * uy(Ly+ L) s ©.8)

then the positive steady state u; of (5.1) satisfies

Li+L;

/(uT(x) — Ky)dx + / (u5(x) — K2)dx + / (u3(x) — K3)dx > 0, 5.9
0

Ly Li+L>

i.e., the total population abundance at steady state is higher than the total carrying capacity.

Proof. Dividing (5.3) by %%, and integrating over P;, and summing with respect to i, we obtain

1 Li+Ly
/(ul(x)_Kl)dx+ / (u2(x) — Kz)dx + / (uz(x) — K3)dx
Ly Li+L>
Li+Ly L 2
d1K1/u1Xd d2K2 / uzxd | K / N (5.10)
u2 r3 u
Ly Li+L;

diKyuix(L1) K> [sz(Ll +Ly) u2x(Ll)i| _ d3K3u3. (L1 + L)
r1 ui(Ly) rp Lua(Li+Ly)  ux(Ly) r3 us(Li+Ly)

By using the matching conditions, we have

diKyuix(L1)  drKy [uzx(Ll +L) sz(Ll)} _ d3K3usc (L1 + Lo)

ri ui(Ly) rp Lua(Li+ L)  usx(ly) r3  u3(Ly+ L) 5.11)
L Li+Ly)[K K '
_d, Uiy ( 1)|:__k1_]_|_dzuzx( 1+ 2)[_2_](2_3].
ui(Ly) r uz(Ly+ L2) r3
Hence, when (5.8) holds, (5.9) follows. O
Corollary 5.6. If the two chains of inequalities,
K K
l<ki=2 <2 and 1<k <5, (5.12)
Ky n Ky n

are satisfied, then (5.9) holds, i.e., the total population density at steady state exceeds the total
carrying capacity. Similarly, if all inequalities are reversed, then (5.9) holds.

Proof. In each of the two chains of inequalities, the first one ensures that the steady-state solution
is monotone increasing; see Theorem 5.3 (ii). Hence, the derivative terms in (5.8) are positive.
Likewise, the second inequality in each chain ensures that the terms in square brackets in (5.8)
are positive. Hence, the entire expression is positive. The case with reversed inequalities follows
in the same way. O
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Integral difference
' &

Fig. 3. The integral difference ), fP,~ (u;.k(x) — K;)dx with respect to K», where positive values correspond to the total
abundance exceeding the total carrying capacity. Other parameters are as in Fig. 2.

It is interesting to note that we can find simple sufficient conditions on parameters that en-
sure that the steady-state solution is monotone and that do not include the growth parameters r;
(see Theorem 5.3). Yet, even if the steady-state solution is monotone, we need additional condi-
tions on the growth rates to ensure that the total density at steady state exceeds the total carrying
capacity, i.e., that (5.9) holds. Importantly, these conditions are sufficient but not necessary, as
demonstrated by our numerical results (see Fig. 3). While the strict inequalities in (5.12) guar-
antee a positive integral difference, we observe that the total abundance can exceed the carrying
capacity even when these conditions are only partially met or not satisfied at all. Specifically,
the first chain of inequalities in (5.12) holds for % < Ky < %, whereas the second chain re-
quires 3 < K, < 8. Notably, Fig. 3 reveals that the integral difference remains positive across
a wider range of K> (approximately 3 < K» < 19), including cases where both chains fail (e.g.
14 < K7 < 19) or only a subset of conditions holds. This confirms that multiple scenarios can
lead to abundance exceeding the carrying capacity.

This observation is consistent with findings from several related studies. (i) Lou showed
that in heterogeneous environments, dispersal can lead to a total population size that exceeds
the spatially averaged carrying capacity [29]. This occurs because individuals spill over from
high-quality regions to nearby regions, highlighting the crucial role of spatial heterogeneity; (ii)
DeAngelis and coworkers extended this insight to continuous-space logistic models with spa-
tially varying growth rates and carrying capacities, showing that the analogue of (5.9) holds
when carrying capacity and growth rate are positively correlated, provided the diffusion rate is
either sufficiently small or large [14,15]. Our result does not depend on the absolute magnitude of
diffusion, but rather on the ratio of diffusion coefficients between patches through the composite
parameters k;; (iii) Zaker et al. studied a two-patch model and proved that all steady states are
monotone. Moreover, a sufficient condition for the analogue of (5.9) to hold required exactly the
first chain of inequalities in (5.12) (see [52]).

