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Abstract

How individuals move across a landscape determines their opportunities to gather resources and their 
risk to adverse conditions. Studying how their movement evolves in response to landscape quality is there
fore paramount to understanding the fate of populations. We consider a landscape consisting of several 
adjacent patches where landscape quality differs between patches but is constant within each patch. The 
movement strategy of individuals consists of random dispersal within each patch and some patch prefer
ence to move between patches. Accordingly, our model consists of a system of reaction-diffusion equations 
for the population density on each patch together with matching conditions for the population density and 
flux at boundaries between patches. In the linear form of our model, we study the principal eigenvalue, its 
existence and its dependence on movement parameters. In the nonlinear form of our model, we study steady 
states, their existence and their stability with respect to invasion by a population with a different movement 
strategy. We find that lower random dispersal rates evolve when patch preferences are fixed; that the evo
lution of patch preferences depends on the arrangement of habitat quality in the landscape when dispersal 
rates are fixed; and that simultaneous evolution of both can lead to the so-called Ideal Free Distribution, 
which is a well-established concept in movement ecology. These findings provide theoretical insight into 
how dispersal and habitat selection coevolve in heterogeneous landscapes.
© 2026 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC 
license (http://creativecommons.org/licenses/by-nc/4.0/).
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1. Introduction

The evolution of movement strategies in spatially heterogeneous landscapes is a fundamen
tal question in theoretical ecology and evolutionary biology. It concerns how organisms should 
optimally move across a landscape whose local habitat quality varies spatially. The movement 
decisions that individuals make in order to exploit resources and avoid dangers can profoundly 
influence their ability to persist in a given landscape. Hence, studying optimal movement behav
ior is particularly relevant as human activity often leads to increasing landscape fragmentation, 
which, in turn, triggers a decline in population abundance and diversity.

Reaction-diffusion models have long served as a theoretical framework for describing spa
tiotemporal population dynamics [6]. In the context of strictly random movement strategies, a 
fundamental and fairly general result is that in temporally constant environments with a spatial 
optimum, there is selection against random dispersal [10,17,22,27]; whereas there is selection for 
dispersal if there is no spatially optimal location [4,51]. Selection for dispersal is also possible 
when individuals move with a combination of directional and random movement strategy. Exam
ples of nonrandom movement include movements conditional on habitat quality such as gradient 
sensing (see [3] and references therein), or when individuals are pushed in one direction by ex
ternal forces such as wind or water flow [30,33]. These results hold across different modeling 
frameworks, for example in so-called patch models (see [28,53] and references therein). In those 
models, a landscape is divided into discrete patches and the population densities on the patches 
as well as their movement between patches are described by systems of ordinary differential 
equations.

A more recent modeling approach combines continuous and discrete landscape structure in so
called patchy reaction-diffusion equations [36]. This approach is inspired by landscape ecology, 
which conceptualizes landscapes as consisting of multiple spatial regions (``patches''), each of 
which is relatively homogeneous within but differs from the adjacent patches. Differences may 
result from natural sources of environmental heterogeneity, such as variations in topography, 
soil, or vegetation, or they may arise due to anthropogenic disturbances, including agricultural 
development and urban expansion, which lead to habitat fragmentation. This piecewise con
stant landscape is represented in patchy reaction-diffusion equations for population dynamics 
by piecewise constant parameter functions, for example diffusion coefficients and growth rates. 
In addition, patchy reaction-diffusion models require matching conditions for the density and 
flux of a population across a boundary or interface between two patches. These conditions en
capsulate movement behavior and patch preference of individuals [40], which were treated too 
simplistically in early patch models [19,41,45]. With mechanistically derived matching condi
tions that allow modeling of asymmetric boundary movement and habitat selection behavior, the 
framework became much more biologically realistic and widely applicable [34,36,37,46,52], and 
also generated novel analytical investigations [21,48]. Compared to reaction-diffusion equations 
with smooth parameter functions, patchy reaction-diffusion equations require fewer and possi
bly more easily accessible parameters. Compared to patch models based on ordinary differential 
equations, patchy reaction-diffusion equations give more insight into the spatial distribution of a 
population within each patch.

Despite the recent surge in ecological applications of patchy reaction-diffusion equations, 
there are only relatively few studies that consider evolutionary aspects, some for processes of 
spatial spread on unbounded domains [44], others for steady states on bounded domains [35], 
which we consider here. Specifically, Maciel and coworkers considered a two-patch model with 
interface conditions as described above and studied the evolution of movement behavior at an 
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interface [35]. They determined the ideal free dispersal (IFD) strategy in this case and showed 
that it is an evolutionarily steady state (ESS). An ideal free dispersal strategy is one that leads 
to individuals being distributed proportional to the available resource [20]. An ESS represents 
a movement strategy such that a population using an ESS cannot be invaded by a population 
using any other strategy [38]. Most existing work has, however, focused on two patches (or two 
periodically alternating patch types in the case of an unbounded landscape), although there is 
related work using patchy reaction-diffusion equations with three patches of identical quality 
in a river network [50]. When there are three or more patches, there can be different network 
geometries and different orientations of up/downstream [23], therefore the arguments for two
patch case do not lend for easy generalization to multiple patches. More general questions of 
how behavioral traits such as dispersal and patch preference evolve in three and more patches or 
patch types require further investigation.

We consider a population residing in a landscape consisting of multiple patches in a one
dimensional spatial domain. While we state and prove many of our results in the case of three 
patches, we add remarks indicating how these proofs can be generalized to any number of adja
cent patches. The dispersal rates and growth rates of individuals vary from patch to patch, and 
movement between patches is characterized by location-dependent preferences. Dispersal rates 
and patch preferences are the evolvable traits that we consider. In the study of our model, the 
principal eigenvalue of a linearized model is crucial for many of the relevant biological questions 
such as the invasion or persistence of a species. We therefore devote large sections to the analysis 
of the eigenvalue problem, in particular to the question of how the principal eigenvalue depends 
on model parameters. We then study the nonlinear model in the framework of adaptive dynamics 
[16], i.e., we determine the IFD strategy and show that it is not only an ESS, which means that 
other strategies are unsuccessful against it (see above), but also a neighborhood invader strategy 
(NIS), which means that it is successful in the presence of other strategies [2].

We describe our model in detail in Section 2 and give the necessary analytical results on 
existence and uniqueness of solutions in Section 3, where we also introduce the notions of sub-
and supersolutions that are relevant in subsequent sections. The bulk of our work is in Section 4, 
where we study the properties of the principal eigenvalue of the linearized model. The analysis 
of various aspects of the nonlinear model is in Section 5. We end with a discussion of possible 
applications, as well as similarities and differences with the existing literature.

2. Model description

We describe the movement and demography of a population in a patchy landscape by using 
reaction-diffusion equations on each patch and appropriate interface matching conditions to con
nect patches. The model with three patches extends recently studied models on two patches (or 
two patch types periodically arranged); see [34,36]. We number patches from left to right with 
lengths Li , i = 1,2,3 and set L = L1 + L2 + L3 (see Fig. 1), and denote the patches as

P1 = (0,L1), P2 = (L1,L1 + L2), and P3 = (L1 + L2,L). (2.1)

On patch i, the density of the species is denoted by ui(x, t). It satisfies the reaction-diffusion 
equation

ui,t = diui,xx + riui

(︃
1 − ui

Ki

)︃
, x ∈ Pi, t > 0, (2.2)
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Fig. 1. Arrangement of three adjacent patches with lengths Li . The probabilities of moving left at interface between 
patches Pj ,Pj+1 are denoted by αj , j = 1,2. The return arrows at x = 0 and x = L indicate noflux boundary conditions 
at those ends.

where di is the diffusion coefficient, ri is the growth rate of the species in patch i, and Ki

represents the carrying capacity of patch i. All parameters are assumed positive. Individuals can 
move between adjacent patches but cannot leave the set of patches. Accordingly, we impose 
noflux boundary conditions at 0 and L, i.e.,

u1,x(0, t) = 0 and u3,x(L, t) = 0. (2.3)

Movement between patches conserves the density of individuals leading to the flux-matching 
conditions

d1u1,x(L1, t) = d2u2,x(L1, t) and d2u2,x(L1 + L2, t) = d3u3,x(L1 + L2, t). (2.4)

At the interface between patches 1 and 2 (and 2 and 3), individuals may have a preference for 
moving to one or the other. We denote by α1 (resp. α2) the probability that an individual at L1
(resp. L1 + L2) moves to the left and by 1 − α1 (resp. 1 − α2) the probability that an individual 
moves to the right. This leads to the density matching conditions [36]:

(1 − α1)d1u1(L1, t) = α1d2u2(L1, t), (2.5)

(1 − α2)d2u2(L1 + L2, t) = α2d3u3(L1 + L2, t). (2.6)

It is sometimes useful to consider the triple of functions (u1, u2, u3) as one function u on [0,L], 
while keeping in mind that this function is multi-valued at L1 and L1 + L2.

The quality of the i-th patch is expressed in terms of the population dynamics parameters ri
and Ki , which depend on the species in question. Higher values of ri and Ki indicate higher land
scape quality. The diffusion coefficient describes the movement response of individuals to local 
patch quality. It may therefore depend on patch quality. For example, we expect that individuals 
move slowest when quality is high and fastest when it is low. Similarly, patch preferences may 
depend on the relative quality of the two adjacent patches. In general, we expect that individu
als at the interface between two patches preferentially choose to move into the patch of higher 
quality.

Eventually, we are interested in the evolution of movement behavior. One way to look at this 
is through the (random) dispersal ability. To deal with the three (potentially different) dispersal 
parameters, we write the individual parameters as multiples of an overall dispersal propensity (d) 
and a scaling factor that depends on the environment (d̃i), i.e., di = dd̃i . This allows us to study 
certain limiting cases (d → ∞ or d → 0) while keeping the ratios between the di constant. In 
particular, varying d does not affect the interface matching conditions since they only depend on 
those ratios.
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Similarly, we might want to look at limiting cases of the directed movement behavior as 
encapsulated by the patch preferences αj . These only appear in the interface conditions. We 
form the ratios zj = αj/(1 − αj ), which range from 0 to ∞. The limit zj → 0 means that all 
individuals move to the right, while zj → ∞ means that all individuals move to the left.

Since our model is not just a standard reaction-diffusion equation, we present basic prelimi
nary results on existence and various related topics in the next section.

3. Preliminaries

We present some basic analytical results for equations (2.2) with boundary and matching 
conditions (2.3)--(2.6) in this section. In particular, we prove that the maximum principle holds, 
that certain a priori estimates are available, and that a dominant eigenvalue exists. These results 
are inspired by corresponding results for the two-patch model in [35]; see also [21].

Consider the following problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ℒiui = fi(x), x ∈ Pi,

u1x(0) = u3x(L) = 0,

d1u1x(L1) = d2u2x(L1), u1(L1) = k1u2(L1),

d2u2x(L1 + L2) = d3u3x(L1 + L2), u2(L1 + L2) = k2u3(L1 + L2),

(3.1)

where ℒi = −di
d2

dx2 − ci(x), i = 1,2,3 and

k1 = α1

1 − α1

d2

d1
, and k2 = α2

1 − α2

d3

d2
. (3.2)

To simplify notation, we sometimes write ℒ= (ℒ1,ℒ2,ℒ3).

Proposition 3.1. Suppose that ui solve (3.1) with ci(x) ≤ 0 and fi(x) ≥ 0, ≢ 0. Then ui > 0
on P̄i .

Proof. It follows from the classical maximum principle and the Hopf boundary lemma that a 
negative minimum cannot occur at the interior of any of the Pi and not at the boundary points 
0 and L either. Therefore, it can only occur at the interfaces, given by x = L1 or x = L1 + L2. 
Suppose that the minimum occurs at x = L1. Then u1x(L1) < 0, by applying the Hopf boundary 
lemma in the subinterval [0,L1]. According to the matching conditions, we have u2x(L1) < 0. 
This means that the minimum of u2 must be attained either in (L1,L1 +L2) or at x = L1 +L2. In 
the first case, then u2 ≡ const < 0. But from the equation for u2, we have that 0 ≥ −c2(x)u2 =
f2(x) ≥ 0, ≢ 0, which is a contradiction. In case the minimum of u2 is attained at x = L1 +
L2, then we repeat the same argument to deduce that u3 must attain an internal minimum in 
(L1 + L2,L3) (since x = L3 is not possible thanks to the Hopf boundary lemma). But then 
u3 ≡ const < 0 and we have a contradiction as before. Hence, ui ≥ 0 on P̄i .

Now suppose that f1(x) ≥ 0, ≢ 0. Then u1 > 0 on P̄1 by the strong maximum principle. Based 
on the matching conditions, we have u2(L1) > 0, so that u2 > 0 on P̄2 by the strong maximum 
principle. Similarly, we can obtain u3 > 0 on P̄3. □
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Proposition 3.2. Suppose that ci(x) ≤ 0. Given fi(x) ∈ 𝒞(P̄i), there is a unique solution ui ∈
𝒞2(P̄i) of (3.1) with

∥u1∥𝒞2(P̄1)
+ ∥u2∥𝒞2(P̄2)

+ ∥u3∥𝒞2(P̄3)
≤ C(∥f1∥𝒞(P̄1)

+ ∥f2∥𝒞(P̄2)
+ ∥f3∥𝒞(P̄3)

). (3.3)

Proof. First, we consider the following decoupled problems,

−diũi,xx − ci ũi = fi, x ∈ Pi,

with Neumann boundary conditions on each Pi . By the maximum principle, we get the estimates

∥ũi∥𝒞2(P̄i )
≤ C∥fi∥𝒞(P̄i )

(3.4)

on each patch.
Next, we define y1 to be the solution of

−d1y1,xx − c1(x)y1 = 0, x ∈ P1, and y1(0) = 1, y1x(0) = 0.

