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Abstract. This paper is concerned with the following stationary Shigesada-Kawasaki-Teramoto
competition system with cross-diffusion

d∆u+ u(r − u− bv) = 0, in Ω,

µ∆[(1 + ku)v] + v(r − v − cu) = 0, in Ω,
∂u
∂ν

= ∂v
∂ν

= 0, on ∂Ω,

where u and v represent the densities of two competing species, Ω is a bounded domain in Rn(n ≥ 1)
and ν denotes the outer unit normal to ∂Ω. All coefficients d, µ, b, c, r, k are assumed to be positive
constants. The existence and stability/instability of non-constant positive solutions of the above
system has been widely studied in the literature but confined to large k > 0 and small d > 0
(or d > 0 close to some particular number) with µ ∈ (0,∞]. In this paper, we establish the
existence/nonexistence of non-constant positive solutions for any k, d > 0 and large µ > 0, which
fills some gaps left out in the existing results. First, we show there are no positive solutions in
the case of b < 1 < c for large µ > 0. Then by studying the shadow system of the above system
as µ → ∞, we establish the existence of positive solutions for large µ > 0 in other various ranges
of b, c > 0 including all possible competitions: weak, strong-weak and strong. In particular, we
find some conditions under which multiple positive solutions exist. Then we show the existence of
positive solutions for some µ > 0 in the case of weak competition 0 < b, c < 1.
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1. Introduction

A variety of mathematical models have been employed to investigate the effect of dispersal
on population dynamics [39, 51], as well as how the species interaction affects the selection and
evolution of dispersal strategies [9, 18, 30]. However, much of the theoretical studies are devoted
to the case of random (unconditional) dispersal where the movement of species is modeled as a
random diffusion process [33, 36]. In comparison, the mathematical studies of models incorporating
conditional dispersal strategies, which take into account factors such as avoidance effect, population
pressure, crowding effect, and competition of species, to name a few, have received relatively
less attention and there are many open questions related to conditional dispersal strategies [2].
Among them, cross-diffusion (the process by which the density gradient of one species induces
an advective flux of another species) has often been used to interpret many observed patterns
and evolutionary processes in living organisms, such as chemotaxis [14], preytaxis [13], pattern
formation [23], biofilm [38], Turing pattern [7], spatial segregation [43] and so on. These reaction-
cross-diffusion systems have received enormous attention due to their rich mathematical structures
that enable the modeling of many important physical phenomena.
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In this paper, we are concerned with the following simplified STK cross-diffusion model proposed
by Shigesada-Kawasaki-Teramoto [43]

ut = d∆u+ u(r − u− bv), x ∈ Ω, t > 0,

vt = µ∆[(1 + ku)v] + v(r − v − cu), x ∈ Ω, t > 0,

∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

(1.1)

where u(x, t) and v(x, t) represent the densities of two competing species at the location x and
time t, Ω is a bounded domain in Rn(n ≥ 1) and ν denotes the outer unit normal to ∂Ω. All
coefficients d, µ, b, c, r, k are assumed to be positive constants throughout this paper, where in
particular the parameter r > 0 is referred to as the (spatially homogeneous) resource available in
the environment. The term ∆[(1 + ku)v] says that the rate of departure of species v from location
x is proportional to 1 + ku(x, t), which is an increasing function of the density u(x, t) of the first
species. The coefficient k is called the cross-diffusion coefficient measuring the biased movement of
the species v in response to the population pressure from the species u.

If k = 0, then the dispersal strategy of v is unconditional upon the density of u, and the
competition model (1.1) becomes the classical diffusive Lotka-Volterra competition model under
zero Neumann boundary conditions. In this case, the system admits a comparison principle and
the theory of monotone dynamical systems can be applied to classify the long-time dynamics of
the system [10, 44]. A result by Kishimoto and Weinberger [15] asserts that (1.1) has no stable
nontrivial positive steady state on a convex domain. It is well known that in the case of weak-strong
competition (i.e. b < 1 < c or b > 1 > c), (1.1) has no positive steady state (cf. [25, 32]), i.e.
coexistence is impossible. However, if the resource is spatially heterogeneous, namely r = r(x) is
not constant, then the global dynamics are much more complicated and the species may coexist
in the case of weak-strong competition, depending on the size of dispersal rates d and µ (see [10]).
Therefore, an interesting question is whether two competing species can coexist in the case of weak-
strong competition if one adopts density-dependent dispersal [2] given that the resource is spatially
homogeneous. The quasilinear cross-diffusion system (1.1) with k > 0 is a prominent mathematical
model highly pertinent to this question and has attracted tremendous attention in the past few
decades. The existence of global-in-time solutions has been established in [1, 19]. For the steady
states, the first analytical work was due to [31] which showed that (1.1) admits positive transition-
layer steady states when µ and k are sufficiently large but d > 0 is sufficiently small in some strong
competition case b, c > 1. Later the stability/instability of such steady states was investigated in
[12]. The existence/nonexistence of positive steady states in some larger parameter regimes were
obtained in [25]. In a celebrated work [26], Lou and Ni established the uniform boundedness of
nontrivial steady states, and derived three types of limiting shadow systems determining all the
possible asymptotic behavior of steady states as the cross-diffusion parameter k in (1.1) tends to
infinity (see [26, Theorem 1.4 and Theorem 4.1]).

Theorem 1.1 ([26, Theorem 4.1]). Let Ω ⊂ Rn(1 ≤ n ≤ 3) be a bounded domain with smooth
boundary. Suppose b 6= 1, c 6= 1 and r/µ 6= λj for all j ∈ N, where λj denotes the eigenvalues
of −∆ subject to homogeneous Neumann boundary condition. Let (ui, vi) be positive non-constant
steady states of (1.1) with (µ, k) = (µi, ki) and µiki →∞. Then the following conclusions hold.

(a) If ki →∞ and µi → µ ∈ (0,∞), then either (i) or (ii) occurs;
(b) If ki →∞ and µi →∞, then either (i∗) or (ii) occurs;
(c) If ki → k ∈ [0,∞), then k > 0 and (iii) occurs; where

(i) (kiui, vi)→ (w, v) uniformly, where (w, v) is a positive solution of
d∆w + w(r − bv) = 0, in Ω,

µ∆[(1 + w)v] + v(r − v) = 0, in Ω,
∂w
∂ν = ∂v

∂ν = 0, on ∂Ω.

(1.2)
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(i∗) (kiui, vi)→ (w, ξ/(1 + w)) uniformly, where ξ > 0 and w is a positive solution of
d∆w + w (r − bξ/(1 + w)) = 0, in Ω,∫

Ω
r

1+w dx = ξ
∫

Ω
1

(1+w)2
dx,

∂w
∂ν = 0, on ∂Ω.

(1.3)

(ii) (ui, vi)→ (u, ξ/u) uniformly, where ξ > 0 and u is a positive solution of
d∆u+ u (r − u) = bξ, in Ω,∫

Ω
1
u (r − ξ/u− cu) dx = 0,

∂u
∂ν = 0, on ∂Ω.

(1.4)

(iii) (ui, vi)→ (u, ξ/(1 + ku)) uniformly, where ξ > 0 and u is a positive solution of
d∆u+ u

(
r − u− bξ

1+ku

)
= 0 in Ω,∫

Ω
1

1+ku (r − cu) dx = ξ
∫

Ω
1

(1+ku)2
dx,

∂u
∂ν = 0, on ∂Ω.

(1.5)

The classification given in Theorem 1.1 provides a framework to study the steady-state solu-
tions of the quasilinear system (1.1) and has stimulated lots of studies on the existence and/or
stability/instability of limiting systems (1.2), (1.4) and (1.4) in various ranges of parameters (cf.
[17, 20, 21, 25, 27, 28, 33, 34, 46, 49, 50] in one dimension and [16, 29] in multi-dimensions). But
all these works have essentially assumed that d > 0 is either small or close to some particular
number (or lies in certain range), and k > 0 is sufficiently large. We refer to a recent work [21] and
references therein for a brief review of the above-mentioned works. See also [22] for more recent
developments.

As we know, the limiting shadow system (1.5) has never been investigated in the literature.
Indeed the limiting system (1.5) results from the case µ → ∞ and 0 < k < ∞, which clearly
varies from limiting systems (1.2), (1.3) and (1.4), all of which require k → ∞. Hence the study
of the existence/nonexistence of solutions to (1.5) is of interest in its own right. The main goal of
this paper is to study the existence or nonexistence of non-constant steady state solution of (1.1)
satisfying 

d∆u+ u(r − u− bv) = 0, in Ω,

µ∆[(1 + ku)v] + v(r − v − cu) = 0, in Ω,
∂u
∂ν = ∂v

∂ν = 0, on ∂Ω

(1.6)

in some parameter regimes not covered by the existing studies mentioned above. Our first result is
concerned with the nonexistence of positive solutions to (1.5) and (1.6). Specifically, we will show
that system (1.5) does not admit non-constant positive solutions for b ≤ 1 ≤ c, while if b < 1 < c,
then system (1.6) have no positive non-constant solutions for large µ.

Theorem 1.2. Let d, k, b, c > 0. Then the following results hold.

(1) If b ≤ 1 ≤ c, then system (1.5) does not admit non-constant positive solutions for any
µ > 0;

(2) If b < 1 < c, then there exists µ > 0 such that (1.6) has no non-constant positive solutions
for any µ > µ.