For the non-monotone steady-state solutions that we described above (and that do not occur
on a two-patch model), we can also give sufficient conditions for (5.9) to hold. However, just like
in Remark 5.4, these conditions are not purely based on model parameters but on the steady-state
density at the endpoints of the domain.
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Corollary 5.7. If

1. ui(0) > Ky and u3(L) > K3; and
2 kgt <Zandkyd > 2

then (5.9) is satisfied. Similarly, if all inequalities are reversed, (5.9) holds.

Proof. The first two conditions ensure that u1, (x) > 0 while u3,(x) < 0. The second condition
guarantees that the first square bracket in (5.8) is positive while the second is negative. Hence,
both terms on the left in (5.8) are positive and the desired inequality holds. O

5.2. Invasion analysis

We now analyze the evolutionary dynamics with respect to dispersal and patch preference in
a spatially structured environment using the framework of adaptive dynamics [16]. Specifically,
we investigate whether rare mutants with modified dispersal strategies or patch preferences can
successfully invade a monomorphic resident population at equilibrium.

The model for the so-called wild type (or resident) and mutant (or invader) populations is
the canonical extension of the single-species model (5.1) to two types. We consider the diffusion
coefficients (d;) and the patch preference coefficients (o) as the traits of interest. The population
dynamics of the resident (#;) and the mutant type (v;) on patch i are described by the following
coupled equations:

Miz=diui,xx+riui(1—"%w), xep, >0, 5.13)
v,-,:Dl-v,-,xx—i-rivi(l—%i“"), xebh, t>0. .

The boundary and interface matching conditions are the same as (5.1), with d; and k; substituted
by D; and k ;j in the equations for the mutant, where

fo= P D2 P2 D5 (5.14)
1—pB1 Dy 1—p2 Dy
Clearly, system (5.13) has the semi-trivial steady-state solutions Ej = (u},0) and E; =
(0, v}") since the system of equations reduces to the single-species equation (5.1) for one popu-
lation when the other is absent. To determine how the above-mentioned traits of interest evolve,
we analyze the stability of the resident equilibrium E; by linearization. Since the linearized
equations for v; are decoupled (see [11, Lemma 5.5]), we only need to consider the principal

eigenvalue (A) of the linear eigenvalue problem

Diixx +ri(1— MK_;:)‘f’i =A¢i, xebh

$1x(0) = ¢34 (L) =0, A (5.15)
D1¢1x(L1) = Dagox(L1), p1(L1) = k1¢a2(L1),

Dados(L1 + Lo) = Daga (L1 + La), ¢2(L1 + Lo) = kagp3(L1 + Lo).
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In the theory of adaptive dynamics, A is known as the invasion fitness or invasion exponent
[16]. It can be viewed as the payoff of the mutant with its trait(s) in the presence of the resident
at steady state with its respective trait(s). Specifically, if A is positive, the mutant can grow when
rare in the presence of the resident, whereas when A is negative, it cannot. In the first case, we
say that the mutant invades, whereas in the second, it does not. Typically, we cannot directly
determine the sign of A, but can instead calculate the selection gradient, i.e., the derivative of
A with respect to the traits under consideration, evaluated at the resident’s trait value(s). This
selection gradient determines the direction of evolutionary change (see [30] for details).

We begin with the case of the diffusion coefficients. To reduce the number of parameters, we
will again write the diffusion coefficients in each patch as the product of an overall diffusion
propensity parameter and a patch-specific diffusion rate, d; = dd; for the resident population;
see Section 4. To study the evolution of the overall diffusion propensity, we write D; = Dd; for
the mutant population. Note that the ratios of the diffusion coefficients between the resident and
the invaders are the same. We indicate the dependence of the principal eigenvalue in (5.15) as
A=A, D).