By similar arguments as in [35, Proposition 3.4], we obtain y1x(L1) > 0. The same reasoning 
shows that y3, defined as the solution of

−d3y3,xx − c3(x)y3 = 0, x ∈ P3, and y3(L) = 1, y3x(L) = 0,

satisfies y3x(L1 + L2) < 0. On P2, we define two functions, y2 and y4, as the solutions of

−d2yl,xx − c2(x)yl = 0, x ∈ P2

with boundary conditions y2(L1 + L2) = 1, y2x(L1 + L2) = 0 and y4(L1) = 1, y4x(L1) = 0, 
respectively. By the same reasoning as above, these satisfy y2x(L1) < 0 and y4x(L1 + L2) > 0.

Finally, we define

u1 = ũ1 + a1y1, u2 = ũ2 + a2y2 + a4y4, u3 = ũ3 + a3y3,

for parameters (a1, . . . , a4). These functions ui satisfy the differential equations and the bound
ary conditions in (3.1). To satisfy the interface matching conditions in (3.1), we must have

d1y1x(L1)a1 − d2y2x(L1)a2 = 0,

y1(L1)a1 − k1y2(L1)a2 − k1a4 = k1ũ2(L1) − ũ1(L1),

d3y3x(L1 + L2)a3 − d2y4x(L1 + L2)a4 = 0,

a2 − k2y3(L1 + L2)a3 + y4(L1 + L2)a4 = k2ũ3(L1 + L2) − ũ2(L1 + L2).

The equations are linear in (a1, . . . , a4) and hence can be written in matrix form. The determinant 
of the resulting matrix is
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d1y1x(L1)[k1d3y3x(L1 + L2)(1 − y2(L1)y4(L1 + L2))

+ k1k2d2y2(L1)y3(L1 + L2)y4x(L1 + L2)] + d2y2x(L1)[d3y1(L1)y3x(L1 + L2)y4(L1 + L2)

− k2d2y1(L1)y3(L1 + L2)y4x(L1 + L2)] > 0.

Hence, there is a unique solution for (a1, . . . , a4) that depends on di , ci and kj , but not on fi , 
where i = 1,2,3, j = 1,2. Therefore, the solution ui satisfies the estimate in the statement of 
the proposition. □

By similar arguments as in Proposition 3.2, we obtain the following result.

Proposition 3.3. Suppose that ci(x) ≤ 0. Given fi(x) ∈ L2(P̄i), there is a unique solution ui ∈
W 2,2(P̄i) of (3.1) with

∥u1∥W 2,2(P̄1)
+ ∥u2∥W 2,2(P̄2)

+ ∥u3∥W 2,2(P̄3)
≤ C(∥f1∥L2(P̄1)

+ ∥f2∥L2(P̄2)
+ ∥f3∥L2(P̄3)

).

Next, we consider the eigenvalue problem corresponding to the operator ℒ from (3.1), i.e.,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ℒiφi = λφi, x ∈ Pi,

φ1x(0) = φ3x(L) = 0,

d1φ1x(L1) = d2φ2x(L1), φ1(L1) = k1φ2(L1),

d2φ2x(L1 + L2) = d3φ3x(L1 + L2), φ2(L1 + L2) = k2φ3(L1 + L2).

(3.5)

Using Propositions 3.1-3.3, we obtain the existence of the principal eigenvalue for (3.5) from 
the Krein-Rutman theorem [49]. We denote this eigenvalue by λ1(ℒ), which is simple and has a 
positive eigenfunction φ = (φi). We shall normalize (φi) by max

i
sup 
x∈P̄i

φi = 1.

We define super- and sub-solutions of ℒφ = 0 associated with the interface and boundary 
conditions in (3.5). To simplify notation, we let X = 𝒞2(P̄1) × 𝒞2(P̄2) × 𝒞2(P̄3).

Definition 3.1. A function φ̄ = (φ̄i) ∈ X is called a supersolution of ℒ with the interface and 
boundary conditions in (3.5), if φ̄ satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ℒi φ̄i ≥ 0, x ∈ Pi,

φ̄1x(0) ≤ 0, φ̄3x(L) ≥ 0,

φ̄1(L1) = k1φ̄2(L1), d1φ̄1x(L1)
− ≥ d2φ̄2x(L1)

+,

φ̄2(L1 + L2) = k2φ̄3(L1 + L2), d2φ̄2x(L1 + L2)
− ≥ d3φ̄3x(L1 + L2)

+.

(3.6)

The supersolution φ̄ is called a strict supersolution if it is not a solution of (3.6) with all inequality 
signs replaced by equality signs. A subsolution is defined in a similar way with all the inequality 
signs above reversed.

Lemma 3.4. If φ̄ = (φ̄i) is a supersolution of ℒ and it is nonnegative, then either φ̄ ≡ 0, or φ̄i > 0
in P̄i for all i.
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Proof. Assume φ̄ ≢ 0 and we shall prove that φ̄i > 0 in P̄i for all i. Suppose that the assertion 
is false. Then there exists some point x0 ∈ P̄i such that φ̄i(x0) = 0 for some i. If x0 ∈ ∂Pi , 
then there are two subcases to consider: (i) φ̄1(0) = φ̄3(L) = 0, then by the Hopf boundary 
lemma, we have φ̄1x(0) > 0, and φ̄3x(L) < 0, a contradiction to φ̄1x(0) ≤ 0, φ̄3x(L) ≥ 0. (ii)
φ̄1(L1) = φ̄2(L1 + L2) = 0, then φ̄2(L1) = 0 and φ̄3(L1 + L2) = 0 via the matching conditions. 
From Definition 3.1, it follows that d2φ̄2x(L1)

+ ≤ d1φ̄1x(L1)
− < 0, and d3φ̄3x(L1 + L2)

+ ≤
d2φ̄2x(L1 + L2)

− < 0. This contradicts the assumption that φ̄i ≥ 0. Hence, φ̄i > 0 on ∂Pi . If 
x0 ∈ Pi , then φ̄i attains its minimum in the interior point x0, and so it follows from the classical 
maximum principle that φ̄i ≡ 0 on P̄i . Furthermore, by the matching conditions and the classical 
maximum principle, it can be deduced that φ̄ ≡ 0, which contradicts our assumption that φ̄ ≢ 0. 
Thus, we conclude that φ̄i > 0 in P̄i for all i. □
Definition 3.2. We say that ℒ admits the maximum principle if any supersolution φ = (φi) ∈ X
of ℒ is nonnegative.1

Theorem 3.5. The following statements are equivalent:

(i) ℒ admits the maximum principle;
(ii) λ1(ℒ) > 0;
(iii) ℒ has a strict supersolution φ̄ = (φ̄i), which is nonnegative and not identically zero.

Proof. (i) ⇒ (ii). Suppose that λ1(ℒ) ≤ 0. Then for the corresponding principal eigenfunction 
φi > 0 in Pi , we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ℒi (−φi) = λ1(ℒ)(−φi) ≥ 0, x ∈ Pi,

(−φ1)x(0) = (−φ3)x(L) = 0,

(−φ1)(L1) = k1(−φ2)(L1), d1(−φ1)x(L1) = d2(−φ2)x(L1),

(−φ2)(L1 + L2) = k2(−φ3)(L1 + L2), d2(−φ2)x(L1 + L2) = d3(−φ3)x(L1 + L2).

(3.7)
By applying the maximum principle to −φi , we derive that −φi ≥ 0 in Pi , a contradiction with 
the positivity of φi .

(ii) ⇒ (iii). Obviously, the corresponding principal eigenfunction φi > 0 is a strict supersolu
tion of ℒ.

(iii) ⇒ (i). For any given supersolution φ of ℒ, if φ ≥ 0, then there is nothing to prove. 
Assume for contradiction that infPi

φi < 0 for some i.
Let φ̄ be a strict supersolution of ℒ, then φ̄ ≢ 0 and infPi

φ̄i > 0 for all i by Lemma 3.4. Then 
consider ψ = φ + kφ̄, where k > 0 is chosen such that min

i

(︁
infPi

ψi

)︁ = 0. Then by Lemma 3.4

again, we deduce that ψ ≡ 0. However, this implies that φ = −kφ̄. So it φ is simultaneously a 
supersolution and a strict subsolution, which is a contradiction. □

Here, we give two comparison lemmas for the principal eigenvalue of (3.5). These principles 
are extensions of the corresponding results for scalar equations in [26, Lemmas 1.3.12--1.3.13].

1 Different authors have proposed different formulations of a maximum principle or a strong maximum principle. Our 
definition follows Gilbarg and Trudinger’s book but differs slightly from that in [18].
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Lemma 3.6. Suppose there exists a function w = (wi) ∈ X and a constant λ such that wi > 0 in 
P̄i is a supersolution of (3.5) in the sense that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ℒiwi ≥ λwi, x ∈ Pi,

w1x(0) ≤ 0, w3x(L) ≥ 0,

w1(L1) = k1w2(L1), d1w1x(L1)
− ≥ d2w2x(L1)

+,

w2(L1 + L2) = k2w3(L1 + L2), d2w2x(L1 + L2)
− ≥ d3w3x(L1 + L2)

+.

(3.8)

Then λ1(ℒ) ≥ λ, and equality holds iff wi is the corresponding eigenfunction.

Proof. If all the inequalities in (3.8) are equalities, then wi is a solution and it follows that 
λ1(ℒ) = λ. Otherwise, wi is a strict supersolution, then we may apply Theorem 3.5 to the oper
ator ℒ̃= ℒ− λ to conclude that λ1(ℒ) > λ. □
Lemma 3.7. Suppose there exists a function w = (wi) ∈ X and a constant λ̄ such that wi is a 
nonnegative subsolution of (3.5) in the sense that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ℒiwi ≤ λ̄wi, x ∈ Pi,

w1x(0) ≥ 0, w3x(L) ≤ 0,

w1(L1) = k1w2(L1), d1w1x(L1)
− ≤ d2w2x(L1)

+,

w2(L1 + L2) = k2w3(L1 + L2), d2w2x(L1 + L2)
− ≤ d3w3x(L1 + L2)

+.

Then λ1(ℒ) ≤ λ̄, and equality holds iff wi is the corresponding eigenfunction.

Proof. The proof is analogous to Lemma 3.6 and is omitted. □
4. Analysis of the eigenvalue problem

In this section, we study how the principal eigenvalue depends on the movement-related pa
rameters, i.e., on the diffusion coefficients (di ) and the preference probabilities at the interfaces 
(αj ); see Section 2.

The eigenvalue problem consists of the three equations

diφi,xx + ci(x)φi + λφi = 0, x ∈ Pi, i = 1,2,3, (4.1)

together with the boundary and interface matching conditions

φ1x(0) = 0, (4.2a)

d1φ1x(L1) = d2φ2x(L1), φ1(L1) = k1φ2(L1), (4.2b)

d2φ2x(L1 + L2) = d3φ3x(L1 + L2), φ2(L1 + L2) = k2φ3(L1 + L2), (4.2c)

φ3x(L) = 0, (4.2d)

where kj are as in (3.2). As in the preceding section, we shall assume throughout that the eigen
function is positive and normalized to maxi supP̄i

φi = 1.

9 
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As indicated in the introduction, we write the diffusion coefficient in each patch as the product 
of a patch-dependent rate (d̃i) and an overall diffusion propensity parameter (d). Hence, we set 
di = dd̃i . Consequently, the dimensionless parameters kj depend only on d̃i and are independent 
of d . As parameters αj denote probabilities, they range in [0,1], whereas di and kj can assume 
any positive value.

We begin with a general upper and lower bound of the principal eigenvalue λ1.

Lemma 4.1. The principal eigenvalue λ1 of (4.1)--(4.2) satisfies

min 
i=1,2,3

{−max
x∈P̄i

ci(x)} ≤ λ1 ≤ max 
i=1,2,3

{− min 
x∈P̄i

ci(x)}. (4.3)

Proof. We integrate the equations in (4.1) over their respective interval P̄i and add the results. 
The boundary and interface matching conditions ensure that all the terms containing φix disap
pear. We obtain

λ1

⎡
⎢⎣

L1∫︂
0 

φ1dx +
L1+L2∫︂
L1

φ2dx +
L ∫︂

L1+L2

φ3dx

⎤
⎥⎦

= −
L1∫︂

0 

c1(x)φ1dx −
L1+L2∫︂
L1

c2(x)φ2dx −
L ∫︂

L1+L2

c3(x)φ3dx

≥ −max 
x∈P̄1

c1(x)

L1∫︂
0 

φ1dx − max 
x∈P̄2

c2(x)

L1+L2∫︂
L1

φ2dx − max 
x∈P̄3

c3(x)

L ∫︂
L1+L2

φ3dx

≥ min{−max 
x∈P̄1

c1(x),−max 
x∈P̄2

c2(x),−max 
x∈P̄3

c3(x)}
⎡
⎢⎣

L1∫︂
0 

φ1dx +
L1+L2∫︂
L1

φ2dx +
L ∫︂

L1+L2

φ3dx

⎤
⎥⎦ .

Hence,

λ1 ≥ min{−max 
x∈P̄1

c1(x),−max 
x∈P̄2

c2(x),−max 
x∈P̄3

c3(x)}. (4.4)

The upper bound follows from similar considerations. □
When ci(x) is constant, the eigenfunction φi(x) exhibits monotonicity with respect to the 

spatial variable x in some special cases.

Lemma 4.2. Let ci(x) = ci be constants. Then we have the following statements.

(i) If c3 ≥ c2 ≥ c1 with at most one equality, then φ1x(x) > 0 in (0,L1], φ3x(x) > 0 in [L1 +
L2,L), and φ2x(L1) > 0, φ2x(L1 + L2) > 0;

(ii) If c3 ≤ c2 ≤ c1 with at most one equality, then φ1x(x) < 0 in (0,L1], φ3x(x) < 0 in [L1 +
L2,L), and φ2x(L1) < 0, φ2x(L1 + L2) < 0.