It is well known [32] that in the absence of cross-diffusion (i.e., k = 0), the weak (b < 1 < c)
competitor v does not persist for any d, µ > 0. Theorem 1.2 (2) implies that it will not persist
either even if it adopts the dispersal strategy to avoid the stronger competition u (i.e. k > 0) when
its diffusion rate µ is sufficiently large for given b, c, d, k > 0.

Then a natural question is whether (1.6) has positive solutions outside the parameter regime
given in Theorem 1.2. It turns out this is a very challenging question. In this paper, we can
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address this question in one dimension due to the crucial observation (see Proposition 1.1 below)
that the existence of solutions of the limiting shadow system (1.5) implies the existence of solutions
to the SKT system (1.6) for µ � 1 under some non-degeneracy conditions. Therefore we shall
restrict our attention in one dimensional case in what follows. Without loss of generality, we
assume Ω = (0, L) with L > 0 and rewrite the system (1.5) as

uxx + u
(
r − u− bξ

1+ku

)
= 0 in (0,L),∫ L

0
1

1+ku (r − cu) dx = ξ
∫ L

0
1

(1+ku)2
dx,

ux = 0, x = 0, L.

(1.7)

and (1.6) as 
uxx + u(r − u− bv) = 0, in (0, L),

µ[(1 + ku)v]xx + v(r − v − cu) = 0, in (0, L),

ux = vx = 0, x = 0, L,

(1.8)

where we set d = 1 for the simplicity of notation and k > 0 is fixed for the rest of this paper.

To study the existence of nonconstant solutions of the limiting (1.7) with that of the original
system (1.8), we define a weak form of non-degeneracy as follows.

Definition 1.1. We say that a nonconstant solution (u∗, ξ∗) of (1.7) is nondegenerate if the linear
operator T : {φ ∈W 2,2([0, L]) : φx(0) = φx(L) = 0} → L2([0, L]) given by

T (φ) = φxx + φ
(
r − 2u∗ − bξ∗

(1+ku∗)2

)
,

is invertible.

Proposition 1.1. Suppose (1.7) has a non-constant solution (u∗, ξ∗). If it is nondegenerate and
satisfies ∫ L

0

(
T−1

(
bu∗

1+ku∗

)
(3ξ∗k − (kr + c)(1 + ku∗))

(1 + ku∗)3
− 1

(1 + ku∗)2

)
dx 6= 0, (1.9)

where T−1 is the inverse of operator T given in Definition 1.1, then system (1.8) admits a non-
constant positive solution (uµ, vµ) for µ� 1. Moreover,

(uµ, vµ)→ (u∗, ξ∗

1+u∗ ) as µ→ +∞.

Remark 1.1. Condition 1.9 is to ensure that system (1.7) when linearized at the solution (u∗, ξ∗)
does not admit a zero eigenvalue. We believe it is a generic condition that is satisfied except for a
small subset of parameter values. However, it is not easy to check its validity analytically.

Thanks to Proposition 1.1, it remains to explore the existence and structure of non-constant
solutions of the limiting shadow system (1.7). To this end, we classify the monotone increasing
solution of (1.7) since every non-constant solution of the shadow system (1.7) can be constructed
from monotone solutions by reflection (see Lemma 3.1). For the shadow system (1.7), we have the
following conclusions on the existence and nonexistence of the monotone increasing solutions.

Theorem 1.3. Suppose that

rk > 1 and L > L∗ :=

√
kπ√

rk + 3− 2
√

2(1 + kr)
. (1.10)

Then there exists b∗ ∈
(

1
1+rk , 1

)
and c∗ ∈ (1,∞) such that the following results hold.

(i) If b < b∗ (resp. c > c∗) , then system (1.7) has no strictly increasing positive solutions for
any c > 0 (resp. for any b > 0).
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(ii) If b > b∗, then there is a single bounded interval Ib such that system (1.7) has a strictly
increasing positive solution u∗ for some ξ = ξ∗ if and only if c ∈ Ib. Consequently for
any b > b∗ and c ∈ Ib, system (1.8) with µ � 1 admits a non-constant positive solution if
(u∗, ξ∗) satisfies (1.9).

(iii) If c < c∗, then there is a single interval Ic such that system (1.7) has a strictly increasing
positive solution u∗ for some ξ = ξ∗ if and only if b ∈ Ic. Therefore for any c > c∗ and
b ∈ Ic, system (1.8) with µ� 1 admits a non-constant positive solution if (u∗, ξ∗) satisfies
(1.9).

Theorem 1.3 gives the existence of increasing positive solutions of (1.7) and hence (1.8). However,
given b ∈ (b∗,∞) (resp. c ∈ (0, c∗)), the size of Ib (resp. Ic) is obscure and can not be explicitly
identified. Below we present a more decisive result.

Theorem 1.4. Let the conditions in (1.10) hold. Define

z± = (rk − 1− kπ2/L2 ±
√

(kπ2/L2 − rk + 1)2 − 8kπ2/L2)/4k.

Then there exists a small constant ε = ε(k, r, L) > 0 such that the following results hold.

(i) If b ∈ (1, 1+ε) and c ∈ (1−ε, 1), then (1.7) admits at least two increasing positive solutions.

(ii) Assume b ∈ (1 − ε, 1) and c ∈ (1 − ε, 1). If 1/b−1
1−c < z−

r−z− , then (1.7) at least admits two

increasing positive solutions, which are non-degenerate; if 1/b−1
1−c ∈

(
z−

r−z− ,
z+

r−z+

)
, then (1.7)

admits at least one increasing positive solution.

(iii) Assume b ∈ (1, 1 + ε) and c ∈ (1, 1 + ε). If 1−1/b
c−1 > z+

r−z+ , then (1.7) at least admits two

increasing positive solutions, which are non-degenerate; if 1/b−1
1−c ∈

(
z−

r−z− ,
z+

r−z+

)
, then (1.7)

admits at least one increasing positive solution.

Under the same conditions, if the solution of (1.7) satisfies (1.9), then system (1.8) admits the
same number of non-constant positive solutions as (1.7).

While Theorem 1.2 asserts that system (1.8) does not have any non-constant positive solution if
b < 1 < c, Theorem 1.4 (i) says that there are some b, c > 0 with c < 1 < b such that (1.8) with
µ � 1 admits some non-constant positive solutions. Theorem 1.4 (ii) implies that there are some
b, c > 0 with b, c < 1 or b, c > 1 such that (1.8) with µ � 1 admits some non-constant positive
solutions. In the following theorem proved by the global bifurcation theorem, we show (1.8) may
admit at least one non-constant positive solutions for any 0 < b, c < 1 (weak competition) and
some µ > 0.

Theorem 1.5. Let 0 < b, c < 1 and λi = π2i2

L2 , i = 0, 1, 2, · · · . Define µλi = (1−bc)u+v+
(bku+v+−(1+ku+)(λi+u+))λi

,

where u+ = (1−b)r
1−bc > 0 and v+ = (1−c)r

1−bc > 0. Suppose that j is a positive integer such that
(bkv+−(1+ku+))u+

1+ku+
∈ (λj , λj+1]. If there exists i ∈ {1, 2, · · · , j} such that

µλi 6= µλm for any m ∈ {1, 2, · · · , j} and m 6= i,

then (1.8) admits at least one non-constant positive solution whenever

µ > µλi and µ 6∈ {µλ1 , µλ2 , · · · , µλj}.

This paper is organized as follows. In Section 2, we prove the nonexistence of positive solutions
to (1.7) and (1.8). In Section 3, we classify the monotone increasing solutions of (1.7), which form
the building blocks of all nonconstant solutions (see Propositions 3.2 and 3.3). These enables us
to conclude the existence of non-constant solutions of system (1.8) with large µ > 0 as claimed in
Theorem 1.3. In Section 4, the existence results in the case of weak competition for some µ > 0
(i.e. Theorem 1.5) are proved via the global bifurcation theory [3, 42].
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2. Nonexistence of positive solution of system (1.6)

This section is devoted to proving Theorem 1.2. We first prove the following result for system
(1.5).

Proposition 2.1. If b ≤ 1 ≤ c, then system (1.5) has no non-constant positive solutions.

Proof. If not, assume that (1.5) has a non-constant positive solution u. Multiplying the first
equation of (1.5) by 1

u(1+ku) and integrating the resulting equation over Ω, one obtains∫
Ω

1

1 + ku

(
r − u− bξ

1 + ku

)
dx = −d

∫
Ω

∆u

u(1 + ku)
dx = −

∫
Ω

|∇u|2(1 + 2ku)

u2(1 + ku)2
dx < 0,

which along with the condition b ≤ 1 ≤ c implies that∫
Ω

1

1 + ku

(
r − cu− bξ

b(1 + ku)

)
dx < 0.

This contradicts the second identity of (1.5), and hence completes the proof. �

To prove that system (1.6) does not admit any positive solution for large µ, we first establish
several preparatory lemmas.

Lemma 2.1. Let (u, v) be a positive solution of (1.6). Suppose there is a constant A > 0 such that

sup
Ω̄

(1 + ku)v ≤ A inf
Ω̄

(1 + ku)v, ‖u‖L∞(Ω) ≤ A,

then there exists a constant CA such that

sup
Ω̄

v ≤ CA inf
Ω̄
v.

Here CA = A(1 + kA) depends on A only.