Lemma 5.8. The selection gradient with respect to diffusion propensity is given by

IA(d, D) Jo A @)dx + ki [ dy )2y + kika [ dau)idx
— Ip=a=-—
aD o @y + ki [ @) 2dx + ki [, (uf)2dx

(5.16)

Proof. The calculations are almost identical to those in Lemma 4.3. Note that A in (5.15) and
A in (4.1) have opposite signs. Note also that since the relative diffusion coefficients between
patches are the same for the resident and the invader, we have k; = k j- Finally, when D =d,
then ¢; =uf O

Since the selection gradient in (5.16) is negative, smaller overall diffusion propensity will
evolve. In fact, we show below that zero diffusion is convergence stable.

Theorem 5.9. Let (d;);_, € (0, 00) be fixed, and let d; = dd; and D; = Dd; for some 0 < d <
D. If the two species have the same patch preferences (i.e., k; = k j for j =1,2), then, for any
positive solution of (5.13), we have

(u1,uz, uz, vy, v2,v3) = (uj,u3,u3,0,0,00 as t— oo,
where (u7, u3, u3) is the unique positive steady state of (5.1) as given in Theorem 5.1.

Proof. Once the monotonicity in d of the eigenvalue is established (Lemma 5.8), one can follow
the strategy of proving [17, Lemma 4.1]. We omit the details. See also [26, Sect. 7.3.1]. O

Next, we assume that resident and invader differ only in their probabilities of moving left and
right at an interface; o; for the resident and 8; for the invader. Then the principal eigenvalue in
(5.15) depends on four parameters, namely A = A(og, o2, B1, B2).
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Lemma 5.10. The selection gradient with respect to patch preferences is given by

dauz(Ly)uy, (L1) kidsu3(Ly + Lo)u3 (L1 + L2)
Ve |j=a; = — ( 1= al)gl : i az);; : (5.17)
with
Ly Li+L»> L
I =/(uT)2dx + ki / (u})?dx + kiky / (})*dx > 0. (5.18)
0 Ly Li+L>

Proof. The expression for the selection gradient in two and more traits was given in [16]. The
calculations of the partial derivatives are similar to those in Lemma 4.7. Substituting 8; = o

gives k j =kj and ¢; = u} as in the preceding lemma. 0O

Remark 5.11. The selection gradient gives the direction of highest selection pressure. The actual
path of evolution can be further constrained if the different traits are linked, i.e., if their covari-
ance is not zero; see for example the discussion in [16]. We consider the direction of evolution
according to (5.17) under the assumption that the two traits are independent variables. In that
case, if the density at an interface is increasing (i.e., u% > 0 at that interface), then the corre-
sponding entry in the selection gradient is negative and hence the probability of moving to the
left at that interface (« ;) decreases. Conversely, if the density at an interface is decreasing, then
the corresponding entry is positive and the probability of moving left increases.

For example, when K| < k1 K>, K2 < kK3, and at least one of these two inequalities is
strict, Theorem 5.3(ii) implies that u} (L) > 0 and u3 (L1 + L) > 0. Hence, evolution acts
to decrease the probability of moving to the left at both interfaces. Since k; is an increasing
function of «, decreasing o; also leads to smaller values of k;. This implies that evolution
will eventually turn the inequalities K1 < k1 K2, K7 < k» K3 into equalities. At that point, part
(i) of Theorem 5.3 ensures that the corresponding steady-state solution ;" is constant on each
patch. But that, in turn, implies that the selection gradient in (5.17) vanishes and, hence, that
the evolution of «; stops. The system has reached a ‘singular strategy’. We study this singular
strategy from a different point of view in the next section.