10 
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Proof. Let us consider case (i). Integrating the first equation of (4.1) over (0, x), x ≤ L1, we 
have

d1φ1x(x) = −(c1 + λ1)

x∫︂
0 

φ1ds.

Similarly, we have

d2φ2x(y) − d2φ2x(x) = −(c2 + λ1)

y∫︂
x

φ2ds, L1 ≤ x < y ≤ L1 + L2,

d3φ3x(y) = (c3 + λ1)

L ∫︂
y

φ3ds, L1 + L2 ≤ y < L.

When x = L1, y = L1 + L2, we can obtain that

0 = (c1 + λ1)

L1∫︂
0 

φ1dx + (c2 + λ1)

L1+L2∫︂
L1

φ2dx + (c3 + λ1)

L ∫︂
L1+L2

φ3dx

> (c1 + λ1)

⎡
⎢⎣

L1∫︂
0 

φ1dx +
L1+L2∫︂
L1

φ2dx +
L ∫︂

L1+L2

φ3dx

⎤
⎥⎦ .

Hence, c1 +λ1 < 0. Similarly, we have c3 +λ1 > 0. Therefore, φ1x(x) > 0 in (0,L1], φ3x(x) > 0
in [L1 + L2,L). Moreover, we have φ2x(L1) > 0 and φ2x(L1 + L2) > 0 based on the interface 
conditions. □
4.1. The properties of the principal eigenvalue with respect to diffusion

The question of how the principal eigenvalue depends on the movement behavior of the pop
ulation has been studied in many contexts [6,10,24,26,39,51]. It can give important insights into 
optimal movement rates for population persistence or the evolution of dispersal ability. We study 
this question for our patch model. To indicate the parameter dependence, we denote the principal 
eigenvalue by λ1 = λ1(d) and by ′ the derivative with respect to this parameter d .

Lemma 4.3. Let λ1 = λ1(d) be the principal eigenvalue of (4.1)--(4.2). Then λ′
1(d) ≥ 0. More

over, λ′
1(d) > 0 for all d > 0 unless there is a constant k0 such that ci(x) = k0 in Pi for all i. In 

the latter case, we have λ1(d) ≡ k0 for all d > 0.

Remark 4.4. In the jargon of population dynamics, this lemma establishes the reduction prin
ciple [1]. In the next section, we state as a consequence of this lemma the evolution of slow 
dispersal (Theorem 5.9).

11 
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Proof. We differentiate equations (4.1)-(4.2) with respect to d (denoted by ′) and obtain

d̃iφi,xx + dd̃iφ
′
i,xx + ci(x)φ′

i + λ1φ
′
i = −λ′

1(d)φi, x ∈ Pi, (4.5)

with boundary and matching conditions

⎧⎪⎪⎨
⎪⎪⎩

φ′
1x(0) = φ′

3x(L) = 0,

d̃1φ
′
1x(L1) = d̃2φ

′
2x(L1), φ

′
1(L1) = k1φ

′
2(L1),

d̃2φ
′
2x(L1 + L2) = d̃3φ

′
3x(L1 + L2), φ

′
2(L1 + L2) = k2φ

′
3(L1 + L2).

(4.6)

Multiplying the equations of (4.5) by φ1, k1φ2 and k1k2φ3, respectively, integrating the equations 
over [0,L1], [L1,L1 + L2], and [L1 + L2,L], respectively, and adding the results, we obtain

−λ′
1(d)

⎡
⎢⎣

L1∫︂
0 

φ2
1dx +

L1+L2∫︂
L1

k1φ
2
2dx +

L ∫︂
L1+L2

k1k2φ
2
3dx

⎤
⎥⎦

=
L1∫︂

0 

d̃1φ1,xxφ1 + dd̃1φ
′
1,xxφ1 + c1(x)φ′

1φ1 + λ1φ
′
1φ1dx

+ k1

L1+L2∫︂
L1

d̃2φ2,xxφ2 + dd̃2φ
′
2,xxφ2 + c2(x)φ′

2φ2 + λ1φ
′
2φ2dx

+ k1k2

L ∫︂
L1+L2

d̃3φ3,xxφ3 + dd̃3φ
′
3,xxφ3 + c3(x)φ′

3φ3 + λ1φ
′
3φ3dx.

(4.7)

By using the boundary and matching conditions (4.6), we obtain

L1∫︂
0 

dd̃1φ
′
1,xxφ1dx +

L1+L2∫︂
L1

k1dd̃2φ
′
2,xxφ2dx +

L ∫︂
L1+L2

k1k2dd̃3φ
′
3,xxφ3dx

=
L1∫︂

0 

dd̃1φ1,xxφ
′
1dx +

L1+L2∫︂
L1

k1dd̃2φ2,xxφ
′
2dx +

L ∫︂
L1+L2

k1k2dd̃3φ3,xxφ
′
3dx.

(4.8)

Substituting (4.8) into (4.7), we have

12 
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− λ′
1(d)

⎡
⎢⎣

L1∫︂
0 

φ2
1dx +

L1+L2∫︂
L1

k1φ
2
2dx +

L ∫︂
L1+L2

k1k2φ
2
3dx

⎤
⎥⎦

=
L1∫︂

0 

d̃1φ1,xxφ1 +
L1∫︂

0 

(dd̃1φ1,xx + c1(x)φ1 + λ1φ1)φ
′
1dx

+
L1+L2∫︂
L1

k1d̃2φ2,xxφ2 +
L1+L2∫︂
L1

k1(dd̃2φ2,xx + c2(x)φ2 + λ1φ2)φ
′
2dx

+
L ∫︂

L1+L2

k1k2d̃3φ3,xxφ3 +
L ∫︂

L1+L2

k1k2(dd̃3φ3,xx + c3(x)φ3 + λ1φ3)φ
′
3dx

=
L1∫︂

0 

d̃1φ1,xxφ1 +
L1+L2∫︂
L1

k1d̃2φ2,xxφ2 +
L ∫︂

L1+L2

k1k2d̃3φ3,xxφ3

= −
L1∫︂

0 

d̃1φ
2
1,x −

L1+L2∫︂
L1

k1d̃2φ
2
2,x −

L ∫︂
L1+L2

k1k2d̃3φ
2
3,x ≤ 0.

(4.9)

Hence, λ′
1(d) ≥ 0 for all d , i.e., λ1(d) is non-decreasing in d > 0.

Suppose λ′
1(d) = 0 for some d > 0, then it follows that φi,x = 0 in Pi for all i i.e., φi ≡ ci in 

Pi for some constant ci . This happens if and only if

ci(x) ≡ λ1(d) for i = 1,2,3.

Hence, we deduce that if ci(x) ≡ k0 for some constant k0 independent of i, then λ1(d) ≡ k0 for 
all d > 0. Otherwise, we have λ′

1(d) > 0 for all d > 0. □
Lemma 4.5. In the limit of large diffusion, we obtain

lim 
d→∞λ1(d) = −

∫︁ L1
0 c1(x)dx + 1 

k1

∫︁ L1+L2
L1

c2(x)dx + 1 
k1k2

∫︁ L

L1+L2
c3(x)dx

L1 + 1 
k1

L2 + 1 
k1k2

L3
. (4.10)

Proof. Dividing (4.1)--(4.2) by d , we find

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d̃iφi,xx + 1 
d
(ci(x) + λ1(d))φi = 0, x ∈ Pi,

φ1x(0) = φ3x(L) = 0,

d̃1φ1x(L1) = d̃2φ2x(L1), φ1(L1) = k1φ2(L1),

d̃2φ2x(L1 + L2) = d̃3φ3x(L1 + L2), φ2(L1 + L2) = k2φ3(L1 + L2).

We now let d → ∞. As λ1(d) is bounded, so is the term multiplying φi in the differential 
equation. Hence, by standard Lp estimates for elliptic equations, we obtain a (sub-)sequence of 

13 
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corresponding eigenfunctions that converge weakly in W 2,p(P̄i). By a suitable Sobolev embed
ding, this gives us a strongly convergent sequence in 𝒞1(P̄i). Hence, we have (φi) → (φi∞), 
where φi∞ satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d̃iφi∞,xx = 0, x ∈ Pi,

φ1∞,x(0) = φ3∞,x(L) = 0,

d̃1φ1∞,x(L1) = d̃2φ2∞,x(L1), φ1∞(L1) = k1φ2∞(L1),

d̃2φ2∞,x(L1 + L2) = d̃3φ3∞,x(L1 + L2), φ2∞(L1 + L2) = k2φ3∞(L1 + L2).

Hence, φi∞ is constant on each patch. By the interface matching conditions, we have φ1∞ = c, 
φ2∞ = c

k1
and φ3∞ = c

k1k2
, for some positive constant c. The constant c is chosen such that 

c = min{1, k1, k1k2}, ensuring that maxi supP̄i
φi∞ = 1.

Integrating the equations of (4.1) over [0,L1], [L1,L1 + L2], [L1 + L2,L], respectively, and 
adding the results, we have

λ1(d)

⎡
⎢⎣

L1∫︂
0 

φ1dx +
L1+L2∫︂
L1

φ2dx +
L ∫︂

L1+L2

φ3dx

⎤
⎥⎦

= −
L1∫︂

0 

d1φ1,xx + c1(x)φ1dx −
L1+L2∫︂
L1

d2φ2,xx + c2(x)φ2dx −
L ∫︂

L1+L2

d3φ3,xx + c3(x)φ3dx.

According to the boundary and matching conditions, we have

L1∫︂
0 

d1φ1,xx +
L1+L2∫︂
L1

d2φ2,xx +
L ∫︂

L1+L2

d3φ3,xx = 0.

Letting d → ∞, we obtain the desired result

lim 
d→∞λ1(d) = −

∫︁ L1
0 c1(x)φ1∞dx + ∫︁ L1+L2

L1
c2(x)φ2∞dx + ∫︁ L

L1+L2
c3(x)φ3∞dx∫︁ L1

0 φ1∞dx + ∫︁ L1+L2
L1

φ2∞dx + ∫︁ L

L1+L2
φ3∞dx 

= −
∫︁ L1

0 c1(x)dx + 1 
k1

∫︁ L1+L2
L1

c2(x)dx + 1 
k1k2

∫︁ L

L1+L2
c3(x)dx

L1 + 1 
k1

L2 + 1 
k1k2

L3
. □

Lemma 4.6. In the limit of small diffusion, we find

lim 
d→0

λ1(d) = min{−max 
x∈P̄1

c1(x),−max 
x∈P̄2

c2(x),−max 
x∈P̄3

c3(x)}. (4.11)

Proof. According to (4.4), we have

λ1(d) ≥ min{−max 
x∈P̄1

c1(x),−max 
x∈P̄2

c2(x),−max 
x∈P̄3

c3(x)}

14 
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for all d > 0.
Next, we prove

lim sup
d→0 

λ1(d) ≤ min{−max 
x∈P̄1

c1(x),−max 
x∈P̄2

c2(x),−max 
x∈P̄3

c3(x)}, (4.12)

which is equivalent to proving

lim sup
d→0 

λ1(d) ≤ −max
x∈P̄i

ci(x), i = 1,2,3.

For any x0 ∈ P1, fix 0 < r < dist(x0, ∂P1), and let μ1 and ϕ1 be the principal eigenvalue and 
eigenfunction of the problem

ϕ1,xx + μ1ϕ1 = 0 in Br(x0), ϕ1 = 0 on ∂Br(x0).

Noting that φ1 > 0 in B̄r (x0) and ϕ1 = 0 on ∂Br(x0), up to multiplication of ϕ1 by a positive 
constant, one may assume that φ1 ≥ ϕ1 in Br(x0) and φ1(x

′
0) = ϕ1(x

′
0) > 0 for some x′

0 ∈ Br(x0). 
Hence, by the maximum principle, we have φ1,xx(x

′
0) ≥ ϕ1,xx(x

′
0). Then,

dd̃1μ1ϕ1(x
′
0) = −dd̃1ϕ1,xx(x

′
0) ≥ −dd̃1φ1,xx(x

′
0) = c1(x

′
0)ϕ1(x

′
0) + λ1(d)ϕ1(x

′
0).

Dividing by ϕ1(x
′
0), we have

λ1(d) ≤ dd̃1μ1 − c1(x
′
0) ≤ dd̃1μ1 − inf 

Br (x0)
c1(x).

Taking the limsup as d → 0 and letting r → 0, we obtain

lim sup
d→0 

λ1(d) ≤ −c1(x0), for x0 ∈ P1.

Since x0 is arbitrary, we have

lim sup
d→0 

λ1(di) ≤ −max 
x∈P̄1

c1(x).

Similar considerations apply to the two other patches. Therefore, (4.12) holds. Combining (4.4)
with (4.12), (4.11) follows. □
4.2. The properties of the principal eigenvalue with respect to patch preference

The question of how the principal eigenvalue depends on the patch preference parameters 
has not been studied before. This question is, however, somewhat related to the question of how 
the principal eigenvalue depends on directed movement (``advection''), which has been studied 
in a variety of contexts; see [3,12,25,30]. To indicate the parameter dependence, we denote the 
principal eigenvalue by λ1 = λ1(α1, α2).
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Lemma 4.7. The total differential of the principal eigenvalue of (4.1)--(4.2) is given by

dλ1(α1, α2) = ∂α1λ1(α1, α2)dα1 + ∂α2λ1(α1, α2)dα2, (4.13)

where ∂α1λ1(α1, α2) and ∂α2λ1(α1, α2) are given by

∂α1λ1(α1, α2) =
1 

(1−α1)
2 d2φ2(L1)φ1x(L1) ∫︁ L1

0 φ2
1dx + ∫︁ L1+L2

L1
k1φ

2
2dx + ∫︁ L

L1+L2
k1k2φ

2
3dx

(4.14)

and

∂α2λ1(α1, α2) =
k1

(1−α2)
2 d3φ3(L1 + L2)φ2x(L1 + L2) ∫︁ L1

0 φ2
1dx + ∫︁ L1+L2

L1
k1φ

2
2dx + ∫︁ L

L1+L2
k1k2φ

2
3dx

. (4.15)

Proof. Differentiating both sides of (4.1)-(4.2) with respect to α1, and denoting ∂
∂α1

= ˙, we 
obtain

diφ̇i,xx + ci(x)φ̇i + λ1(α1, α2)φ̇i = −λ̇1(α1, α2)φi, x ∈ Pi, (4.16)

with boundary and matching conditions

⎧⎪⎨
⎪⎩

φ̇1x(0) = φ̇3x(L) = 0,

d1φ̇1x(L1) = d2φ̇2x(L1), φ̇1(L1) = d2
d1(1−α1)

2 φ2(L1) + k1φ̇2(L1),

d2φ̇2x(L1 + L2) = d3φ̇3x(L1 + L2), φ̇2(L1 + L2) = k2φ̇3(L1 + L2).