Proof. Indeed, it is obvious that

sup
Ω̄

v ≤ sup
Ω̄

1

1 + ku
sup

Ω̄

(1 + ku)v ≤ A inf
Ω̄

(1 + ku)v ≤ A sup
Ω̄

(1 + ku) inf
Ω̄
v ≤ CA inf

Ω̄
v.

This completes the proof. �

Lemma 2.2. Let b, c, r, k > 0 be given. For any µ0, there is δ0 = δ0(µ0) > 0 such that any positive
solution (u, v) of (1.8) with µ ∈ [µ0,∞) satisfies that infΩ̄ u+ infΩ̄ v ≥ δ0.

Proof. Suppose to the contrary that there is a sequence of steady states (µj , uj , vj) of (1.6) such
that

inf
Ω̄
uj + inf

Ω̄
vj → 0, as j →∞. (2.1)

First, by the weak maximum principle, we observe that

sup
Ω̄

|uj | ≤ r.

For any j, let x0 ∈ Ω be such that (1 + kuj(x0))vj(x0) = max
x∈Ω

(1 + kuj(x))vj(x). Then

∆(1 + ku(x0)v(x0)) ≤ 0 and r − cu(x0)− v(x0) ≥ 0,

which suggests that v(x0) ≤ r and hence

sup
Ω̄

|(1 + kuj)vj | ≤ (1 + kuj(x0))vj(x0) ≤ r(1 + kr),

namely, uj and (1 + kuj)vj are bounded in C([0, L]) uniformly in j. Thus there is a constant C0

independent of j so that

sup
Ω̄

(|uj |+ |(1 + kuj)vj |) ≤ C0. (2.2)
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It follows that both uj and wj := (1 + kuj)vj satisfy the Harnack inequality uniformly in j, as
both satisfy homogeneous linear elliptic equations with L∞ coefficients under (2.2) alongside the
condition µ > µ0

∆uj +

(
r − uj − b

wj
1 + kuj

)
uj = 0 and ∆wj +

r − wj
1+kuj

− cuj
µj(1 + kuj)

wj = 0, (2.3)

and the homogeneous Neumann boundary condition. By Lemma 2.1 and (2.1), we deduce that
uj → 0 and vj → 0 uniformly in Ω̄. Now, if we divide the first equation of (1.8) by uj , and
integrate the result by parts, we get

0 =

∫
Ω

|∇uj |2

(uj)2
dx+

∫
Ω

(r − uj − bvj) dx.

Sending j →∞, we deduce
∫

Ω rdx ≤ 0, which is a contradiction. Therefore (2.1) is false and there
is a constant δ0 > 0 such that infΩ̄ u + infΩ̄ v ≥ δ0 for all µ ∈ [µ0,∞). Particularly this δ0 > 0
can be chosen to depend only on µ0 but independent of µ ∈ [µ0,∞), since the L∞ bound of the
coefficients of the elliptic equations (2.3) only depends on µ0. The proof is thus completed.

�

Lemma 2.3. Consider the problem

−µj∆wj = Fj in Ω, and
∂wj
∂ν

= 0 on ∂Ω

where µj → ∞ as j → ∞. If {Fj} is uniformly bounded in L2, then µj
∫

Ω |∇wj |
2dx → 0 as

j →∞.

Proof. First, one observes that
∫

Ω Fjdx = 0 by integrating the equation along with the boundary
condition. Multiplying the equation of wj and integrating the result with Hölder inequality, we get

µj

∫
Ω
|∇wj |2dx =

∫
Ω
wjFjdx =

∫
Ω

(wj − wj)Fjdx ≤ ‖wj − w̄j‖L2‖Fj‖L2 (2.4)

where w̄j = 1
L

∫
Ωwjdx. Then applying the Poincaré inequality: ‖wj − w̄j‖L2 ≤ c‖∇wj‖L2 for some

some constant c > 0 into (2.4), one finds a constant C > 0 depending on c and the L2-norm of Fj
such that

‖wj − w̄j‖L2 ≤
C

µj
.

Now sending j →∞ in (2.4), we obtain the desired conclusion. �

With the help of the above lemmas, we now prove Theorem 1.2.

Proof of Theorem 1.2. The result of Theorem 1.2-(1) directly follows from Proposition 2.1. We
proceed to prove Theorem 1.2-(2). Suppose to the contrary that there is a sequence of positive
solutions (µj , uj , vj) of (1.6) with µj →∞ as j →∞ and b < 1 < c. Now, we claim that infΩ̄ vj 6→ 0.
Indeed, uj and wj := (1 + kuj)vj satisfy the Harnack inequality with constant independent of j
(as explained in Lemma 2.2). It then follows that vj also has Harnack inequality (Lemma 2.1). If
infΩ̄ vj → 0, then vj → 0 uniformly by the Harnack inequality. It then follows from the equation
of uj that uj → r or 0 uniformly and hence r − vj − cuj → (1 − c)r or r uniformly. Since c > 1,
this means r − vj − cuj does not change sign for j sufficiently large. This is impossible since∫

Ω vj(r − vj − cuj)dx = 0. Hence, infΩ̄ vj ≥ δ1 for some δ1 > 0 independent of j.
Next, we divide the equation of uj by uj(1 + kuj) and integrate the result by parts to obtain∫

Ω

1

1 + kuj
(r − uj − bvj) = −

∫
Ω

|∇uj |2(1 + 2kuj)

(uj)2(1 + kuj)2
dx < 0, (2.5)
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where the strict inequality results from that (1.6) has no constant positive solution for b < 1 < c.
Dividing the equation of vj by wj := (1 + kuj)vj , we have

µj

∫
Ω

|∇wj |2

(wj)2
dx+

∫
Ω

1

1 + kuj
(r − vj − cuj)dx = 0. (2.6)

Combining (2.5) and (2.6), we get

µj

∫
Ω

|∇wj |2

(wj)2
dx =

∫
Ω

cuj + vj − r
1 + kuj

dx >

∫
Ω

(c− 1)uj + (1− b)vj
1 + kuj

dx.

Using Lemma 2.2, we obtain

µj

∫
Ω

|∇wj |2

(wj)2
dx > (1− b)

∫
Ω

δ0

1 + kC0
dx, (2.7)

where C0 is the uniform bound for uj obtained in (2.2). However, Lemma 2.3 and the fact that
infΩ̄ vj ≥ δ1 implies that wj ≥ δ1, and hence

0 ≤ µj
∫

Ω

|∇wj |2

(wj)2
dx ≤ 1

δ2
1

· µj
∫
|∇wj |2dx→ 0.

Then sending j →∞ in (2.7), we obtain

0 ≥ (1− b)
∫

Ω

δ0

1 + kC0
dx.

This is a contradiction and hence the proof of Theorem 1.2 is completed.

3. Existence and multiplicity of positive solutions of system (1.7) and (1.8)

In this section, we establish the existence and multiplicity of positive solutions of system (1.8)
when µ is large. First, inspired by Proposition 1.1, we consider the shadow system (1.7).

The following lemma says that every nonconstant solution of the shadow system can be con-
structed from monotone solutions by reflection.

Lemma 3.1. Let (u, ξ) ∈ C2([0, L])× [0,∞) be a nonnegative solution of the shadow system (1.7).
If u is nonconstant, then there exists m ∈ N such that (u

∣∣
[0,L/m]

, ξ) is a strictly monotone solution

of (1.7) with the domain (0, L) replaced by (0, L/m). Furthermore,

u(x) =

{
u(x− jL/m) when x ∈ [jL/m, (j + 1)L/m], j even,

u((j + 1)L/m− x) when x ∈ [jL/m, (j + 1)L/m], j odd.
(3.1)

In particular, if u is nonconstant and increasing in [0, L], then u′ > 0 in (0, L).

Proof. Since u′(L) = 0, the following is well defined:

x∗ = inf{x ∈ (0, L] : u′(x) = 0}.
First, we claim that x∗ > 0. Suppose, not, then there exists a sequence xj ↘ 0 such that u′(xj) = 0
for all j. By Rolle’s theorem, there exists yj ∈ (xj+1, xj) such that yj → 0 and u′′(yj) = 0 for all
j. Sending j →∞, we deduce that u′′(0) = 0. By uniqueness of ODE, it follows that u(x) ≡ u(0)
for all x, which is impossible as u is nonconstant. Hence, x∗ > 0.

By construction, u is strictly monotone in [0, x∗], as u′ does not change sign in (0, x∗). By
uniqueness of ODE again, we easily see that u(x) = u(x∗ − x) for x ∈ [x∗, 2x∗]. Repeating the
argument, we have

u(x) =

 u(x− jx∗) when x ∈ [jx∗, (j + 1)x∗], j even,

u((j + 1)x∗ − x) when x ∈ [jx∗, (j + 1)x∗], j odd.

It follows that L = mx∗ for some m ∈ N.
Finally, if m = 1, then x∗ = L, so the definition of x∗ implies u′ > 0 in (0, L). This completes

the proof. �
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To find a positive solution of (1.7), we first investigate the regular boundary value problem{
uxx + u

(
r − u− bξ

1+ku

)
= 0, in (0, L),

ux(0) = ux(L) = 0,
(3.2)

for given positive parameters ξ, b, r, k. Motivated by Lemma 3.1 (see also [11, 47]), it is equivalent
to consider the existence/non-existence of increasing solutions of (3.2) for arbitrary L > 0. To
simplify notations, we define for u ≥ 0,

h(u) = (r − u)(1 + ku), g(u) =
h(u)− bξ

1 + ku
= r − u− bξ

1 + ku
,

f(u) = ug(u), and F (u) =

∫ u

0
f(τ) dτ. (3.3)

With the maximum principle, we can obtain the following result.