5.3. Ideal free distribution

The ideal free distribution (IFD) is a theoretical concept that describes how individuals dis-
tribute themselves across their habitat in an optimal way in the sense that individual fitnesses are
equal at all locations [20]. Mathematical models have shown that movement strategies that lead
to an IFD often can resist invasion by other, nearby strategies (i.e., they function as evolution-
arily stable strategies, ESS) and populations adopting such IFD-producing strategies may often
invade other similar but distinct strategies (i.e., they are neighborhood invader strategies, NIS)
[7-9]. In this section, we show that both of these implications hold in our model, generalizing
the corresponding results for two patches [35].

For a single species to exhibit the IFD, its local individual fitness must equal zero everywhere
in the domain. We denote the species density in patch i at the IFD by u;. From the first equation
in (5.1), we must have u#; = K; on patch P; for i = 1, 2, 3. To satisfy the interface matching
conditions, the parameters associated with the IFD must satisfy
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A A 5.19
=%, k=x (5.19)

Since the IE are (nondimensional) combinations of the movement-related parameters d;, and
o, they represent the dispersal strategy that leads to the IFD. In the following, we show that
(ki1, ko) constitutes and ESS and NIS. The first step is to show that a population using the IFD
cannot coexist at a positive steady state with a population using any other strategy.

Pr0p0s1t10n 5.12. Let u;(x) and v; (x) be the positive steady state of (5.13). If k1 = ki and ko =
ko, then u; and v; are constant on P;, and k1 =k and k2 =ky.

Proof. The proof generalizes the one for two patches; see [35, Theorem 5.1]. The steady-state
solution of (5.13) satisfies the equation

dittjpx +riui(1 — ) =0, xe P, 20
s (5.20)
Divi,xx‘f‘rivi(l—v’;(r—iu'):o, xe b,

with the boundary and matching conditions in (5.1), with d; and k; substituted by D; and k j in
the corresponding equations for v;.

Dividing the equations for the resident in (5.20) by , and integrating over P;, we obtain
Z/dK ’x+r,K(1—ul;v')dx_ (5.21)
l
l Pl

where we used the boundary and matching conditions and k; = ki, kr =k».
Integrating the equations for the resident of (5.20) directly, we get

Zfriui(l sl " (5.22)
i K;

Similarly, integrating the equations for the mutant of (5.20) directly, we have

Z/r,-v,-(l _ Vit —o. (5.23)
; K;i

Subtracting (5.22) and (5.23) from (5.21) yields,
2
Uix | Ti 2
Z diK;i—5 + —(K; —u; — v)*dx = 0. (5.24)
- u; K;
P;

Therefore, we have u; , =0 and u; + v; = K; on P;. In particular, ; and v; are constant on P;.
Let u; =c. Then it follows from the matching conditions of u; and k| = k1, ko = k» that
Uy = c’,§ U3 = cK - Hence, we have vj = K1 — ¢, v = Ka(1 — £), v3 = K3(1 — £-). Using

the matching conditions of v;, we conclude that 121 K ‘ kz fi O
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Next, we show that a rare population that adopts the ideal-free movement strategy (i.e., k=
k1, ko = k) will be able to invade a resident population that adopts a different movement strat-

cgy.

Theorem 5.13 (IFD implies NIS). Let A be the principal eigenvalue of (5.15). If

(k1, ko) = (k1, ko) and ~ (k1, ko) # (ki1 k2)

then we have A > 0, i.e. the species v with IFD-strategy can invade resident species u without
such a strategy when rare.

Proof. Again, the proof is a generalization of the case of two patches; see [35, Theorem 5.2].
Dividing the equations of (5.15) by %, and integrating over P;, we obtain

i

@? ,
Z/D,K,»ﬁ +riK; (1 — %) dx = A(K L1+ KoLy + K3L3), (5.25)

i

A -

where we used the boundary and matching conditions and the fact that k; = k;.
Integrating the equations for the resident of (5.13) directly, we get

Zfr,u, <1 — —> dx =0. (5.26)

Subtracting (5.26) from (5.25) yields,

i

¢; A\
Z/D,»Kiﬁ 1K (1 - %) dx = A(K Ly + K2L> + K3L3). (5.27)
i i

Hence, A > 0. Note that (k;, k2) # (k1, k2) (i.e. the resident population does not adopt the ideal-
free strategy), so at least one integral term of (5.27) becomes positive, leading to A > 0. This
indicates that a rare population employing the ideal-free strategy can successfully invade a resi-
dent population using any other movement strategy. 0O

Theorem 5.13 shows that the IFD is a NIS. In combination with Proposition 5.12, we see that
the IFD is also an ESS.