(4.17)

Multiplying the equations of (4.16) by φ1, k1φ2 and k1k2φ3, respectively, and integrating the 
results over [0,L1], [L1,L1 + L2], and [L1 + L2,L], respectively, and adding the results, we 
obtain

−λ̇1(α1, α2)

⎡
⎢⎣

L1∫︂
0 

φ2
1dx +

L1+L2∫︂
L1

k1φ
2
2dx +

L ∫︂
L1+L2

k1k2φ
2
3dx

⎤
⎥⎦

=
L1∫︂

0 

d1φ̇1,xxφ1 + c1(x)φ̇1φ1 + λ1(α1, α2)φ̇1φ1dx

+ k1

L1+L2∫︂
L1

d2φ̇2,xxφ2 + c2(x)φ̇2φ2 + λ1(α1, α2)φ̇2φ2dx

+ k1k2

L ∫︂
L1+L2

d3φ̇3,xxφ3 + c3(x)φ̇3φ3 + λ1(α1, α2)φ̇3φ3dx.

(4.18)
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By using the boundary and matching conditions (4.17), we obtain

L1∫︂
0 

d1φ̇1,xxφ1dx +
L1+L2∫︂
L1

k1d2φ̇2,xxφ2dx +
L ∫︂

L1+L2

k1k2d3φ̇3,xxφ3dx

= − 1 
(1 − α1)2 d2φ2(L1)φ1x(L1)

+
L1∫︂

0 

d1φ1,xx φ̇1dx +
L1+L2∫︂
L1

k1d2φ2,xx φ̇2dx +
L ∫︂

L1+L2

k1k2d3φ3,xx φ̇3dx.

(4.19)

Substituting (4.19) into (4.18), we have

− λ̇1(α1, α2)

⎡
⎢⎣

L1∫︂
0 

φ2
1dx +

L1+L2∫︂
L1

k1φ
2
2dx +

L ∫︂
L1+L2

k1k2φ
2
3dx

⎤
⎥⎦

= − 1 
(1 − α)2 d2φ2(L1)φ1x(L1) +

L1∫︂
0 

(d1φ1,xx + c1(x)φ1 + λ1(α1, α2)φ1)φ̇1dx

+
L1+L2∫︂
L1

k1(d2φ2,xx + c2(x)φ2 + λ1(α1, α2)φ2)φ̇2dx

+
L ∫︂

L1+L2

k1k2(d3φ3,xx + c3(x)φ3 + λ1(α1, α2)φ3)φ̇3dx

= − 1 
(1 − α1)2 d2φ2(L1)φ1x(L1).

(4.20)

Hence, (4.14) follows. The derivation of (4.15) follows the same ideas. □
Our next goal is to investigate the asymptotic behavior of the principal eigenvalue as the patch 

preferences αj tend to 0 or 1. The biological interpretation is that when α1 → 0, individuals 
at the interface between patches 1 and 2 have a strong preference for patch 2, whereas when 
α1 → 1, they have a strong preference for patch 1 (see Fig. 1). In the limiting cases, all individ
uals leave the patch or no individuals leave the patch, depending on which side of the interface 
we consider. For that reason, we can expect that the matching conditions at the interface will 
decouple and become hostile or reflecting conditions accordingly. Therefore, it will be useful to 
consider subproblems to our problem, namely eigenvalue problems that are defined on only one 
of the three patches or on two adjacent of the three patches. With this in mind, we introduce the 
following notation.
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Notation. We consider the eigenvalue problem on a single patch

diψi,xx + ci(x)ψ + λiψi = 0, x ∈ Pi, (4.21)

with several combinations of reflecting (Neumann) and hostile (Dirichlet) boundary conditions. 
We denote by λ𝒩𝒟

i the principal eigenvalue of the elliptic eigenvalue problem (4.21) with Neu
mann boundary conditions at the left endpoint and Dirichlet conditions at the right endpoint of 
Pi . Similarly, we define λ𝒩𝒩

i , λ𝒟𝒩
i , and λ𝒟𝒟

i . In the same way, we may consider the eigen
value problem on two adjacent patches, say patches 1 and 2, with Neumann conditions at the 
left endpoint of P1 and Dirichlet conditions at the right endpoint of P2 and the usual interface 
matching conditions at the boundary point between P1 and P2. We denote the corresponding 
principal eigenvalue by λ𝒩𝒟

1,2 .

Lemma 4.8. The principal eigenvalue λ1(α1, α2) of (4.1)--(4.2) satisfies

lim 
α1,α2→0

λ1(α1, α2) = min{λ𝒩𝒟
1 , λ𝒩𝒟

2 , λ𝒩𝒩
3 }. (4.22)

Moreover, the limiting cases of the corresponding eigenfunctions are as follows

(i) if λ𝒩𝒟
1 < min{λ𝒩𝒟

2 , λ𝒩𝒩
3 }, then (φ1, φ2, φ3) → (ψ𝒩𝒟

1 , ψ̆2, ψ̆3) in 𝒞1(P̄1) × 𝒞1(P̄2) ×
𝒞1(P̄3);

(ii) if λ𝒩𝒟
2 = min{λ𝒩𝒟

1 , λ𝒩𝒟
2 , λ𝒩𝒩

3 } < λ𝒩𝒩
3 , then (φ1, φ2, φ3) → (0,ψ𝒩𝒟

2 , ψ̂3) in 𝒞1(P̄1)×
𝒞1(P̄2) × 𝒞1(P̄3);

(iii) if λ𝒩𝒩
3 = min{λ𝒩𝒟

1 , λ𝒩𝒟
2 , λ𝒩𝒩

3 }, then (φ1, φ2, φ3) → (0,0,ψ𝒩𝒩
3 ) in 𝒞1(P̄1)×𝒞1(P̄2)×

𝒞1(P̄3);

where ψ𝒩𝒟
1 , ψ𝒩𝒟

2 and ψ𝒩𝒩
3 are eigenfunctions corresponding to λ𝒩𝒟

1 , λ𝒩𝒟
2 and λ𝒩𝒩

3 , 
respectively, while ψ̆2, ψ̆3, and ψ̂3 are the positive solution of the following corresponding prob
lems:

d2ψ̆2,xx + c2(x)ψ̆2 + λ𝒩𝒟
1 ψ̆2 = 0,  x ∈ P2,  d2ψ̆2x(L1) = d1ψ

𝒩𝒟
1x (L1) < 0,  ψ̆2(L1 + L2) = 0;

(4.23)

d3ψ̆3,xx + c3(x)ψ̆3 + λ𝒩𝒟
1 ψ̆3 = 0, x ∈ P3, 

d3ψ̆3x(L1 + L2) = d2ψ̆2x(L1 + L2) < 0, ψ̆3x(L) = 0;
(4.24)

d3ψ̂3,xx + c3(x)ψ̂3 + λ𝒩𝒟
2 ψ̂3 = 0, x ∈ P3, 

d3ψ̂3x(L1 + L2) = d2ψ
𝒩𝒟
2x (L1 + L2) < 0, ψ̂3x(L) = 0.

(4.25)

Proof. We first prove that there is a constant M , independent of α1,2, such that ∥φi∥𝒞2(P̄i )
≤ M

for i = 1,2,3. This uniform bound will then ensure that the limit in (4.22) exists.
For φ1, we rewrite equation (4.1) as

φ1,xx = − 1 
d1

(c1(x) + λ1(α1, α2))φ1.
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Since φ1 is bounded by 1 by construction and λ1 is bounded by Lemma 4.1, so is φ1,xx . Integrat
ing the first equation of (4.1) over (0, x), x ≤ L1, we have

φ1x(x) = − 1 
d1

x∫︂
0 

(c1(x) + λ1(α1, α2))φ1dx.

As before, from the bounds of φ1 and λ1 it follows that φ1,x is bounded. Since the bounds of 
φ1 and λ1 are independent of {αi}i=1, there exists a constant M > 0 independent of {αi}i=1
such that ∥φ1∥𝒞2(P̄1)

≤ M . The same reasoning leads to corresponding bounds for ∥φ2∥𝒞2(P̄2)

and ∥φ3∥𝒞2(P̄3)
.

Before we pass to the limit, we observe that

λ1(α1, α2) ≤ min{λ𝒩𝒟
1 , λ𝒩𝒟

1,2 }, (4.26)

where λ𝒩𝒟
1 and λ𝒩𝒟

1,2 are the principal eigenvalues of the subproblems on patch 1 and patches 
1 and 2, respectively, with Neumann conditions on the left and Dirichlet conditions on the 
right, see (4.21). We obtain this inequality from eigenvalue comparison: The eigenfunction φ1 of 
λ1(α1, α2) is a strict supersolution of the eigenvalue problem of λ𝒩𝒟

1 . Similarly, the pair (φ1, φ2)

is a strict supersolution of the eigenvalue problem of λ𝒩𝒟
1,2 . Hence, λ1(α1, α2) is bounded by ei

ther of those eigenvalues.
Note that the principal eigenfunction of λ𝒩𝒟

1,2 depends on α1 (but not on α2) because α1 de
termines the interface matching conditions between patches 1 and 2. We can assume that this 
principal eigenfunction (φ′

1, φ
′
2) is normalized such that ∥φ′

1∥∞ + ∥φ′
2∥∞ = 1. By the same rea

soning as above, we can also assume that it is uniformly bounded in C2.
Finally, we consider the limit as αi → 0. By the Arzelà-Ascoli theorem, we can pass to a 

subsequence, such that along this subsequence, λ1(α1, α2) → λ̄ and φi → φ̄i ≥ 0 in 𝒞1(P̄i). 
Hence, the limiting functions φ̄i satisfy

diφ̄i,xx + ci(x)φ̄i + λ̄φ̄i = 0, x ∈ Pi, (4.27a)

φ̄1x(0) = 0, φ̄1(L1) = 0, (4.27b)

d1φ̄1x(L1)
− = d2φ̄2x(L1)

+, φ̄2(L1 + L2) = 0, (4.27c)

d2φ̄2x(L1 + L2)
− = d3φ̄3x(L1 + L2)

+, φ̄3x(L) = 0, (4.27d)

φ̄i ≥ 0 and max
i

sup 
x∈P̄i

φ̄i = 1. (4.27e)

By passing to a further subsequence, one can also assume that the principal eigenvalue λ𝒩𝒟
1,2

and its eigenfunction (φ′
1, φ

′
2) also converge to some limit λ̄𝒩𝒟

1,2 and (φ̄′
1, φ̄

′
2), and they satisfy a 

limiting system of two equations satisfying the conditions (4.27a)-(4.27c). In particular, (4.26)
then implies that

λ̄ ≤ min{λ𝒩𝒟
1 , λ̄𝒩𝒟

1,2 }. (4.28)

Note that the limiting system decouples in the following sense: the equation for φ̄1 is inde
pendent of the other two equations but influences the equation for φ̄2. The equations for φ̄1 and 
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φ̄2 combined are independent of the equation for φ̄3 but they influence the equation for φ̄3. This 
mathematical observation (which we exploit in the proof below) nicely corresponds to the bi
ological interpretation of the limit αj = 0: individuals from patch 1 enter patch 2 but not vice 
versa; therefore the dynamics on patch 1 are independent of those on patch 2 but influence those 
on patch 2. The same consideration applies to the interface between patches 2 and 3.

Next, we prove that the limiting value λ̄ is bounded above by the minimum in (4.22). From 
(4.28), we already have that λ̄ ≤ λ𝒩𝒟

1 . Then we note that φ̄3 ≢ 0, since, if φ̄3 ≡ 0, then, by the 
matching conditions at L1 + L2, we also have φ̄2 ≡ 0, which, in turn, implies that φ̄1 ≡ 0, again 
by the matching conditions. But not all functions φ̄i can equal zero since their maximum must 
equal 1. Since φ̄3 ≢ 0, it is a supersolution to the eigenvalue problem of λ𝒩𝒩

3 ; see (4.21). It 
follows by eigenvalue comparison that

λ̄ ≤ λ𝒩𝒩
3 . (4.29)

To prove the missing inequality that λ̄ ≤ λ𝒩𝒟
2 , we first note that from (4.28) we already have 

λ̄ ≤ λ̄𝒩𝒟
1,2 . Then we argue for patch 2 in the subproblem of two patches in the same way as we 

just did for patch 3 in the full problem on all three patches: we must have φ̄′
2 ≢ 0, because if it 

was zero, then φ̄′
1 would be zero as well, which is impossible. Since φ̄′

2 is not identically zero, it 
is a supersolution to the eigenvalue problem of λ𝒩𝒟

2 . Therefore, by eigenvalue comparison, we 
have

λ̄𝒩𝒟
1,2 ≤ λ𝒩𝒟

2 . (4.30)

Hence, we have proved that

λ̄ = lim 
α1,α2→0

λ1(α1, α2) ≤ min{λ𝒩𝒟
1 , λ𝒩𝒟

2 , λ𝒩𝒩
3 }. (4.31)

To show the equality (4.22) and the particular form of the eigenfunctions in the limiting cases, 
we consider several cases.