Proposition 3.1. Let u be a positive solution of (3.2). Then 0 < u < r on [0, L].

Next, we establish the necessary condition for (3.2) admitting a strictly increasing positive solu-
tion.

Lemma 3.2. For any L > 0, let u be a nonnegative, nonconstant and increasing solution of (3.2).

Then rk > 1 and bξ ∈
(
h(0), h

(
rk−1

2k

))
, where h(0) = r and h

(
rk−1

2k

)
= (rk+1)2

4k .

Proof. Denote the boundary values of α := u(0) and β := u(L), and let E(x) = u2x
2 + F (u(x)).

Then Ex(x) ≡ 0. Since ux(0) = ux(L) = 0, we have

1

2
|ux(x)|2 + F (u(x)) ≡ F (α) and F (α) = F (β) = B0.

Combining ux > 0 in (0, L) (see Lemma 3.1) and E(x) ≡ F (α) = F (β), one observes that

F (u(x)) < F (α) for any x ∈ (0, L).

So, there exists some z ∈ (α, β) ⊂ (0, r) at which F (·) takes a minimum value. This along with
(3.3) and the fact that zeros of f(u) are isolated implies that there exists some small ε > 0 such
that f(z) = 0 and

f(s) < 0 in (z − ε, z) and f(s) > 0 in (z, z + ε).

Since f(·) and g(·) have the same sign in (0, r) by (3.3), we have g(z) = 0 and

g(s) < 0 in (z − ε, z) and g(s) > 0 in (z, z + ε). (3.4)

Obviously, g(z) = 0 if and only if bξ = h(z).
Claim: rk > 1.
Indeed, if rk ≤ 1, then h(·) is strictly decreasing in (0, r), which combined with g(s) = h(s)−bξ

1+ks

indicates that (3.4) cannot hold. Thus, we have rk > 1.
It is trivial to show that

hx(x)


> 0, x ∈

(
0, rk−1

2k

)
,

= 0, x = rk−1
2k ,

< 0, x ∈
(
rk−1

2k , r
) and max

u∈(0,r)
h(u) = h

(
rk − 1

2k

)
=

(rk + 1)2

4k
. (3.5)

From (3.4), (3.5), and g(s) = h(s)−bξ
1+ks , it follows that bξ = h(z) ∈

(
h(0), h

(
rk−1

2k

))
. �

From now on, we assume that rk > 1 and bξ ∈
(
h(0), h

(
rk−1

2k

))
. Given bξ ∈

(
h(0), h

(
rk−1

2k

))
, by

(3.5), one has that there exits 0 < z− <
rk−1

2k < z+ < r such that

bξ = h(z−) = h(z+) and f(u)


< 0, u ∈ (0, z−) ∪ (z+, r),

> 0, u ∈ (z−, z+),

= 0, u = 0, z−, z+,

(3.6)
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where

z± =
kr − 1±

√
(1− kr)2 − 4k(bξ − r)

2k
. (3.7)

Definition 3.1. Define α0 ∈ [0, z−) as follows.

• If F (0) ≤ F (z+), then take α0 = 0.

• If F (0) > F (z+), then we define α0 to be the unique number in (0, z−) such that F (α0) =
F (z+).

Lemma 3.3. Given bξ ∈
(
h(0), h

(
rk−1

2k

))
, for any α ∈ (α0, z−), (3.2) admits a strictly increasing

solution for some Lα > 0 with u(0) = α and u(Lα) = β, where β ∈ (z−, z+) and F (α) = F (β).

Proof. Based on the definition of α0, (3.3), and (3.6), we have F (α) < F (z+), which combined with
(3.6) implies that there exits unique β ∈ (z−, z+) such that F (α) = F (β).

Since the proofs are similar, we only consider the case F (0) ≤ F (z+). Then α0 = 0. Denote the
unique solution to the initial value problem

uxx + f(u) = 0, u(0) = α ∈ (α0, z−), ux(0) = 0 (3.8)

by u(x;α). By (3.6), one has uxx(0;α) = −f(α) > 0 and therefore u(x;α) is initially increasing.

Let E(x) = (ux(x;α))2

2 + F (u(x;α)). Then we have that

Ex(x) ≡ 0 and E(x) ≡ F (α). (3.9)

Claim: there exists some finite Lα > 0 such that ux(x;α) > 0 in (0, Lα) and ux(Lα;α) = 0. If
not, we assume that

ux(x;α) > 0 in (0,∞). (3.10)

This together with (3.9) gives that

F (u(x;α)) < F (α) for any x > 0,

which together with (3.3), (3.6), and the definition of β yields that

u(x;α) < β for any x > 0. (3.11)

Let u∞ = lim
x→∞

u(x;α). Then α < u∞ ≤ β. Moreover, from (3.10) and (3.11), it follows that

lim
x→∞

uxx(x;α) = 0, which combined with (3.8) yields that f(u∞) = 0. Recall that z− is the only

zero of f in (α, β] and one obtains that u∞ = z−. This further implies that uxx(x;α) > 0 in (0,∞),
which contradicts (3.11). Therefore, the claim holds. Moreover, by (3.9) and the definition of β,
one has that u(Lα;α) = β. Thus, (3.2) admits a strictly increasing solution u(x;α) with L = Lα,
u(0;α) = α and u(Lα;α) = β. These facts complete the proof. �

To obtain more precise information for the existence, we shall study the function Lα, α ∈ (α0, z−).
Multiplying (3.8) by ux(x;α) and integrating the resulting equation over (0, x), we have

ux(x;α) =
√

2(F (α)− F (u(x;α))), x ∈ (0, Lα).

Dividing both sides by
√

2(F (α)− F (u(x;α))) and integrating the resulting equation over (0, Lα),
it follows that

Lα =

∫ β

α

du√
2(F (α)− F (u))

, (3.12)

which is a singular integral. Next, inspired by the approaches in [11, 40, 41], we shall apply several
change of variables to transform the singular integral into a regular one.

Next, define p0 =
√

2(F (α0)− F (z−), where α0 is as in Definition 3.1 and z− satisfies (3.7).
Define the mapping γ : [−p0, p0]→ [α0, z+] by

F (γ(s))− F (z−) =
s2

2
, sign s = sign(γ(s)− z−) = sign(f(γ(s))), (3.13)
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Since γ′ > 0 and it is clear that [α, β] iscontained in the image of γ, then s = γ−1(u) is well defined
and is strictly increasing in (α, β) due to the facts that 0 < α < z− < β < r, (3.6) and the definition
of F (u).

Similarly, for each α ∈ (α0, z−), associate p > 0 by

p2

2
= F (α)− F (z−) > 0. (3.14)

Note that
dp

dα
< 0 (3.15)

and α ∈ (α0, z−) iff p ∈ (0, p0). Then, one obtains Lα =
∫ p
−p

γ′(s)ds√
p2−s2

. Let s = −p cos t, 0 ≤ t ≤ π,

and we have

Lα =

∫ π

0
γ′(−p cos t)dt. (3.16)

For later use, we first express γ′(s), γ′′(s) and γ′′′(s) as functions of u ∈ (α, β), following the
calculation similar to that in [40, pp. 4-6]. Differentiating the identity (3.13) with respect to s, one
obtains

f(u)γ′(s) = s.

Let

F̃ (u) = F (u)− F (z−).

This together with (3.13) yields that γ′(s) =

√
2F̃ (u)
|f(u)| > 0, as long as s 6= 0 or u 6= z−. For s = 0,

by the L’Hopital’s rule, one arrives at

γ′(0) = lim
u→z−

√
2F̃ (u)

|f(u)|
=

1√
f ′(z−)

,

which further implies that

lim
α→z−

Lα =
π√
f ′(z−)

:= L0. (3.17)

Differentiating the identity f(u)γ′(s) = s with respect to s further gives

f ′(u)[γ′(s)]2 + f(u)γ′′(s) = 1

and

f ′′(u)[γ′(s)]3 + 3f ′(u)γ′(s)γ′′(s) + f(u)γ′′′(s) = 0.

This further suggests that

γ′′(s) =
f2 − 2f ′F̃

f3
(u), γ′′(0) = − f ′′

3(f ′)2
(z−),

and

γ′′′(s) = − γ
′(s)

f4(u)
H(u), γ′′′(0) =

[5(f ′′)2 − 3f ′f ′′′](z−)

12(f ′(z−))7/2
, (3.18)

where f ′(z−) = z−g
′(z−) > 0 and

H(u) = 2f(u)f ′′(u)F̃ (u) + 3f ′(u)[f2(u)− 2f ′(u)F̃ (u)]. (3.19)

The following calculus lemma will be useful later.

Lemma 3.4. H(z−) = 0 and H(u) < 0 for u ∈ (0, z−) ∪ (z−, z+). In particular,

γ′′′(s) > 0 for s ∈ Dom (γ), and s 6= 0. (3.20)
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Proof. Clearly, H(z−) = 0 derived from the facts that f(z−) = 0 and F̃ (z−) = 0. Direct computa-
tions show that

f ′(u) = r − 2u− bξ

(1 + ku)2
, f ′′(u) = −2 +

2kbξ

(1 + ku)3
, and f ′′′(u) =

−6k2bξ

(1 + ku)4
< 0. (3.21)

In particular, observe that u 7→ f ′′(u) changes sign exactly once, and that f changes sign exactly
three times at u = 0, z−, z+ (see (3.6)). It follows that f ′ changes sign exactly twice at some c−
and c+ such that 0 < c− < z− < c+ < z+ and moreover

f ′′ > 0 in [0, c−], f ′′ < 0 in [c+, z+], and f ′(u)


< 0, for u ∈ (0, c−) ∪ (c+, z+),

= 0, for u = c−, c+,

> 0, for u ∈ (c−, c+).