Theorem 5.14 (IFD implies ESS). Suppose (v1, vz, v3)| o is nonnegative and nontrivial, and
suppose

(k1 k) = (ki ko) and (k1 k) # (ki k2).
Then (uy,u,u3, v, v2,v3) — (0,0,0, Ky, K>, K3) as t — 0.
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Proof. Observe that the system (5.13) with the interface matching conditions generates a com-
pact semiflow that satisfies the axioms of competition system (see, e.g. [26, Appendix E]). This
can be proved by arguments similar as in [26, Lemma 7.1.3]. Therefore we can invoke [26, The-
orem E.2.13] to conclude a trichotomy result. Namely, exactly one of the following holds:

() (u1,u2,u3,v1,v2,v3) = (u], u3,u3,0,0,0) as t — oo;
() (ui,u2,u3,v1,v2,v3) = (0,0,0, K1, K>, K3) as t — 003
(iii) there exists a positive coexistence equilibrium where all entries are strictly positive.

Now, (iii) is impossible thanks to Proposition 5.12, while (i) is ruled out thanks to Theorem 5.13.
It follows that (ii) holds. O

6. Conclusions

We study a model for the dynamics of a population living in a habitat of three different,
adjacent patches, where individuals move randomly within each patch and may have preferences
when moving from one patch to another. Mathematically, our model consists of three reaction-
diffusion equations, coupled through matching conditions for the density and the flux at each
interface. Our model is a generalization of the two-patch model studied in [35], and our present
arguments can be generalized to address any finite number of adjacent patches (see also [21,
48]). After obtaining basic existence and uniqueness results, which are largely straightforward
extensions of the work in [35], we studied how the principal eigenvalue of the linear form of
our model depends on parameters (Section 4). This question was not addressed in [35] but is
highly relevant to ecological applications; see related work on single-patch models in [6,12,13,
26,30,39,42,51]. Finally, we studied the existence, qualitative shape, and evolutionary stability
of positive steady states of our model (Section 5). In contrast to the two-patch model, we found a
larger variety of possible shapes of the steady state (e.g., non-monotone states), and determined
their stability with respect to invasion by another species.

While our model set-up seems highly artificial when compared to natural landscapes, it
corresponds very well to certain laboratory experiments where micro-organisms are grown on
substrate plates, which constitute indeed a piecewise constant landscape. For example, a so-
called MEGA plate was used to study the evolution of resistance to antibiotics [5]. A smaller
landscape of six adjacent plates was used to study the evolution of dispersal of nematode worms
under various conditions [4]. A corresponding discrete-patch model of coupled ordinary dif-
ferential equations was derived and analyzed there, but we believe that our approach of patchy
reaction-diffusion equations would reveal more detailed spatial patterns. Expanding our model to
six patches and estimating model parameters from the experiments is a challenging future task.

We showed that the principal eigenvalue is increasing with the diffusion rate (more precisely,
the overall diffusion capacity of the species; see Lemma 4.3). Ecologically, this indicates that a
lower diffusion rate is advantageous for the species, as it leads to a higher growth rate at low
density. In this sense, our work continues the long tradition of studying the evolution of dispersal
and finding that lower random dispersal rates are advantageous if the environment is spatially
varying but temporally constant [1,10,17,22,27]. What makes our contribution surprising is that
it holds also when there is some form of directed movement, namely at the interfaces between
patches. Previous models that included directed movement, either through unidirectional flow
or through resource sensing, found that intermediate or even high random dispersal rates can
be evolutionarily advantageous [28,30-32,53]. Mathematically, this difference is reflected in the
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fact that the movement operator in our model is self-adjoint, independently of the choices of
patch preferences, whereas in a simple advection model, it is not.