Case (i). If φ̄1 ≢ 0 on P1, then, φ̄1 is a solution of the eigenvalue problem on P1 with Neumann 
and Dirichlet boundary conditions on the left and right, respectively. In particular, λ̄ = λ𝒩𝒟

1 , 
φ̄1 = ψ𝒩𝒟

1 on P1. By (4.31), we have λ𝒩𝒟
1 = min{λ𝒩𝒟

1 , λ𝒩𝒟
2 , λ𝒩𝒩

3 }. Since φ̄1 ≢ 0, the inter
face conditions ensure that φ̄2, φ̄3 ≢ 0 and that they are positive, strict supersolutions to λ𝒩𝒟

2 and 
λ𝒩𝒩

3 , respectively. This implies that λ𝒩𝒟
1 < min{λ𝒩𝒟

2 , λ𝒩𝒩
3 }, and, by applying the Fredholm 

alternative theorem, that (4.23) (resp. (4.24)) has a unique solution ψ̆2 (resp. ψ̆3). By uniqueness, 
we have (φ̄2, φ̄3) = (ψ̆2, ψ̆3). Hence, we conclude that

λ̄ = λ𝒩𝒟
1 < min{λ𝒩𝒟

2 , λ𝒩𝒩
3 } and (φ̄1, φ̄2, φ̄3) = (ψ𝒩𝒟

1 , ψ̆2, ψ̆3). (4.32)

Case (ii). If φ̄1 ≡ 0 on P1 but φ̄2 ≢ 0 on P2, then, φ̄2 is a solution of the eigenvalue problem on 
P2 with Neuman and Dirichlet boundary conditions on the left and right endpoints, respectively. 
In particular, λ̄ = λ𝒩𝒟

2 , φ̄2 = ψ𝒩𝒟
2 on P2. Arguing as in case (i), we deduce that on patch three, 

φ̄3 > 0 is a positive strict supersolution to λ𝒩𝒩
3 , so that λ𝒩𝒟

2 = λ̄ < λ𝒩𝒩
3 . Therefore, (4.25) has 

a unique solution, denoted by ψ̂3. Again, uniqueness lets us conclude that
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λ̄ = λ𝒩𝒟
2 = min{λ𝒩𝒟

1 , λ𝒩𝒟
2 , λ𝒩𝒩

3 } < λ𝒩𝒩
3 and (φ̄1, φ̄2, φ̄3) = (0,ψ𝒩𝒟

2 , ψ̂3). (4.33)

Case (iii). If φ̄1 ≡ 0 on P1, and φ̄2 ≡ 0 on P2, then necessarily φ̄3 ≢ 0 on P3. In that case, φ̄3 is a 
solution of the eigenvalue problem on P3 with Neumann boundary conditions at both endpoints. 
In particular, λ̄ = λ𝒩𝒩

3 and φ̄3 = ψ𝒩𝒩
3 on P3. Hence,

λ̄ = λ𝒩𝒩
3 = min{λ𝒩𝒟

1 , λ𝒩𝒟
2 , λ𝒩𝒩

3 } and (φ̄1, φ̄2, φ̄3) = (0,0,ψ𝒩𝒩
3 ). (4.34)

Finally, by examining the inequalities in (4.32), (4.33) and (4.34), one can observe that if the 
minimum value of {λ𝒩𝒟

1 , λ𝒩𝒟
2 , λ𝒩𝒩

3 } is achieved by λNN
3 (which includes the case when two 

or all of them are equal), then case (iii) must hold. If the minimum is achieved by λND
2 but not 

by λNN
3 , then case (ii) must hold. If the minimum is achieved neither by λND

2 nor by λNN
3 , then 

case (i) must hold. This completes the proof. □
Remark 4.9. As noted in the preceding proof, the limiting case of αj = 0 induces directionality 
into the system. The dynamics on patches to the left are independent of the dynamics on patches 
to the right, but the dynamics on patches to the right are influenced by the dynamics on patches 
to the left. The situation is reminiscent of a stream or river where information flows downstream 
(to the right) but not upstream (to the left). What we learned intuitively from the predecing 
proof is that when we have a (sub-)system of two adjacent patches with flow from upstream to 
downstream, then the eigenvalue of the limiting case is bounded above by the minimum of the 
decoupled eigenvalue problems on each patch with appropriately chosen boundary conditions at 
the interface: Dirichlet conditions at the downstream end of the upstream patch and Neumann 
conditions at the upstream end of the downstream patch.

With this insight, the proof of the above lemma can be generalized to any finite number of 
linearly arranged patches with interfaces and corresponding movement probabilities between 
them. From any given patch, one can trace upstream to find a unique ``top'' patch. If the limiting 
function is identically zero on some patch, then it is necessarily zero on all ``upstream'' patches; if 
the limiting function is not zero on some patch, then it is necessarily positive on all ``downstream'' 
patches as well. This property allows us to generalize to, say, N linearly arranged patches where 
movement at the interfaces is, say, to the right. We obtain eigenvalue estimates corresponding to 
(4.28) and (4.29) for the first (most upstream) and the last (most downstream) patch and the set 
of the top N − 1 patches. Then we proceed by induction.

As the mirror symmetric case of the preceding lemma, if we change the limit from αj → 0 to 
αj → 1, we simply switch the direction of the influence or hierarchy. The ``river'' now flows to 
the left, and the following analogous result holds.

Lemma 4.10. The principal eigenvalue λ1(α1, α2) of (4.1)--(4.2) satisfies

lim 
α1,α2→1

λ1(α1, α2) = min{λ𝒩𝒩
1 , λ𝒟𝒩

2 , λ𝒟𝒩
3 }. (4.35)

Moreover, the limiting cases of the corresponding eigenfunctions are as follows

(i) if λ𝒩𝒩
1 = min{λ𝒩𝒩

1 , λ𝒟𝒩
2 , λ𝒟𝒩

3 }, then (φ1, φ2, φ3) → (ψ𝒩𝒩
1 ,0,0) in 𝒞1(P̄1)×𝒞1(P̄2)×

𝒞1(P̄3);
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(ii) if λ𝒟𝒩
2 = min{λ𝒩𝒩

1 , λ𝒟𝒩
2 , λ𝒟𝒩

3 } < λ𝒩𝒩
1 , then (φ1, φ2, φ3) → (ψ̂1,ψ

𝒟𝒩
2 ,0) in 𝒞1(P̄1)×

𝒞1(P̄2) × 𝒞1(P̄3);

(iii) if λ𝒟𝒩
3 < min{λ𝒩𝒩

1 , λ𝒟𝒩
2 }, then (φ1, φ2, φ3) → (ψ̌1, ψ̌2,ψ

𝒟𝒩
3 ) in 𝒞1(P̄1) × 𝒞1(P̄2) ×

𝒞1(P̄3);

where ψ𝒩𝒩
1 , ψ𝒟𝒩

2 and ψ𝒟𝒩
3 are eigenfunctions corresponding to λ𝒩𝒩

1 , λ𝒟𝒩
2 and λ𝒟𝒩

3 , re

spectively; ψ̂1, ψ̌1, and ψ̌2 are the positive solution of the following corresponding problems:

d1ψ̂1,xx + c1(x)ψ̂1 + λ𝒟𝒩
2 ψ̂1 = 0, x ∈ P1, ψ̂1x(0) = 0, d1ψ̂1x(L1) = d2ψ

𝒟𝒩
2x (L1) > 0;

d1ψ̌1,xx + c1(x)ψ̌1 + λ𝒟𝒩
3 ψ̌1 = 0, x ∈ P1, ψ̌1x(0) = 0, d1ψ̌1x(L1) = d2ψ̌2x(L1) > 0;

d2ψ̌2,xx + c2(x)ψ̌2 + λ𝒟𝒩
3 ψ̌2 = 0, x ∈ P2, ψ̌2(L1) = 0,

d2ψ̌2x(L1 + L2) = d3ψ
𝒟𝒩
3x (L1 + L2) > 0.

The previous two lemmas dealt with the case that all individuals move to the left (Lemma 4.10) 
or all move to the right (Lemma 4.8) at both interfaces. Now, we turn to the mixed cases, where 
α1 and α2 tend to different limits, i.e., individuals move to the left at one interface and to the 
right at the other. There are two cases. We start with the case (α1, α2) → (0,1), when individuals 
move to the middle patch (which then is ``downstream'' of both, patch 1 and 3). Later, we treat 
the remaining case (α1, α2) → (1,0), when individuals move to the outer patches (so that the 
middle patch us ``upstream'' of both patch 1 and 3).

Lemma 4.11. The principal eigenvalue λ1(α1, α2) of (4.1)--(4.2) satisfies

lim 
(α1,α2)→(0,1)

λ1(α1, α2) = min{λ𝒩𝒟
1 , λ𝒩𝒩

2 , λ𝒟𝒩
3 }. (4.36)

Moreover, the limiting cases of the corresponding eigenfunctions are as follows

(i) if λ𝒩𝒟
1 = min{λ𝒩𝒟

1 , λ𝒩𝒩
2 , λ𝒟𝒩

3 } < λ𝒩𝒩
2 , then (φ1, φ2, φ3) → (ψ𝒩𝒟

1 , ψ̃2,0) in 𝒞1(P̄1)×
𝒞1(P̄2) × 𝒞1(P̄3);

(ii) if λ𝒩𝒩
2 = min{λ𝒩𝒟

1 , λ𝒩𝒩
2 , λ𝒟𝒩

3 }, then (φ1, φ2, φ3) → (0,ψ𝒩𝒩
2 ,0) in 𝒞1(P̄1)×𝒞1(P̄2)×

𝒞1(P̄3);

(iii) if λ𝒟𝒩
3 = min{λ𝒩𝒟

1 , λ𝒩𝒩
2 , λ𝒟𝒩

3 } < λ𝒩𝒩
2 , then (φ1, φ2, φ3) → (0, ψ̂2,ψ

𝒟𝒩
3 ) in 𝒞1(P̄1)×

𝒞1(P̄2) × 𝒞1(P̄3);

where ψ𝒩𝒟
1 , ψ𝒩𝒩

2 and ψ𝒟𝒩
3 are eigenfunctions corresponding to λ𝒩𝒟

1 , λ𝒩𝒩
2 and λ𝒟𝒩

3 , re

spectively, while ψ̃2 and ψ̂2 are the positive solution of the following problems, respectively,

d2ψ̃2,xx + c2(x)ψ̃2 +λ𝒩𝒟
1 ψ̃2 = 0,  x ∈ P2,  d2ψ̃2x(L1) = d1ψ

𝒩𝒟
1x (L1) < 0,  ψ̃2x(L1 +L2) = 0.

(4.37)

d2ψ̂2,xx + c2(x)ψ̂2 + λ𝒟𝒩
3 ψ̂2 = 0, x ∈ P2, ψ̂2x(L1) = 0, 

d2ψ̂2x(L1 + L2) = d3ψ
𝒟𝒩
3x (L1 + L2) > 0.

(4.38)
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Proof. We only outline the proof since the details are similar to the proof of Lemma 4.8 and 
the more general insights that resulted from it. By eigenvalue comparison, we have λ1(α1, α2) ≤
min{λ𝒩𝒟

1 , λ𝒟𝒩
3 }. Passing to the limit, we obtain

λ̄ = lim 
(α1,α2)→(0,1)

λ1(α1, α2) ≤ min{λ𝒩𝒟
1 , λ𝒟𝒩

3 }.

Now, since patch 2 is the downstream patch, we deduce that the corresponding part of the eigen
function satisfies φ̄2 ≢ 0. Therefore, it is a supersolution to the eigenvalue problem corresponding 
to λ𝒩𝒩

2 . Hence, we have λ̄ ≤ λ𝒩𝒩
2 . In summary, we proved

λ̄ ≤ min{λ𝒩𝒟
1 , λ𝒩𝒩

2 , λ𝒟𝒩
3 }. (4.39)

Now, to see that the above inequality is an equality, it suffices to observe that exactly one of the 
following alternatives holds: (i) φ̄1 ≢ 0 or φ̄3 ≢ 0; (ii) φ̄1 ≡ φ̄3 ≡ 0 and φ̄2 ≢ 0. In case (i), we 
find that λ̄ = λ𝒩𝒟

1 or λ𝒟𝒩
3 , whereas in case (ii), we have λ̄ = λ𝒩𝒩

2 . □
Finally, we look at the case where individuals move to the left at the left interface and to the 

right at the right interface. In other words, individuals move from the center to the boundary 
patches.

Lemma 4.12. The principal eigenvalue λ1(α1, α2) of (4.1)--(4.2) satisfies

lim 
(α1,α2)→(1,0)

λ1(α1, α2) = min{λ𝒩𝒩
1 , λ𝒟𝒟

2 , λ𝒩𝒩
3 }. (4.40)

Moreover, the limiting cases of the corresponding eigenfunctions are as follows

(i) if λ𝒟𝒟
2 < min{λ𝒩𝒩

1 , λ𝒩𝒩
3 }, then (φ1, φ2, φ3) → (ψ̃1,ψ

𝒟𝒟
2 , ψ̃3) in 𝒞1(P̄1) × 𝒞1(P̄2) ×

𝒞1(P̄3);

(ii) if λ𝒩𝒩
1 = min{λ𝒩𝒩

1 , λ𝒟𝒟
2 , λ𝒩𝒩

3 } < λ𝒩𝒩
3 , then (φ1, φ2, φ3) → (ψ𝒩𝒩

1 ,0,0) in 𝒞1(P̄1) ×
𝒞1(P̄2) × 𝒞1(P̄3);

(iii) if λ𝒩𝒩
3 = min{λ𝒩𝒩

1 , λ𝒟𝒟
2 , λ𝒩𝒩

3 } < λ𝒩𝒩
1 , then (φ1, φ2, φ3) → (0,0,ψ𝒩𝒩

3 ) in 𝒞1(P̄1) ×
𝒞1(P̄2) × 𝒞1(P̄3);

where ψ𝒩𝒩
1 , ψ𝒟𝒟

2 and ψ𝒩𝒩
3 are eigenfunctions corresponding to λ𝒩𝒩

1 , λ𝒟𝒟
2 and λ𝒩𝒩

3 , re
spectively; ψ̃1 and ψ̃3 are the positive solution of the following problems, respectively,

d1ψ̃1,xx + c1(x)ψ̃1 + λ𝒟𝒟
2 ψ̃1 = 0, x ∈ P1, ψ̃1x(0) = 0, d1ψ̃1x(L1) = d2ψ

𝒟𝒟
2x (L1) > 0.