(3.22)

If u ∈ (0, c−], by (3.6), and (3.22), one sees that

f(u) < 0, f ′′(u) > 0, F̃ (u) > 0, and f ′(u) ≤ 0,

which suggests that H < 0 in (0, c−].
If u ∈ [c+, z+), from (3.6), and (3.22), it follows that

f(u) > 0, f ′′(u) < 0, F̃ (u) > 0, and f ′(u) ≤ 0.

This further gives that H < 0 in [c+, z+).
We now consider the case u ∈ (c−, z−) ∪ (z−, c+). First differentiating (3.19) with respect to u

yields

H ′(u) = 2f(u)f ′′′(u)F̃ (u) + 5f ′′(u)[f2(u)− 2f ′(u)F̃ (u)]. (3.23)

Multiplying (3.19) and (3.23) by 5f ′′ and 3f ′, respectively, subtracting the resulting identities, one
gets

5f ′′(u)H(u)− 3f ′(u)H ′(u) = 2fF̃G(u), (3.24)

where
G(u) = 5[f ′′(u)]2 − 3f ′(u)f ′′′(u) > 0.

Next we make a claim.
Claim: There exists δ > 0 such that H(u) < 0 for u ∈ (z− − δ, z−) ∪ (z−, z− + δ). Indeed, by

(3.18), one has

γ′′′(0) =
G(z−)

12(f ′(z−))7/2
> 0,

and so γ′′′(s) > 0 for s close to zero. This together with (3.18) and (3.22) implies that H(u) < 0
for all u close to z− but not equal to z−. This proves the claim.

We proceed by the argument of contradiction. Assume that there exists some χ ∈ (z−, c+) such
that

H < 0 in (z−, χ) and H(χ) = 0.

Then, using also (3.22), we have

H ′(χ) ≥ 0, f ′(χ) > 0, f(χ) > 0, F̃ (χ) > 0, and G(χ) > 0,

which contradicts (3.24). Hence, H < 0 in (z−, c+). Similarly, if there exists some χ1 ∈ (c−, z−)
such that

H(χ1) = 0 and H < 0 in (χ1, z−).

Then, by (3.22), we have

H ′(χ1) ≤ 0, f ′(χ1) > 0, f(χ1) < 0, F̃ (χ1) > 0, and G(χ1) > 0,

which also contradicts (3.24). Thus, H < 0 in (c−, z−).
Finally, (3.20) follows by combining the above with γ′(s) > 0 and (3.18). This completes the

proof. �

Lemma 3.5. Let α ∈ (α0, z−). Then dLα
dα < 0.



SKT COMPETITION SYSTEM WITH CROSS-DIFFUSION 13

Proof. Since dp
dα < 0 (thanks to (3.15)), it is enough to prove the an equivalent inequality dLα

dp > 0.

By (3.16), we have

dLα
dp

= −
∫ π

0
cos tγ′′(−p cos t)dt and

d2Lα
dp2

=

∫ π

0
cos2 tγ′′′(−p cos t)dt.

Using (3.20), we obtain

d2Lα
dp2

> 0.

Combining with dLα
dp (0) = −γ′′(0)

∫ π
0 cos tdt = 0, implies that dLα

dp > 0 for all p > 0. This completes

the proof. �

Now we provide the necessary and sufficient condition for (3.2) admitting a strictly increasing
positive solution.

Lemma 3.6. The scalar equation (3.2) admits a strictly increasing positive solution if and only if

rk > 1, bξ ∈
(
r,

(rk + 1)2

4k

)
and L > L0 =

π√
f ′(z−)

. (3.25)

Furthermore, if b, ξ, r, k, and L are given numbers such that (3.25) holds, then the scalar equation
(3.2) has exactly one strictly increasing solution u, and u must be non-degenerate. Let u(0) = α

and u(L) = β. Then α ∈ (α0, z−), β ∈ (z−, z+), and ∂α
∂L < 0, and ∂β

∂L > 0.

Proof. Given bξ ∈
(
r, (rk+1)2

4k

)
, the mapping α 7→ Lα is decreasing by Lemma 3.5, with the domain

(α0, z−) and the range (L0,∞).
We claim that lim

α→α0

Lα = ∞. Actually, if F (0) > F (z+), then α0 > 0 and F (α0) = F (z+), in

which case u(x;α0) is defined for x ∈ [0,∞), ux(x;α0) > 0 for all x > 0 and lim
x→∞

u(x;α0) = z+.

If F (0) ≤ F (z+), then α0 = 0 and u(x; 0) ≡ 0, for which one still has Lα → ∞ as α → α0 by the
continuous dependence on initial conditions.

Hence, α 7→ Lα is a strictly decreasing homeomorphism with domain (α0, z−) and range (L0,∞).
This combined with Lemma 3.3 implies that the existence and uniqueness results as stated. Fur-
thermore, in view of Lemmas 3.3 and 3.5, we obtain the properties for α and β.

It remains to show that u must be non-degenerate. Differentiating the relation ux(Lα;α) = 0
with respect to α, one obtains

uxx(Lα;α)
dLα
dα

+ ωx(Lα, α) = 0, ω(Lα;α) =
∂u(x;α)

∂α

∣∣∣
x=Lα

,

which gives that ωx(Lα;α) = f(β)dLα
dα < 0. Differentiating (3.8) with respect to α, one obtains{

ωxx + f ′(u)ω = 0, x ∈ (0, Lα)

ω(0;α) = 1, ωx(0;α) = 0, ωx(Lα;α) < 0.
(3.26)

Claim: The only solution to the linear problem{
φxx + f ′(u)φ = 0, x ∈ (0, Lα),

φx(x) = φx(Lα) = 0
(3.27)

is the trivial solution. Indeed, multiplying equations (3.26) and (3.27) by φ and ω, respectively,
subtracting the resulting equations and integrating it over (0, Lα), we have

ωx(Lα;α)φ(Lα) = 0,

which further implies that φ(Lα) = 0. By the uniqueness of the solution of ODEs, one has that
φ ≡ 0, which shows that the claim holds. Thus, u is non-degenerate, which completes the proof. �
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In the following, we denote the quantity bξ by τ for simplicity. In the following, we will treat
the first zero z− of f(u) on (0, r) as a function of τ . Recalling (3.7), we see that

z− = z−(τ) =
kr − 1−

√
(1− kr)2 − 4k(τ − r)

2k
(3.28)

is a well defined function for τ ∈
(
r, (rk+1)2

4k

)
. Also, z−(τ) is a strictly increasing function, with

lim
τ→r

z−(τ) = r and lim
τ→ (rk+1)2

4k

z−(τ) =
rk − 1

2k
.

With the one-to-one correspondence between τ and z−, we can define d
dz−

= 1
dz−
dτ

d
dτ .

Next, we try to understand the existence of solutions to (3.2) when the interval length L is fixed.

Given τ ∈
(
r, (rk+1)2

4k

)
, we have f ′(z−) = r − 2z− + z−−r

1+kz−
, where we have used f(z−) = 0. Then,

one has
∂f ′(z−)

∂z−
= −2 +

1 + kr

(1 + kz−)2
. (3.29)

Let

z∗ =

√
2(1 + kr)− 2

2k
(3.30)

which is characterized by ∂f ′(z−)
∂z−

∣∣∣
z−=z∗

= 0. It is trivial to show that

max
z−∈(0, rk−1

2k )
f ′(z−) = f ′(z−)|z−=z∗ = r − 2z∗ +

z∗ − r
1 + kz∗

=
rk + 3− 2

√
2(1 + kr)

k
. (3.31)

Let L∗ = π√
f ′(z−)|z−=z∗

=
√
kπ√

rk+3−2
√

2(1+kr)
. We have the following result.

Lemma 3.7. The following results on (3.2) hold.

(i) If L ≤ L∗, then (3.2) does not admit strictly increasing solution for any τ > 0.
(ii) If L > L∗ and rk > 1, then there exist two numbers τ− < τ+ such that (τ−, τ+) ⊂(

r, (rk+1)2

4k

)
, and (3.2) admits a strictly increasing solution if and only if τ ∈ (τ−, τ+),

Furthermore, for each τ ∈ (τ−, τ+), (3.2) admits exactly one strictly increasing solution u,
and u is non-degenerate. Here τL± are defined in (3.32) and (3.33).

Proof. For assertion (i). Suppose (3.2) has a strictly increasing solution for some τ > 0, then

L > π[f ′(z−)]−1/2 = π

(
r − 2z− +

z− − r
1 + kz−

)−1/2

for some z−.