We showed also that the response of the principal eigenvalue to changes in patch prefer-
ences depends on the shape of the eigenfunction at an interface; see Lemma 4.7. For example,
if the coefficients ¢; are all constants (i.e., ¢; (x) = ¢;) and ordered (e.g., c; > ¢ > ¢3), then the
eigenfunction is nonincreasing. In particular, its derivatives at the interfaces are nonpositive. Ac-
cording to the formulas in (4.13), the partial derivatives of the principal eigenvalue with respect
to o; are both nonpositive. Hence, the overall population growth rate increases when individuals
preferentially move to the left. The condition ¢; > ¢ > ¢3 indicates that the habitat quality is
highest on the left and lowest on the right. Hence, it seems reasonable that movement preference
to the left should be beneficial since population growth is higher there.

A different and somewhat complementary approach to studying population dynamics on three
(or more) adjacent patches can be found in [48]. The authors consider a linear system of reaction-
diffusion equations with matching conditions at the interfaces that include our conditions as
a special case. The authors derive an implicit equation for the principal eigenvalue and corre-
sponding eigenfunction. In particular, they find conditions that determine the qualitative shape
of the eigenfunction (e.g., increasing, decreasing, hump-shaped,...) on each patch, given param-
eters. While they do not study how the principal eigenvalue depends on model parameters, in
particular on movement ability and patch preference, their method could be used to evaluate and
visualize those relationships numerically if parameters are available for a specific system. Their
method can also be used to calculate properties of the slope of eigenfunctions, given parameters,
to which our theoretical results in Lemma 4.7 can then be applied to find which patch preference
is evolutionarily advantageous.

We studied how the principal eigenvalue behaves when patch preferences become very strong.
In that case, the overall population growth rate is given by the highest growth rate on an individual
patch with appropriate boundary conditions (Dirichlet or Neumann). Moreover, the correspond-
ing eigenfunction is determined by the eigenfunction on that patch of highest growth rate, and it
is positive in other patches only if individuals prefer those patches. This leads to a source-sink
situation [43]: the patch with the highest growth rate acts as a source; other patches are sinks
with a population, if individuals prefer those patches, and empty if they do not.

Our study of the positive steady state of the system revealed some interesting commonali-
ties and some differences with the two-patch case. Most importantly, whereas the steady state
in a two-patch landscape is monotone in each patch [52], we observe steady-state densities that
can have local extrema on the middle patch in the three-patch landscape (see Fig. 2). It is clear
that this result generalizes to any finite number of patches: the steady-state solution is mono-
tone on the first and last patch but not necessarily on the patches in between. While it seems
obvious that real populations could exhibit such local aggregations depending on habitat qual-
ity and movement pattern, there are no simple parameter conditions that guarantee such locally
peaked solutions in our model. The situation is different for a linear model where the shape of
the principal eigenfunction can be obtained from model parameters, albeit in a non-obvious way
[48]. It is a formidable future challenge to obtain explicit parameter conditions for monotone and
non-monotone profiles of the positive steady state. If it could be accomplished, we could also
answer with precision whether the total steady-state density exceeds the total carrying capacity
(Theorem 5.5) and how evolution acts on patch preferences (Lemma 5.10). As in the two-patch
case, we determined that the ideal-free distribution (IFD) is an evolutionarily stable strategy and a
neighborhood invader strategy (Theorems 5.13 and 5.14), but it is still an open question whether
it is also convergent stable. In other words, we would like to know whether a mutant strategy
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that is “closer” to the IFD can invade a resident strategy that is “farther” from the IFD. The first
step in this future analytical challenge is to properly define “closer” and “farther” in the two-
dimensional trait space of k| and k>. More generally, while some of our results clearly generalize
to more than three patches, the generalization of others offers multiple highly rewarding future
projects.
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