(4.41)

d3ψ̃3,xx + c3(x)ψ̃3 + λ𝒟𝒟
2 ψ̃3 = 0, x ∈ P3, 

d3ψ̃3x(L1 + L2) = d2ψ
𝒟𝒟
2x (L1 + L2) < 0, ψ̃3x(L) = 0.

(4.42)

Proof. Again, we only outline the proof, using the insights from the proof of Lemma 4.8 and 
subsequent remark. By eigenvalue comparison, we have λ1(α1, α2) ≤ min{λ𝒟𝒟

2 , λ𝒩𝒟
1,2 , λ𝒟𝒩

2,3 }, 
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where the elements in the set are defined as in (4.21) and ``Notation''. By passing to the limit, we 
obtain the upper bound

λ̄ = lim 
(α1,α2)→(1,0)

λ1(α1, α2) ≤ min{λ𝒟𝒟
2 , λ̄𝒩𝒟

1,2 , λ̄𝒟𝒩
2,3 }. (4.43)

Now, since patch 1 (resp. patch 3) is the downstream patch in the limiting system of λ̄𝒩𝒟
1,2

(resp. λ̄𝒟𝒩
2,3 ), we argue (in a similar fashion as in (4.30) and the corresponding remark) that

λ̄𝒩𝒟
1,2 ≤ λ𝒩𝒩

1 and λ̄𝒟𝒩
2,3 ≤ λ𝒩𝒩

3 . (4.44)

Combining (4.43) and (4.44), we have again proved

λ̄ ≤ min{λ𝒩𝒩
1 , λ𝒟𝒟

2 , λ𝒩𝒩
3 }. (4.45)

Finally, to see that the equality holds in (4.45), we divide into the following cases: (i) φ̄2 ≢ 0; 
(ii) φ̄2 ≡ 0. In the first case, λ̄ = λ𝒟𝒟

2 . In the latter case, φ̄1 ≢ 0 or φ̄3 ≢ 0, whence λ̄ = λ𝒩𝒩
1 or 

λ̄ = λ𝒩𝒩
1 . □

5. Analysis of the positive steady state

In this section, we analyze evolutionarily stable dispersal strategies by studying the positive 
steady states of a three-patch model. We begin by examining the existence and qualitative prop
erties of positive steady states for a single species. This is followed by an invasion analysis in a 
two-species system, where dispersal rates and patch preferences are treated as evolutionary traits. 
The section concludes with a discussion of the ideal free distribution under specific conditions.

5.1. Existence and qualitative properties of the steady state

The population density ui on the patch Pi satisfies the following equations; see (2.2):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uit = diui,xx + riui(1 − ui

Ki
), x ∈ Pi, t > 0,

u1x(0, t) = u3x(L, t) = 0,

d1u1x(L1, t) = d2u2x(L1, t), u1(L1, t) = k1u2(L1, t),

d2u2x(L1 + L2, t) = d3u3x(L1 + L2, t), u2(L1 + L2, t) = k2u3(L1 + L2, t).

(5.1)

We first prove the existence and uniqueness of the positive steady-state solution for model 
(5.1). Then, we classify the possible qualitative shapes of this positive steady-state solution. 
Finally, based on this classification, we discuss the relationship between the total population 
abundance at steady state and the total carrying capacity.

Theorem 5.1. There exists a unique positive steady-state of (5.1), denoted by u∗
i , which is glob

ally asymptotically stable.
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Proof. Since the single equation for ui in (5.1) is monotone and of logistic type, the existence 
and uniqueness of a positive steady state for (5.1) is equivalent to the trivial steady state being 
linearly unstable (see [6, Propositions 3.2-3.3] and [26, Appendix C]).

Let (η1, ϕi) be the principal eigenpair of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

diϕi,xx + riϕi + η1ϕi = 0, x ∈ Pi,

ϕ1x(0) = ϕ3x(L) = 0,

d1ϕ1x(L1) = d2ϕ2x(L1),ϕ1(L1) = k1ϕ2(L1),

d2ϕ2x(L1 + L2) = d3ϕ3x(L1 + L2),ϕ2(L1 + L2) = k2ϕ3(L1 + L2).

(5.2)

Multiplying the equations of (5.2) by 1 
ϕ1

, 1 
k1ϕ2

and 1 
k1k2ϕ3

, respectively, and integrating the results 
over [0,L1], [L1,L1 + L2], and [L1 + L2,L], respectively, and adding the results, we obtain

η1 = −
∫︁ L1

0 d1
ϕ2

1x

ϕ1
2 + r1dx + 1 

k1

∫︁ L1+L2
L1

d2
ϕ2

2x

ϕ2
2 + r2dx + 1 

k1k2

∫︁ L

L1+L2
d3

ϕ2
3x

ϕ3
2 + r3dx

L1 + 1 
k1

L2 + 1 
k1k2

L3
< 0.

Hence, the trivial steady state is unstable, and there is a unique positive steady-state solution, 
denoted by u∗

i . By the monotone dynamical system theory [47], u∗
i is globally asymptotically 

stable. □
Next, we investigate how model parameters affect the shape of the positive steady-state solu

tion of the system (5.1). We begin by proving that it has to be monotone on the first and third 
patch and that it cannot change slope more than onces on the middle patch.

Lemma 5.2. The positive steady state on the first patch, u∗
1 of (5.1) satisfies one of the following 

alternatives:
(i) u∗

1 is strictly increasing on P1 and u∗
1(0) > K1;

(ii) u∗
1 is strictly decreasing on P1 and u∗

1(0) < K1;
(iii) u∗

1 is identically constant on P1 and u∗
1(0) = K1. 

Corresponding statements hold for u∗
3 with > K1 (< K1) replaced by < K3 (> K3). On the 

interior of the second patch, u∗
2 cannot have more than one local extremum.

Proof. The steady-state u∗
i of (5.1) satisfies the equation

diui,xx + riui

(︃
1 − ui

Ki

)︃
= 0, x ∈ Pi, (5.3)

together with the boundary and matching conditions in (5.1).
We note that u1x(L1) fall into exactly one of the following three cases: u1x(L1) > 0, 

u1x(L1) = 0, or u1x(L1) < 0. First, we assume u1x(L1) > 0, and prove that u1(x) must be 
strictly increasing on P1. Suppose, for contradiction that u1(x) is not strictly increasing, which 
means that there exists at least one internal critical point x1 ∈ P1, where u1x(x1) = 0. Dividing 
the equation of u1(x) by u1

K1
and integrating it over [0, x1], we obtain
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x1∫︂
0 

d1K1
u2

1,x

u2
1

+ r1K1

(︃
1 − u1

K1

)︃
dx = 0. (5.4)

Integrating the equation of u1(x) directly, we get

x1∫︂
0 

r1u1

(︃
1 − u1

K1

)︃
dx = 0. (5.5)

Subtracting (5.5) from (5.4) yields,

x1∫︂
0 

d1K1
u2

1,x

u2
1

+ r1

K1
(K1 − u1)

2dx = 0. (5.6)

Therefore, we have u1 = K1 on [0, x1]. By the uniqueness of the solution, this would imply 
u1 = K1 on P1, which contradicts the condition u1x(L1) > 0. Consequently, u1(x) is strictly 
increasing on P1. We now show that u1(0) > K1. Otherwise, if u1(0) = K1, then by uniqueness, 
we have u1(x) = K1 on P1, contradicting the strictly increasing property of u1(x). If instead 
u1(0) < K1, then by continuity, there exists a small ϵ0 > 0 such that u1(x) < K1 on [0, ϵ0). 
Since u1x(0) = 0 and u1,xx(x) < 0 for x ∈ (0, ϵ0) by equation (5.3), it follows that u1x(x) < 0
for x ∈ (0, ϵ0), again contradicting the strictly increasing property of u1(x). Thus, we conclude 
that u1(0) > K1, and by monotonicity, u1(x) > K1 for all x ∈ P1. The arguments in the other 
cases for u∗

1 and u∗
3 are similar.

To see the claim for u∗
2, we note that, by equation (5.3), a local maximum necessarily satisfies 

u∗
2 ≤ K2 while a local minimum necessarily satisfies u∗

2 ≥ K2. Hence, at most local extremum is 
possible in the interior of P2. □
Theorem 5.3. The positive steady state u∗

i of (5.1) has the following profiles.

(i) u∗
i = Ki on each Pi , provided that K1 = k1K2 and K2 = k2K3.

(ii) u∗
i is strictly increasing on each Pi with u∗

1 > K1, u∗
3 < K3, provided that K1 ≤ k1K2 and 

K2 ≤ k2K3 and at least one of these two inequalities is strict.

(iii) u∗
i is strictly decreasing on each Pi with u∗

1 < K1, u∗
3 > K3, provided that K1 ≥ k1K2 and 

K2 ≥ k2K3 and at least one of these two inequalities is strict.

Proof. It suffices to prove cases (i) and (ii) as part (iii) follows from similar arguments as (ii).
(i) Under the conditions on the parameters, one can check that the constant functions u∗

i = Ki

on each Pi are a solution of the steady-state equations. Since the solution is unique, the claim 
follows.

(ii) According to Definition 3.1, (k1k2K3, k2K3,K3) and (K1,
K1
k1

, K1
k1k2

) are super- and sub
solutions of (5.3), respectively. Therefore, we have u1(x) ≥ K1 on P1, and u3(x) ≤ K3 on P3. 
From the equation of u1(x), it follows that u1,xx(x) ≥ 0, and that u1x(x) ≥ 0 on P1. Lemma 5.2
yields either u1x(x) > 0 or u1(x) ≡ K1 on P1. Next, we show that u1(x) ≢ K1. If u1(x) ≡ K1, 
then, by the matching conditions and K1 ≤ k1K2, we obtain u2x(L1) = 0 and u2(L1) ≤ K2. If 
u2(L1) = K2, then uniqueness yields u2(x) ≡ K2 on P2. Repeating the same argument for P3, 
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we deduce that u3(x) ≡ K3 on P3. However, this contradicts our assumption that at least one of 
the inequalities must be strict. Thus, u2(L1) < K2, and by continuity, there exists a small ε1 > 0
such that u2(x) < K2 on [L1,L1 + ε1), and by the equation of u2(x), we obtain u2,xx(x) < 0 on 
this interval. From the maximum principle, it follows that u2x(L1 +L2) < 0. Similarly, based on 
the matching conditions and K2 ≤ k2K3, we can obtain u3x(L1 +L2) < 0 and u3(L1 +L2) < K3. 
By the maximum principle again, we have u3x(L) < 0, which is a contradiction to u3x(L) = 0. 
Therefore, u1x(x) > 0 on P1 with u1(x) > K1. Similarly, we can prove that u3x(x) > 0 on P3
with u3(x) < K3.

Now, we only need to show that u2(x) is increasing on P2. Let w = u2x(x). Then w satisfies

{︄
d2wxx + r2(1 − 2u2

K2
)w = 0, x ∈ (L1,L1 + L2),

w(L1) > 0, w(L1 + L2) > 0.
(5.7)

Since d2u2,xx + r2

(︂
1 − u2

K2

)︂
u2 = 0, and the inequality

0 = d2wxx + r2

(︃
1 − u2

K2

)︃
w > d2wxx + r2

(︃
1 − 2u2

K2

)︃
w, x ∈ (L1,L1 + L2),

holds when w = u2, then w = u2 is a positive strict supersolution of (5.7). Therefore, according 
to Theorem 3.5, the maximum principle holds, and it is derived that w > 0 on P2, i.e., u2(x) is 
increasing on P2. □
Remark 5.4. Theorem 5.3 shows that under some conditions, steady-state solutions in the three
patch model are monotone. Previous work showed that steady-state solutions are always mono
tone in a corresponding two-patch model [19,52]. With the addition of a third patch that we are 
studying here, steady states can become non-monotone if the conditions of Theorem 5.3 are not 
satisfied, namely in the ‘mixed’ scenario, when K1 < k1K2 and K2 > k2K3 or K1 > k1K2 and 
K2 < k2K3. In that case, solutions can exhibit a local maximum or local minimum in the middle 
patch, but there is no simple characterization of when this occurs in terms of model parameters.

Using Lemma 5.2, we can characterize the shape of the positive steady state in terms of the 
values of u∗ on the boundary as follows: If the differences u∗

1(0) − K1 and u∗
3(L) − K3 have 

opposite signs, then the corresponding steady-state solution is monotone; if they have the same 
sign, then there is a local extremum in the middle patch. Of course, the boundary values are 
determined by all model parameters in a nonlinear (and non-obvious) way.

We illustrate two transitions between monotone and non-monotone states by computing the 
steady state numerically as the parameter K2 varies while all other parameters are fixed. We note 
that the boundary values u∗

1(0) and u∗
3(L) are increasing with K2. In fact, if u∗ and u∗∗ are steady

state solutions with K∗
2 and K∗∗

2 while all other parameters are the same, and if K∗
2 < K∗∗

2 then 
u∗ < u∗∗. Our simulations show that as K2 increases, the corresponding steady-state solution can 
change from having a local minimum in the middle patch to being monotone to having a local 
maximum in the middle patch; see Fig. 2. At the transitions from monotone to non-monotone, 
the solution is constant on one of the boundary patches; see panels (b) and (e) in Fig. 2. This 
corresponds to a degenerate case where the three-patch system effectively reduces to a two-patch 
configuration, in which the solution remains monotone across the remaining two patches.