It then follows from (3.31) and the definition of L∗ that L > L∗.
Next, we prove assertion (ii). By (3.29) and (3.31), one concludes that f ′(z−) is increasing in

(0, z∗) and it is decreasing in
(
z∗, rk−1

2k

)
, and in particular that f ′(z−) has a unique maximum value

at z− = z∗. Given L > L∗, there exists two numbers z− < z+, such that z∗ ∈ (z−, z+) ⊂
(
0, rk−1

2k

)
,

and f ′(z−)|z−=z− = f ′(z−)|z−=z+ = π2

L2 . One can verify that

z± =
(
rk − 1− kπ2/L2 ±

√
(kπ2/L2 − rk + 1)2 − 8kπ2/L2

)
/4k. (3.32)

Let

τ− = h(z−) = (r − z−)(1 + kz−) and τ+ = h(z+) = (r − z+)(1 + kz+). (3.33)

So, for τ ∈ (τ−, τ+), it holds that f ′(z−) = f ′(z−(τ)) > π2

L2 , i.e., L > L0. By Lemma 3.6, there
must be a unique, increasing, and non-degenerate solution to (3.2). The proof is completed. �



SKT COMPETITION SYSTEM WITH CROSS-DIFFUSION 15

Clearly, as L→ L∗, the set (τ−, τ+) shrinks to an empty set; whereas as L→∞, (τ−, τ+) expands

to the interval
(
r, (rk+1)2

4k

)
.

Next, we consider the existence of positive solutions to system (1.7). Given L > L∗, Lemma 3.7
says that (3.2) admits exactly one strictly increasing solution uτ for τ ∈ (τ−, τ+), and admits no
strictly increasing solutions for τ 6∈ (τ−, τ+). Define

ζ(τ) =

∫ L

0

1

1 + kuτ

(
r − cuτ −

τ

b(1 + kuτ )

)
dx, τ ∈ (τ−, τ+).

Let

cτ =

∫ L
0

r
1+kuτ

dx∫ L
0

uτ
1+kuτ

dx
and bτ,c =


∫ L
0

τ
(1+kuτ )2

dx∫ L
0

r−cuτ
1+kuτ

dx
for c ∈ (0, cτ ),

+∞ for c ∈ [cτ ,∞).

(3.34)

One sees that cτ > 1 due to the fact that uτ < r.

Lemma 3.8. The following results on (1.7) hold.

(i) If L ≤ L∗ or rk ≤ 1, then (1.7) does not admit any increasing solution.
(ii) If L > L∗ and rk > 1, the following statements hold.

(ii.1) Fix all the parameters except ξ
(
ξ = τ

b

)
. If 0 ∈

(
min

τ∈(τ−,τ+)
ζ(τ), max

τ∈(τ−,τ+)
ζ(τ)

)
, then

(1.7) admits a strictly increasing positive solution. If 0 6∈
(

min
τ∈(τ−,τ+)

ζ(τ), max
τ∈(τ−,τ+)

ζ(τ)
)
,

then (1.7) does not have any strictly increasing positive solution.
(ii.2) Given τ ∈ (τ−, τ+), if c ≥ cτ , then (1.7) does not have any strictly increasing positive

solution. If c < cτ , (1.7) admits a strictly increasing positive solution if and only if
b = bτ,c and ξ = τ

bτ,c
. Specially, we have

cτ → r
z± and bτ,c → r−z±

r−cz± as τ → τ±. (3.35)

Here z±, τ±, cτ , and bτ,c are defined in (3.32), (3.33), and (3.34).

Proof. Assertion (i) follows directly from assertion (i) of Lemma 3.7.
By the non-degeneracy of uτ , one sees that ζ(τ) is a smooth function of τ ∈ (τ−, τ+). From

statement (ii) of Lemma 3.7, it follows that statement (ii.1) and the first part of statement (ii.2)
hold.

Finally, (3.35) follows from the above analysis. �

Fix rk > 1 and L > L∗. Statement (ii.2) of Lemma 3.8 indicates that (1.7) has a strictly
increasing positive solution if and only if

(τ, c, b) ∈ Γr,k,L := {(τ, c, b)|τ ∈ (τ−, τ+), c ∈ (0, cτ ), b = bτ,c}.
Next, we study the shape of Γr,k,L.

Lemma 3.9. Fixing rk > 1 and L > L∗, for any τ ∈ (τ−, τ+), bτ,c is strictly increasing in
c ∈ (0, cτ ) and cτ > 1. Moreover, we have

lim
c→0

bτ,c =

∫ L
0

τ
(1+kuτ )2

dx∫ L
0

r
1+kuτ

dx
>

1

1 + kr
and lim

c→cτ
bτ,c =∞. (3.36)

Proof. The proposition follows directly from τ− > r, uτ < r, and (3.34). �

Remark 3.1. Given τ ∈ (τ−, τ+), let

Γτ,r,k,L = {(c, b)|c ∈ (0, cτ ), b = bτ,c}.
Lemma 3.9 shows that Γτ,r,k,L is an increasing curve. Moreover, if there exist distinct τ1, τ2, · · · , τn ∈

(τ−, τ+) such that
n⋂
i=1

Γτi,r,k,L 6= ∅, then for any (b, c) ∈
n⋂
i=1

Γτi,r,k,L, system (1.7) admits at least n

increasing positive solutions.
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Proposition 3.2. Given r, k, L satisfying rk > 1 and L > L∗, we have the following results.

(i) There exists b∗ ∈
(

1
1+rk , 1

)
such that the following results hold.

(i.1) If b < b∗, then (1.7) does not admit any strictly increasing positive solution for any c
and τ .

(i.2) If b > b∗, then there is a single bounded interval Ib such that the system (1.7) has a
strictly increasing positive solution (for one or more values of τ) if and only if c ∈ Ib.
Moreover, if b ∈ (b∗, 1), then for any c ∈ Ib, we have c < 1.

(ii) There exists c∗ ∈ (1,∞) such that the following results hold.
(ii.1) If c > c∗, then (1.7) does not admit any strictly increasing positive solution for any b

and τ .
(ii.2) If c < c∗, then there is a single interval Ic such that the system (1.7) has a strictly

increasing positive solution (for one or more values of τ) if and only if b ∈ Ic. Moreover,
if c ∈ [1, c∗), then for any b ∈ Ic, we have b > 1.

Proof. For statement (i), define
b∗ = inf

τ∈(τ−,τ+)
bτ,0.

From (3.35), (3.36), and uτ < r, it follows that b∗ ∈ ( 1
1+rk , 1). If b < b∗, from statement (ii.2) of

Lemma 3.8, it follows that (1.7) does not admit any strictly increasing positive solution for any c
and τ . Given b > b∗, based on the definition of b∗, there exists τ0 ∈ (τ−, τ+) such that

bτ0,0 < b,

which combined with statement (i) and Lemma 3.8 yields that (1.7) admits a strictly increasing
positive solution with τ = τ0 and appropriate c ∈ (0, cτ0).

Next, fix b > b∗ and define Ib to be the set of c such that the shadow system has a solution, i.e.

Ib = {c > 0 : (τ, c, b) ∈ Γr,k,L for some τ}.
The boundedness of Ib follows from statement (ii.2) of Lemma 3.8 and (3.34). Furthermore, if
b ∈ (b∗, 1), then for any c ∈ Ib, by Proposition 2.1, we have c < 1.

It remains to show the connectedness of Ib. We first claim: If (1.7) admits a strictly increasing
positive solution with some (τ1, c1) and (τ2, c2) (without loss of generality, assume c1 < c2), then
for any c ∈ [c1, c2], (1.7) admits a strictly increasing positive solution with some appropriate τ .

If not, assume that there exists c0 ∈ (c1, c2) such that b 6= bτ,c0 for any τ ∈ (τ−, τ+). Define

Ab,c0 = {τ ∈ (τ−, τ+) : bτ,c0 < b} and Bb,c0 = {τ ∈ (τ−, τ+) : bτ,c0 > b},
where bτ,c is given in (3.34). Then, we have

Ab,c0 and Bb,c0 are open subsets of (τ−, τ+) and Ab,c0 ∪Bb,c0 = (τ−, τ+). (3.37)

Combining the facts that b = bτ1,c1 = bτ2,c2 , c1 < c < c2, and Lemma 3.9, one obtains from the
monotone increasing property of c 7→ bτ,c that

bτ1,c0 > b and bτ2,c0 < b,

which means that both Ab,c0 and Bb,c0 are nonempty. This contradicts the connectedness of (τ−, τ+).
So, the claim holds, which suggests that there is a single interval Ib such that the system (1.7) has
a strictly increasing positive solution (for one or more values of τ) if and only if c ∈ Ib. This proves
assertion (i).

Finally, similar to the arguments proving the statement (i), letting

c∗ = sup
τ∈(τ−,τ+)

cτ ,

one can show that the statement (ii) holds. �

Proposition 3.2 gives the existence/non-existence of the increasing positive solution of (1.7).
However, given b ∈ (b∗,∞) (resp. c ∈ (0, c∗)), the size of Ib (resp. Ic) can not be explicitly
characterized. Below we give some more decisive information for Ib and Ic.
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Proposition 3.3. Given L > L∗ and rk > 1, let z± be defined in (3.32) which indicates z− < z+

and z+

r−z+ > z−

r−z− . Then there exists some ε = ε(k, r, L) > 0 such that the following results hold.

(i) If b ∈ (1, 1+ε) and c ∈ (1−ε, 1), then (1.7) at least admits two increasing positive solutions.

(ii) Assume b ∈ (1 − ε, 1) and c ∈ (1 − ε, 1). If 1/b−1
1−c < z−

r−z− , then (1.7) at least admits two

increasing positive solutions, which are non-degenerate; if 1/b−1
1−c ∈

(
z−

r−z− ,
z+

r−z+

)
, then (1.7)

admits at least one increasing positive solution.

(iii) Assume b ∈ (1, 1 + ε) and c ∈ (1, 1 + ε). If 1−1/b
c−1 > z+

r−z+ , then (1.7) at least admits two

increasing positive solutions, which are non-degenerate; if 1/b−1
1−c ∈

(
z−

r−z− ,
z+

r−z+

)
, then (1.7)

admits at least one increasing positive solution.

Proof. Given L > L∗, by Lemma 3.7, there exist two numbers τ− < τ+ such that (τ−, τ+) ⊂
(h(0), h(uh)), and (3.2) admits increasing solution if and only if τ ∈ (τ−, τ+). Given τ ∈ (τ−, τ+),
then (3.2) admits an increasing solution denoted by uτ .

Claim:
∫ L

0
1

1+kuτ

(
r − uτ − τ

1+kuτ

)
dx < 0. Indeed, recall that uτ satisfies{

uτxx + uτ

(
r − uτ − τ

1+kuτ

)
= 0, in (0, L),

uτx(0) = uτx(L) = 0.
(3.38)

Dividing the first equation of (3.38) by uτ and integrating it over (0, L), one finds that∫ L

0

(
r − uτ −

τ

1 + kuτ

)
dx = −

∫ L

0

(uτx)2

u2
τ

dx < 0, (3.39)

due to the fact that uτ is a strictly increasing solution of (3.38).
Recall that f(y) satisfies

f(y)


< 0, y ∈ (uτ (0), z−(τ)),

= 0, y = z−(τ),

> 0, y ∈ (z−(τ), uτ (L)),

which combined with the fact that uτ is a strictly increasing solution on (0, L) yields a unique
x0 ∈ (0, L) such that uτ (x0) = z−(τ) and

f(uτ (x))


< 0, x ∈ (0, x0),

= 0, x = x0,

> 0, x ∈ (x0, L).

(3.40)

From (3.39) and (3.40), it follows that∫ L

0

1

1 + kuτ

(
r − u− τ

1 + kuτ

)
dx

=

∫ x0

0

1

1 + kuτ

(
r − u− τ

1 + kuτ

)
dx+

∫ L

x0

1

1 + kuτ

(
r − u− τ

1 + kuτ

)
dx

<

∫ x0

0

1

1 + kz(τ)

(
r − u− τ

1 + kuτ

)
dx+

∫ L

x0

1

1 + kz(τ)

(
r − u− τ

1 + kuτ

)
dx

=
1

1 + kz(τ)

∫ L

0

(
r − u− τ

1 + kuτ

)
dx < 0.

Therefore, the claim holds. Recall that h(z∗) ∈ (τ−, τ+) (z∗ =

√
2(1+kr)−2

2k is defined in (3.30)),
then it is trivial to show that there exists ε = ε(r, k, L) > 0 such that

ζ(h(z∗)) < 0 for b ∈ (1− ε, 1 + ε) and c ∈ (1− ε, 1 + ε). (3.41)



18 K.-Y. LAM, D. TANG AND Z.-A. WANG

On the other hand, as τ → τ− (resp. τ+), then z−(τ)→ z− (resp. z+) and uτ → z− (resp. z+)
in (0, L). By Lemma 3.7, one sees that

0 < z− < z+ < uh =
rk − 1

2k
<
r

2
.

For statement (i), that is b > 1 > c, then we have

lim
τ→τ−

ζ(τ) =
L

1 + kz−

(
r − cz− − r − z−

b

)
>

L

1 + kz−
(
r − z− − (r − z−)

)
= 0

and

lim
τ→τ+

ζ(τ) =
L

1 + kz+

(
r − cz+ − r − z+

b

)
>

L

1 + kz+

(
r − z+ − (r − z+)

)
= 0.

Since ζ(τ) is a continuous function of τ ∈ (τ−, τ+), one can conclude that there exists two numbers
τ1 < τ2 such that τ− < τ1 < τ2 < τ+ and ζ(τ1) = ζ(τ2)=0. So, by Lemma 3.8, we have that (1.7)
at least admits two increasing positive solutions.

For statement (ii), if 1/b−1
1−c < z−

r−z− , one can show that

lim
τ→τ−

ζ(τ) =
L

1 + kz−

(
r − cz− − r − z−

b

)
>

L

1 + kz−
(
r − cz− + (c− 1)z− + z− − r

)
= 0.

If 1/b−1
1−c < z+

r−z+ , then

lim
τ→τ+

ζ(τ) =
L

1 + kz+

(
r − cz+ − r − z+

b

)
>

L

1 + kz+

(
r − cz+ + (c− 1)z+ + z+ − r

)
= 0.

Similar to the arguments as that in proving statement (i), one can prove statement (ii).
Finally, following the approach same as that in proving statements (i) and (ii), one can prove

the statement. This completes the proof. �

Remark 3.2. We have some comments related to Proposition 3.3.

• For statements (ii) and (iii), we will show that all the case may occur. For example, let

b = 1− %1ε and c = 1− %2ε,

where %1, %2 ∈ (0, 1). One can choose appropriate %1 and %2 such that 1/b−1
1−c < z−

r−z− or
1/b−1
1−c ∈

(
z−

r−z− ,
z+

r−z+

)
holds.

• Given b ∈ (1, 1 + ε), statement (i) of Proposition 3.3 and statement (i) of Proposition 3.2
yield that (1− ε, 1) ⊂ Ib. Moreover, statement (iii) of Proposition 3.3 and statement (i) of

Proposition 3.2 suggest that
(

1,min
{

1 + (b−1)(r−z+)
bz+

, 1 + ε
})
⊂ Ib. These facts combined

with statement (ii) of Proposition 3.2 further imply that(
1− ε,min

{
1 +

(b− 1)(r − z+)

bz+
, 1 + ε

})
⊂ Ib

• Symmetrically, given c ∈ (1 − ε, 1), statement (i) of Proposition 3.3 and statement (ii) of
Proposition 3.2 yield that (1, 1 + ε) ⊂ Ic. Moreover, statement (ii) of Proposition 3.3 and

statement (ii) of Proposition 3.2 suggest that
(

max
{
r−z−
r−cz− , 1− ε

}
, 1
)
⊂ Ic. These facts

combined with statement (ii) of Proposition 3.2 further imply that(
max

{
r − z−

r − cz−
, 1− ε

}
, 1 + ε

)
⊂ Ic.
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Now we are in a position to prove Theorem 1.3 and Theorem 1.4. Before embarking on this, we
prove Proposition 1.1.

Proof of Proposition 1.1. Define L : H2
0 (0, L)×R×H̄2

0 (0, L)× [0,+∞)→ L2(0, L)×R×L̄2(0, L)
by

L(u, ξ, ζ, ν) =


uxx + u

[
r − u− b(ξ+ζ)

1+ku

]
∫ L

0
ξ+ζ

1+ku

(
r − cu− ξ+ζ

1+ku

)
dx

ζxx + ν
[
ξ+ζ

1+ku

(
r − cu− ξ+ζ

1+ku

)
− 1

L

∫ L
0

ξ+ζ
1+ku

(
r − cu− ξ+ζ

1+ku

)
dx
]
 ,

where H2
0 (0, L) = {u ∈ H2(0, L)|ux(0) = ux(L) = 0}, H̄2

0 (0, L) = {u ∈ H2
0 (0, L)|

∫ L
0 udx = 0}, and

L̄2(0, L) = {u ∈ L2(0, L)|
∫ L

0 udx = 0}. Then, we have

D(u,ξ,ζ)L|(u,ξ,ζ,ν)=(u∗,ξ∗,0,0)(φ, ψ, η)

=


φxx + φ

[
r − 2u∗ − bξ∗

(1+ku∗)2

]
− bu∗(ψ+η)

1+ku∗∫ L
0

[
ξ∗φ(3ξ∗k−(kr+c)(1+ku∗))

(1+ku∗)3 + η
1+ku∗

(
r − cu∗ − ξ∗

1+ku∗

)
− ξ∗(ψ+η)

(1+ku∗)2

]
dx

ηxx

 .

Next we claim: D(u,ξ,ζ)L|(u,ξ,ζ,ν)=(u∗,ξ∗,0,0) is non-degenerate. To prove this claim, it suffices to
show that the following problem

φxx + φ
[
r − 2u∗ − bξ∗

(1+ku∗)2

]
− bu∗(ψ+η)

1+ku∗ = 0, in (0, L),∫ L
0

[
ξ∗φ(3ξ∗k−(kr+c)(1+ku∗))

(1+ku∗)3 + η
1+ku∗

(
r − cu∗ − ξ∗

1+ku∗

)
− ξ∗(ψ+η)

(1+ku∗)2

]
dx = 0

ηxx = 0, in (0, L),

(3.42)

only admits the trivial solution in H2
0 (0, L)× R× H̄2

0 (0, L). The third equation of (3.42) and the
definition of H̄2

0 (Ω) suggest that η ≡ 0. Hence, we have φxx + φ
[
r − 2u∗ − bξ∗

(1+ku∗)2

)
− bu∗ψ

1+ku∗ = 0, in (0, L),∫ L
0

[
ξ∗φ(3ξ∗k−(kr+c)(1+ku∗))

(1+ku∗)3 − ξ∗ψ
(1+ku∗)2

]
dx = 0.

(3.43)

From Lemma 3.1, it follows that there exists some m ∈ N such that u∗ satisfies (3.1).
If m = 1, combining Lemmas 3.1 and 3.6, one has that operator T is invertible. By the first

equation of (3.43), one obtains

φ = ψT−1

(
bu∗

1 + ku∗

)
.