We now turn to the relation between total population abundance and total carrying capacity.
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Fig. 2. Transitions in steady-state profiles as K2 increases, where (a) K2 = 2; (b) K2 = 2.95; (c) K2 = 6; (d) K2 = 10; 
(e) K2 = 13.5; (f) K2 = 20. Other parameters are: K1 = 5, K3 = 9, d1 = 2, d2 = 3, d3 = 4, r1 = 12, r2 = 8, r3 = 3, 
α1 = α2 = 0.2 and Li = 3 for i = 1,2,3. The dashed lines correspond to the respective carrying capacities. With our 
choice of parameters, the inequalities K1 ≥ k1K2 and K2 ≥ k2K3 become 3 ≤ K2 ≤ 40/3 ≈ 13.3. They are satisfied in 
panels (c) and (d).
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Theorem 5.5. If

d1
u∗

1x(L1)

u∗
1(L1) 

[︃
K1

r1
− k1

K2

r2

]︃
+ d2

u∗
2x(L1 + L2)

u∗
2(L1 + L2) 

[︃
K2

r2
− k2

K3

r3

]︃
> 0, (5.8)

then the positive steady state u∗
i of (5.1) satisfies

L1∫︂
0 

(u∗
1(x) − K1)dx +

L1+L2∫︂
L1

(u∗
2(x) − K2)dx +

L ∫︂
L1+L2

(u∗
3(x) − K3)dx > 0, (5.9)

i.e., the total population abundance at steady state is higher than the total carrying capacity.

Proof. Dividing (5.3) by riui

Ki
, and integrating over Pi , and summing with respect to i, we obtain

L1∫︂
0 

(u1(x) − K1)dx +
L1+L2∫︂
L1

(u2(x) − K2)dx +
L ∫︂

L1+L2

(u3(x) − K3)dx

= d1K1

r1

L1∫︂
0 

u2
1x

u2
1

dx + d2K2

r2

L1+L2∫︂
L1

u2
2x

u2
2

dx + d3K3

r3

L ∫︂
L1+L2

u2
3x

u2
3

dx

+ d1K1

r1

u1x(L1)

u1(L1) 
+ d2K2

r2

[︃
u2x(L1 + L2)

u2(L1 + L2) 
− u2x(L1)

u2(L1) 

]︃
− d3K3

r3

u3x(L1 + L2)

u3(L1 + L2) 
.

(5.10)

By using the matching conditions, we have

d1K1

r1

u1x(L1)

u1(L1) 
+ d2K2

r2

[︃
u2x(L1 + L2)

u2(L1 + L2) 
− u2x(L1)

u2(L1) 

]︃
− d3K3

r3

u3x(L1 + L2)

u3(L1 + L2) 

= d1
u1x(L1)

u1(L1) 

[︃
K1

r1
− k1

K2

r2

]︃
+ d2

u2x(L1 + L2)

u2(L1 + L2) 

[︃
K2

r2
− k2

K3

r3

]︃
.

(5.11)

Hence, when (5.8) holds, (5.9) follows. □
Corollary 5.6. If the two chains of inequalities,

1 < k1
K2

K1
<

r2

r1
, and 1 < k2

K3

K2
<

r3

r2
, (5.12)

are satisfied, then (5.9) holds, i.e., the total population density at steady state exceeds the total 
carrying capacity. Similarly, if all inequalities are reversed, then (5.9) holds.

Proof. In each of the two chains of inequalities, the first one ensures that the steady-state solution 
is monotone increasing; see Theorem 5.3 (ii). Hence, the derivative terms in (5.8) are positive. 
Likewise, the second inequality in each chain ensures that the terms in square brackets in (5.8)
are positive. Hence, the entire expression is positive. The case with reversed inequalities follows 
in the same way. □
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Fig. 3. The integral difference 
∑︁

i

∫︁
Pi

(u∗
i
(x) − Ki)dx with respect to K2, where positive values correspond to the total 

abundance exceeding the total carrying capacity. Other parameters are as in Fig. 2.

It is interesting to note that we can find simple sufficient conditions on parameters that en
sure that the steady-state solution is monotone and that do not include the growth parameters ri
(see Theorem 5.3). Yet, even if the steady-state solution is monotone, we need additional condi
tions on the growth rates to ensure that the total density at steady state exceeds the total carrying 
capacity, i.e., that (5.9) holds. Importantly, these conditions are sufficient but not necessary, as 
demonstrated by our numerical results (see Fig. 3). While the strict inequalities in (5.12) guar
antee a positive integral difference, we observe that the total abundance can exceed the carrying 
capacity even when these conditions are only partially met or not satisfied at all. Specifically,
the first chain of inequalities in (5.12) holds for 80

9 < K2 < 40
3 , whereas the second chain re

quires 3 < K2 < 8. Notably, Fig. 3 reveals that the integral difference remains positive across 
a wider range of K2 (approximately 3 ≤ K2 ≤ 19), including cases where both chains fail (e.g. 
14 ≤ K2 ≤ 19) or only a subset of conditions holds. This confirms that multiple scenarios can 
lead to abundance exceeding the carrying capacity.

This observation is consistent with findings from several related studies. (i) Lou showed 
that in heterogeneous environments, dispersal can lead to a total population size that exceeds 
the spatially averaged carrying capacity [29]. This occurs because individuals spill over from 
high-quality regions to nearby regions, highlighting the crucial role of spatial heterogeneity; (ii) 
DeAngelis and coworkers extended this insight to continuous-space logistic models with spa
tially varying growth rates and carrying capacities, showing that the analogue of (5.9) holds 
when carrying capacity and growth rate are positively correlated, provided the diffusion rate is 
either sufficiently small or large [14,15]. Our result does not depend on the absolute magnitude of 
diffusion, but rather on the ratio of diffusion coefficients between patches through the composite 
parameters kj ; (iii) Zaker et al. studied a two-patch model and proved that all steady states are 
monotone. Moreover, a sufficient condition for the analogue of (5.9) to hold required exactly the 
first chain of inequalities in (5.12) (see [52]).

For the non-monotone steady-state solutions that we described above (and that do not occur 
on a two-patch model), we can also give sufficient conditions for (5.9) to hold. However, just like 
in Remark 5.4, these conditions are not purely based on model parameters but on the steady-state 
density at the endpoints of the domain. 
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Corollary 5.7. If

1. u∗
1(0) > K1 and u∗

3(L) > K3; and

2. k1
K2
K1

< r2
r1

and k2
K3
K2

>
r3
r2

then (5.9) is satisfied. Similarly, if all inequalities are reversed, (5.9) holds.

Proof. The first two conditions ensure that u1x(x) > 0 while u3x(x) < 0. The second condition 
guarantees that the first square bracket in (5.8) is positive while the second is negative. Hence, 
both terms on the left in (5.8) are positive and the desired inequality holds. □
5.2. Invasion analysis

We now analyze the evolutionary dynamics with respect to dispersal and patch preference in 
a spatially structured environment using the framework of adaptive dynamics [16]. Specifically, 
we investigate whether rare mutants with modified dispersal strategies or patch preferences can 
successfully invade a monomorphic resident population at equilibrium.

The model for the so-called wild type (or resident) and mutant (or invader) populations is 
the canonical extension of the single-species model (5.1) to two types. We consider the diffusion 
coefficients (di ) and the patch preference coefficients (αj ) as the traits of interest. The population 
dynamics of the resident (ui) and the mutant type (vi) on patch i are described by the following 
coupled equations:

⎧⎨
⎩

uit = diui,xx + riui(1 − ui+vi

Ki
), x ∈ Pi, t > 0,

vit = Divi,xx + rivi(1 − vi+ui

Ki
), x ∈ Pi, t > 0.

(5.13)

The boundary and interface matching conditions are the same as (5.1), with di and kj substituted 
by Di and k̂j in the equations for the mutant, where

k̂1 = β1

1 − β1

D2

D1
, k̂2 = β2

1 − β2

D3

D2
. (5.14)

Clearly, system (5.13) has the semi-trivial steady-state solutions E1 = (u∗
i ,0) and E2 =

(0, v∗
i ) since the system of equations reduces to the single-species equation (5.1) for one popu

lation when the other is absent. To determine how the above-mentioned traits of interest evolve, 
we analyze the stability of the resident equilibrium E1 by linearization. Since the linearized 
equations for vi are decoupled (see [11, Lemma 5.5]), we only need to consider the principal 
eigenvalue (Λ) of the linear eigenvalue problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Diϕi,xx + ri(1 − u∗
i

Ki
)ϕi = Λϕi, x ∈ Pi,

ϕ1x(0) = ϕ3x(L) = 0,

D1ϕ1x(L1) = D2ϕ2x(L1),ϕ1(L1) = k̂1ϕ2(L1),

D2ϕ2x(L1 + L2) = D3ϕ3x(L1 + L2),ϕ2(L1 + L2) = k̂2ϕ3(L1 + L2).

(5.15)
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In the theory of adaptive dynamics, Λ is known as the invasion fitness or invasion exponent 
[16]. It can be viewed as the payoff of the mutant with its trait(s) in the presence of the resident 
at steady state with its respective trait(s). Specifically, if Λ is positive, the mutant can grow when 
rare in the presence of the resident, whereas when Λ is negative, it cannot. In the first case, we 
say that the mutant invades, whereas in the second, it does not. Typically, we cannot directly 
determine the sign of Λ, but can instead calculate the selection gradient, i.e., the derivative of 
Λ with respect to the traits under consideration, evaluated at the resident’s trait value(s). This 
selection gradient determines the direction of evolutionary change (see [30] for details).

We begin with the case of the diffusion coefficients. To reduce the number of parameters, we 
will again write the diffusion coefficients in each patch as the product of an overall diffusion 
propensity parameter and a patch-specific diffusion rate, di = dd̃i for the resident population; 
see Section 4. To study the evolution of the overall diffusion propensity, we write Di = Dd̃i for 
the mutant population. Note that the ratios of the diffusion coefficients between the resident and 
the invaders are the same. We indicate the dependence of the principal eigenvalue in (5.15) as 
Λ = Λ(d,D).

Lemma 5.8. The selection gradient with respect to diffusion propensity is given by

∂Λ(d,D)

∂D 
|D=d = −

∫︁ L1
0 d̃1(u

∗
1)

2
xdx + k1

∫︁ L1+L2
L1

d̃2(u
∗
2)

2
xdx + k1k2

∫︁ L

L1+L2
d̃3(u

∗
3)

2
xdx∫︁ L1

0 (u∗
1)

2dx + k1
∫︁ L1+L2
L1

(u∗
2)

2dx + k1k2
∫︁ L

L1+L2
(u∗

3)
2dx 

. (5.16)

Proof. The calculations are almost identical to those in Lemma 4.3. Note that Λ in (5.15) and 
λ in (4.1) have opposite signs. Note also that since the relative diffusion coefficients between 
patches are the same for the resident and the invader, we have kj = k̂j . Finally, when D = d , 
then ϕi = u∗

i □
Since the selection gradient in (5.16) is negative, smaller overall diffusion propensity will 

evolve. In fact, we show below that zero diffusion is convergence stable.

Theorem 5.9. Let (d̃i)
3
i=1 ∈ (0,∞)3 be fixed, and let di = dd̃i and Di = Dd̃i for some 0 < d <

D. If the two species have the same patch preferences (i.e., kj = k̂j for j = 1,2), then, for any 
positive solution of (5.13), we have

(u1, u2, u3, v1, v2, v3) → (u∗
1, u

∗
2, u

∗
3,0,0,0) as t → ∞,

where (u∗
1, u

∗
2, u

∗
3) is the unique positive steady state of (5.1) as given in Theorem 5.1.

Proof. Once the monotonicity in d of the eigenvalue is established (Lemma 5.8), one can follow 
the strategy of proving [17, Lemma 4.1]. We omit the details. See also [26, Sect. 7.3.1]. □

Next, we assume that resident and invader differ only in their probabilities of moving left and 
right at an interface; αj for the resident and βj for the invader. Then the principal eigenvalue in 
(5.15) depends on four parameters, namely Λ = Λ(α1, α2, β1, β2).
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Lemma 5.10. The selection gradient with respect to patch preferences is given by

∇βΛ|βj =αj
= −

(︃
d2u

∗
2(L1)u

∗
1x(L1)

(1 − α1)2I 
,
k1d3u

∗
3(L1 + L2)u

∗
2x(L1 + L2)

(1 − α2)2I 

)︃
, (5.17)

with

I =
L1∫︂

0 

(u∗
1)

2dx + k1

L1+L2∫︂
L1

(u∗
2)

2dx + k1k2

L ∫︂
L1+L2

(u∗
3)

2dx > 0. (5.18)

Proof. The expression for the selection gradient in two and more traits was given in [16]. The 
calculations of the partial derivatives are similar to those in Lemma 4.7. Substituting βj = αj

gives k̂j = kj and ϕi = u∗
i as in the preceding lemma. □

Remark 5.11. The selection gradient gives the direction of highest selection pressure. The actual 
path of evolution can be further constrained if the different traits are linked, i.e., if their covari
ance is not zero; see for example the discussion in [16]. We consider the direction of evolution 
according to (5.17) under the assumption that the two traits are independent variables. In that 
case, if the density at an interface is increasing (i.e., u∗

x > 0 at that interface), then the corre
sponding entry in the selection gradient is negative and hence the probability of moving to the 
left at that interface (αj ) decreases. Conversely, if the density at an interface is decreasing, then 
the corresponding entry is positive and the probability of moving left increases.

For example, when K1 ≤ k1K2, K2 ≤ k2K3, and at least one of these two inequalities is 
strict, Theorem 5.3(ii) implies that u∗

1x(L1) > 0 and u∗
2x(L1 + L2) > 0. Hence, evolution acts 

to decrease the probability of moving to the left at both interfaces. Since kj is an increasing 
function of αj , decreasing αj also leads to smaller values of kj . This implies that evolution 
will eventually turn the inequalities K1 ≤ k1K2, K2 ≤ k2K3 into equalities. At that point, part 
(i) of Theorem 5.3 ensures that the corresponding steady-state solution u∗

i is constant on each 
patch. But that, in turn, implies that the selection gradient in (5.17) vanishes and, hence, that 
the evolution of αj stops. The system has reached a ‘singular strategy’. We study this singular 
strategy from a different point of view in the next section.

5.3. Ideal free distribution

The ideal free distribution (IFD) is a theoretical concept that describes how individuals dis
tribute themselves across their habitat in an optimal way in the sense that individual fitnesses are 
equal at all locations [20]. Mathematical models have shown that movement strategies that lead 
to an IFD often can resist invasion by other, nearby strategies (i.e., they function as evolution
arily stable strategies, ESS) and populations adopting such IFD-producing strategies may often 
invade other similar but distinct strategies (i.e., they are neighborhood invader strategies, NIS) 
[7--9]. In this section, we show that both of these implications hold in our model, generalizing 
the corresponding results for two patches [35].

For a single species to exhibit the IFD, its local individual fitness must equal zero everywhere 
in the domain. We denote the species density in patch i at the IFD by ūi . From the first equation 
in (5.1), we must have ūi = Ki on patch Pi for i = 1,2,3. To satisfy the interface matching 
conditions, the parameters associated with the IFD must satisfy
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k̄1 = K1

K2
, k̄2 = K2

K3
. (5.19)

Since the k̄j are (nondimensional) combinations of the movement-related parameters di , and 
αj , they represent the dispersal strategy that leads to the IFD. In the following, we show that 
(k̄1, k̄2) constitutes and ESS and NIS. The first step is to show that a population using the IFD 
cannot coexist at a positive steady state with a population using any other strategy.

Proposition 5.12. Let ui(x) and vi(x) be the positive steady state of (5.13). If k1 = k̄1 and k2 =
k̄2, then ui and vi are constant on Pi , and k̂1 = k̄1 and k̂2 = k̄2.

Proof. The proof generalizes the one for two patches; see [35, Theorem 5.1]. The steady-state 
solution of (5.13) satisfies the equation⎧⎨

⎩
diui,xx + riui(1 − ui+vi

Ki
) = 0, x ∈ Pi,

Divi,xx + rivi(1 − vi+ui

Ki
) = 0, x ∈ Pi,

(5.20)

with the boundary and matching conditions in (5.1), with di and kj substituted by Di and k̂j in 
the corresponding equations for vi .

Dividing the equations for the resident in (5.20) by ui

Ki
, and integrating over Pi , we obtain

∑︂
i

∫︂
Pi

diKi

u2
i,x

u2
i

+ riKi(1 − ui + vi

Ki

)dx = 0, (5.21)

where we used the boundary and matching conditions and k1 = k̄1, k2 = k̄2.
Integrating the equations for the resident of (5.20) directly, we get

∑︂
i

∫︂
Pi

riui(1 − ui + vi

Ki

)dx = 0. (5.22)

Similarly, integrating the equations for the mutant of (5.20) directly, we have

∑︂
i

∫︂
Pi

rivi(1 − vi + ui

Ki

)dx = 0. (5.23)

Subtracting (5.22) and (5.23) from (5.21) yields,

∑︂
i

∫︂
Pi

diKi

u2
i,x

u2
i

+ ri

Ki

(Ki − ui − vi)
2dx = 0. (5.24)

Therefore, we have ui,x = 0 and ui + vi = Ki on Pi . In particular, ui and vi are constant on Pi .
Let u1 = c. Then it follows from the matching conditions of ui and k1 = k̄1, k2 = k̄2 that 

u2 = cK2
K1

, u3 = c
K3
K1

. Hence, we have v1 = K1 − c, v2 = K2(1 − c
K1

), v3 = K3(1 − c
K1

). Using 

the matching conditions of vi , we conclude that k̂1 = K1
K2

, k̂2 = K2
K3

. □
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Next, we show that a rare population that adopts the ideal-free movement strategy (i.e., k̂1 =
k̄1, k̂2 = k̄2) will be able to invade a resident population that adopts a different movement strat
egy.

Theorem 5.13 (IFD implies NIS). Let Λ be the principal eigenvalue of (5.15). If

(k̂1, k̂2) = (k̄1, k̄2) and (k1, k2) ≠ (k̄1, k̄2)

then we have Λ > 0, i.e. the species v with IFD-strategy can invade resident species u without 
such a strategy when rare.

Proof. Again, the proof is a generalization of the case of two patches; see [35, Theorem 5.2]. 
Dividing the equations of (5.15) by ϕi

Ki
, and integrating over Pi , we obtain

∑︂
i

∫︂
Pi

DiKi

ϕ2
i,x

ϕ2
i

+ riKi

(︃
1 − ui

Ki

)︃
dx = Λ(K1L1 + K2L2 + K3L3), (5.25)

where we used the boundary and matching conditions and the fact that k̂i = k̄i .
Integrating the equations for the resident of (5.13) directly, we get

∑︂
i

∫︂
Pi

riui

(︃
1 − ui

Ki

)︃
dx = 0. (5.26)

Subtracting (5.26) from (5.25) yields,

∑︂
i

∫︂
Pi

DiKi

ϕ2
i,x

ϕ2
i

+ riKi

(︃
1 − ui

Ki

)︃2

dx = Λ(K1L1 + K2L2 + K3L3). (5.27)

Hence, Λ ≥ 0. Note that (k1, k2) ≠ (k̄1, k̄2) (i.e. the resident population does not adopt the ideal
free strategy), so at least one integral term of (5.27) becomes positive, leading to Λ > 0. This 
indicates that a rare population employing the ideal-free strategy can successfully invade a resi
dent population using any other movement strategy. □

Theorem 5.13 shows that the IFD is a NIS. In combination with Proposition 5.12, we see that 
the IFD is also an ESS.

Theorem 5.14 (IFD implies ESS). Suppose (v1, v2, v3)
⃓⃓
t=0 is nonnegative and nontrivial, and 

suppose

(k̂1, k̂2) = (k̄1, k̄2) and (k1, k2) ≠ (k̄1, k̄2).

Then (u1, u2, u3, v1, v2, v3) → (0,0,0,K1,K2,K3) as t → ∞.
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Proof. Observe that the system (5.13) with the interface matching conditions generates a com
pact semiflow that satisfies the axioms of competition system (see, e.g. [26, Appendix E]). This 
can be proved by arguments similar as in [26, Lemma 7.1.3]. Therefore we can invoke [26, The
orem E.2.13] to conclude a trichotomy result. Namely, exactly one of the following holds:

(i) (u1, u2, u3, v1, v2, v3) → (u∗
1, u

∗
2, u

∗
3,0,0,0) as t → ∞;

(ii) (u1, u2, u3, v1, v2, v3) → (0,0,0,K1,K2,K3) as t → ∞;
(iii) there exists a positive coexistence equilibrium where all entries are strictly positive.

Now, (iii) is impossible thanks to Proposition 5.12, while (i) is ruled out thanks to Theorem 5.13. 
It follows that (ii) holds. □
6. Conclusions

We study a model for the dynamics of a population living in a habitat of three different, 
adjacent patches, where individuals move randomly within each patch and may have preferences 
when moving from one patch to another. Mathematically, our model consists of three reaction
diffusion equations, coupled through matching conditions for the density and the flux at each 
interface. Our model is a generalization of the two-patch model studied in [35], and our present 
arguments can be generalized to address any finite number of adjacent patches (see also [21, 
48]). After obtaining basic existence and uniqueness results, which are largely straightforward 
extensions of the work in [35], we studied how the principal eigenvalue of the linear form of 
our model depends on parameters (Section 4). This question was not addressed in [35] but is 
highly relevant to ecological applications; see related work on single-patch models in [6,12,13, 
26,30,39,42,51]. Finally, we studied the existence, qualitative shape, and evolutionary stability 
of positive steady states of our model (Section 5). In contrast to the two-patch model, we found a 
larger variety of possible shapes of the steady state (e.g., non-monotone states), and determined 
their stability with respect to invasion by another species.

While our model set-up seems highly artificial when compared to natural landscapes, it 
corresponds very well to certain laboratory experiments where micro-organisms are grown on 
substrate plates, which constitute indeed a piecewise constant landscape. For example, a so
called MEGA plate was used to study the evolution of resistance to antibiotics [5]. A smaller 
landscape of six adjacent plates was used to study the evolution of dispersal of nematode worms 
under various conditions [4]. A corresponding discrete-patch model of coupled ordinary dif
ferential equations was derived and analyzed there, but we believe that our approach of patchy 
reaction-diffusion equations would reveal more detailed spatial patterns. Expanding our model to 
six patches and estimating model parameters from the experiments is a challenging future task.

We showed that the principal eigenvalue is increasing with the diffusion rate (more precisely, 
the overall diffusion capacity of the species; see Lemma 4.3). Ecologically, this indicates that a 
lower diffusion rate is advantageous for the species, as it leads to a higher growth rate at low 
density. In this sense, our work continues the long tradition of studying the evolution of dispersal 
and finding that lower random dispersal rates are advantageous if the environment is spatially 
varying but temporally constant [1,10,17,22,27]. What makes our contribution surprising is that 
it holds also when there is some form of directed movement, namely at the interfaces between 
patches. Previous models that included directed movement, either through unidirectional flow 
or through resource sensing, found that intermediate or even high random dispersal rates can 
be evolutionarily advantageous [28,30--32,53]. Mathematically, this difference is reflected in the 
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fact that the movement operator in our model is self-adjoint, independently of the choices of 
patch preferences, whereas in a simple advection model, it is not.

We showed also that the response of the principal eigenvalue to changes in patch prefer
ences depends on the shape of the eigenfunction at an interface; see Lemma 4.7. For example, 
if the coefficients ci are all constants (i.e., ci(x) ≡ ci ) and ordered (e.g., c1 > c2 > c3), then the 
eigenfunction is nonincreasing. In particular, its derivatives at the interfaces are nonpositive. Ac
cording to the formulas in (4.13), the partial derivatives of the principal eigenvalue with respect 
to αj are both nonpositive. Hence, the overall population growth rate increases when individuals 
preferentially move to the left. The condition c1 > c2 > c3 indicates that the habitat quality is 
highest on the left and lowest on the right. Hence, it seems reasonable that movement preference 
to the left should be beneficial since population growth is higher there.

A different and somewhat complementary approach to studying population dynamics on three 
(or more) adjacent patches can be found in [48]. The authors consider a linear system of reaction
diffusion equations with matching conditions at the interfaces that include our conditions as 
a special case. The authors derive an implicit equation for the principal eigenvalue and corre
sponding eigenfunction. In particular, they find conditions that determine the qualitative shape 
of the eigenfunction (e.g., increasing, decreasing, hump-shaped,...) on each patch, given param
eters. While they do not study how the principal eigenvalue depends on model parameters, in 
particular on movement ability and patch preference, their method could be used to evaluate and 
visualize those relationships numerically if parameters are available for a specific system. Their 
method can also be used to calculate properties of the slope of eigenfunctions, given parameters, 
to which our theoretical results in Lemma 4.7 can then be applied to find which patch preference 
is evolutionarily advantageous.

We studied how the principal eigenvalue behaves when patch preferences become very strong. 
In that case, the overall population growth rate is given by the highest growth rate on an individual 
patch with appropriate boundary conditions (Dirichlet or Neumann). Moreover, the correspond
ing eigenfunction is determined by the eigenfunction on that patch of highest growth rate, and it 
is positive in other patches only if individuals prefer those patches. This leads to a source-sink 
situation [43]: the patch with the highest growth rate acts as a source; other patches are sinks 
with a population, if individuals prefer those patches, and empty if they do not.

Our study of the positive steady state of the system revealed some interesting commonali
ties and some differences with the two-patch case. Most importantly, whereas the steady state 
in a two-patch landscape is monotone in each patch [52], we observe steady-state densities that 
can have local extrema on the middle patch in the three-patch landscape (see Fig. 2). It is clear 
that this result generalizes to any finite number of patches: the steady-state solution is mono
tone on the first and last patch but not necessarily on the patches in between. While it seems 
obvious that real populations could exhibit such local aggregations depending on habitat qual
ity and movement pattern, there are no simple parameter conditions that guarantee such locally 
peaked solutions in our model. The situation is different for a linear model where the shape of 
the principal eigenfunction can be obtained from model parameters, albeit in a non-obvious way 
[48]. It is a formidable future challenge to obtain explicit parameter conditions for monotone and 
non-monotone profiles of the positive steady state. If it could be accomplished, we could also 
answer with precision whether the total steady-state density exceeds the total carrying capacity 
(Theorem 5.5) and how evolution acts on patch preferences (Lemma 5.10). As in the two-patch 
case, we determined that the ideal-free distribution (IFD) is an evolutionarily stable strategy and a 
neighborhood invader strategy (Theorems 5.13 and 5.14), but it is still an open question whether 
it is also convergent stable. In other words, we would like to know whether a mutant strategy 
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that is ``closer'' to the IFD can invade a resident strategy that is ``farther'' from the IFD. The first 
step in this future analytical challenge is to properly define ``closer'' and ``farther'' in the two
dimensional trait space of k1 and k2. More generally, while some of our results clearly generalize 
to more than three patches, the generalization of others offers multiple highly rewarding future 
projects.
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