Hence, (1.9) suggests that (3.43) only admits the trivial solution (0, 0).
If m ≥ 2, for any ψ ∈ R, consider the following truncated problem φ∗xx + φ∗

[
r − 2u∗ − bξ∗

(1+ku∗)2

]
= bu∗ψ

1+ku∗ , in (0, L/m),

φ∗x(0) = φ∗x(L/m) = 0.

By Lemma 3.6, we have φ∗ = ψT−1
(0,L/m)

(
bu∗

1+ku∗

)
, where

T(0,L/m)(φ) = φxx + φ
(
r − 2u∗ − bξ∗

(1+ku∗)2

)
,

for φ ∈ C2(0, L/m) ∩ C1([0, L/m]) satisfying φx(0) = φx(L/m) = 0. Then by the symmetry, one
has

φ(x) =

{
φ∗(x− jL/m) when x ∈ [jL/m, (j + 1)L/m], j is even,

φ∗((j + 1)L/m− x) when x ∈ [jL/m, (j + 1)L/m], j is odd.
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Thus, T−1
(

bu∗

1+ku∗

)
is well-defined. Moreover, (1.9) also yields that (3.43) only admits the trivial

solution (0, 0).
Finally, based on the implicit function theorem, there exists small δ∗ > 0 such that for any

ν ∈ (0, δ∗), there exists (uν , ξν , ζν) near (u∗, ξ∗, 0) such that L(uν , ξν , ζν , ν) = 0, which implies
that for any ν ∈ (0, δ∗), the steady-state problem (1.8) admits a non-constant positive solution
(uµ, ξν + ζν). This completes the proof.

�
Proof of Theorem 1.3 and Theorem 1.4. Combining the results in Proposition 3.2 with
Proposition 1.1, one obtains Theorem 1.3 directly. Theorem 1.4 is a consequence of Proposition
3.3 alongside Proposition 1.1.

4. Weak competition 0 < b, c < 1

Though we have proved the existence of non-constant positive solutions to system (1.8) in Theo-
rem 1.3 by studying the shadow system (1.7), the admissible parameter regime is somewhat narrow
(see also Theorem 1.4, where µ is particulary required to be large. In this section, we shall employ
the global bifurcation theory to show that system (1.8) may admit non-constant positive solutions
for any 0 < b, c < 1 and µ > 0 which largely expands the admissible parameter regimes given in
Theorem 1.3 (see also Theorem 1.4) for the case of weak competition.

A nonlinear problem can be formulated as an abstract equation F (ρ, u) = 0, where F : R×X :→
Y is a nonlinear differentiable mapping, and X,Y are Banach spaces. We introduce a celebrated
global bifurcation Theorem [42, Theorems 4.3]. For more results about the bifurcation theory, we
refrer to references [3, 4, 6, 24, 37]. Recall that a Fredholm operator is a bounded linear mapping F
from a Banach space B1 to another Banach space B2 such that the mapping has a finite-dimensional
null space Ker(F ), has a closed range Ran(F ) with a finite co-dimension. We say the index of F is
zero if the dimension of Ker(F ) is equal to the co-dimension of Ran(F ).

Theorem 4.1. [42, Theorems 4.3] Let V be an open connected subset of R×X and (ρ0, u0) ∈ V ,
and let F be a continuously differentiable mapping from V into Y . Suppose that

(i) F (ρ, u0) = 0 for (ρ, u0) ∈ V ;
(ii) The partial derivative DρuF (ρ, u) exists and is continuous in (ρ, u) near (ρ0, u0);
(iii) DuF (ρ0, u0) is a Fredholm operator and dimKer(Fu(ρ0, u0)) = codimRan(Fu(ρ0, u0)) = 1;
(iv) Dρ,uF (ρ0, u0)φ0 6∈ Ran(Fu(ρ0, u0)) where φ0 ∈ X= span {Ker(Fu(ρ0, u0))}.

Let Z be any complement of span{φ0} in X. Then there exist an open interval I1 = (−ε, ε)
and continuous functions ρ : I1 → R, ψ : I1 → Z, such that ρ(0) = ρ0, ψ(0) = 0, and, if
u(s) = u0 + sφ0 + sψ(s) for s ∈ I1, then F (ρ(s), u(s)) = 0. Moreover, F−1({0}) near (ρ0, u0)
consists precisely of u = u0 and the curves Γ = {(ρ(s), u(s)) : s ∈ I1}. If in addition, DuF (ρ, u)
is a Fredholm operator for all (ρ, u) ∈ V , then the curve Γ is contained in C, which is a connected
component of closure of S where S = {(ρ, u) ∈ V : F (ρ, u) = 0, u 6= u0}; and either C is not
compact in V , or C contains a point (ρ∗, u0) with ρ∗ 6= ρ0.

4.1. Applying abstract bifurcation theory to (1.8). In this subsection, we will apply abstract
bifurcation Theorem 4.1 to obtain the existence of non-constant positive solutions of (1.8), where
d(u) = 1 + ku. We shall fix all the parameters except µ and treat µ as a bifurcation parameter.
The positive solutions will be the ones bifurcating from the constant steady states (u+, v+), where

u+ =
(1− b)r
1− bc

> 0 and v+ =
(1− c)r
1− bc

> 0,

due to 0 < b, c < 1.
We recall a well-known result. The eigenvalue problem{

−φxx = λφ, x ∈ (0, L),

φx(0) = φx(L) = 0,
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has a sequence of simple eigenvalues λ0 < λ1 < · · · < λn · · · , where

λi =
π2i2

L2
, i = 0, 1, 2, · · · ,

with normalized eigenfunctions given by

φi(x) =


1√
L
, i = 0,√
2
L cos(πix/L), i > 0.

The set of eigenfunctions forms an orthonormal basis in L2(0, L).
Let Y = L2(0, L)× L2(0, L) be the Hilbert space with the inner product

(U1, U2)Y = (u1, u2)L2(0,L) + (v1, v2)L2(0,L)

for U1 = (u1, v1), U2 = (u2, v2), and X = {(u, v)| u, v ∈ H2
N (0, L)}. Here

H2
N (0, L) = {u ∈ H2(0, L)| ux(0) = ux(L) = 0}.

We regard X as a Banach space with usual H2 norm. Define the map F : (0,∞)×X → Y by

F (µ, u, v) =

(
uxx + u(r − u− bv)

µ((1 + ku)v)xx + v(r − v − cu)

)
.

Then the solutions of the boundary value problem (1.8) are exactly zeros of this map. For any
µ > 0, we have that

F (µ, u+, v+) = 0.

For any fixed (u, v) ∈ X, the Frechet derivative is given by

D(u,v)F (µ, u, v)(φ, ψ) =

(
φxx + φ(r − 2u− bv)− buψ

µk(vφ)xx + µ((1 + ku)ψ)xx + ψ(r − 2v − cu)− cvφ

)
. (4.1)

By Remark 2.5 of case 3 in [42], D(u,v)F (µ, u, v)(φ, ψ) is elliptic and satisfies Agmon’s condition.
Therefore by [42, Theorem 3.3 and Remark 3.4], one obtains that

D(u,v)F (µ, u, v) : X → Y is a Fredholm operator with zero index. (4.2)

The necessary condition for bifurcation to occur at the ,constant steady state (µ, u+, v+) is that
the null space

ker(D(u,v)F (µ, u+, v+)) 6= {0}.
We study the eigenvalues of the operator D(u,v)F (µ, u+, v+). The eigenvalue τ with corresponding

eigenfunction (φ, ψ) of operator D(u,v)F (µ, u+, v+) satisfy
φxx − u+φ− bu+ψ = τφ, x ∈ (0, L),

µ(1 + ku+)ψxx + µkv+φxx − v+ψ − cv+φ = τψ, x ∈ (0, L),

φx(0) = φx(L) = ψx(0) = ψx(L) = 0.

(4.3)

Let

φ =

∞∑
j=0

tj cos
jπx

L
, and ψ =

∞∑
j=0

sj cos
jπx

L
. (4.4)

Substituting (4.4) into (4.3), we get{
(−λj − u+ − τ) tj − bu+sj = 0,

(−µkv+λj − cv+) tj + (−µ(1 + ku+)λj − v+ − τ) sj = 0.
(4.5)

Then (4.3) has nonzero solutions if and only if(
λj + u+ + τ

) (
µ(1 + ku+)λj + v+ + τ

)
− bu+v+ (µkλj + c) = 0 for some j ≥ 0.

Define
Aj(τ) = τ2 + (λj + u+ + µ(1 + ku+)λj + v+)τ +Bj(τ),
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where
Bj = (λj + u+)(µ(1 + ku+)λj + v+)− bu+v+(µkλj + c)

= λjµ[(λj + u+)(1 + ku+)− bku+v+] + (1− bc)u+v+.

For each j ∈ N, Aj(τ) = 0 admits two roots τj,1 and τj,2, which satisfy

τj,1 + τj,2 = −(λj + u+ + µ(1 + ku+)λj + v+) < 0 and τj,1τj,2 = Bj .

It is well-known that if any eigenvalue τ of the operator D(u,v)F (µ, u+, v+) satisfies Reτ < 0, then

(u+, v+) is linearly stable. If the operator D(u,v)F (µ, u+, v+) has an eigenvalue τ with Reτ >

0, then (u+, v+) is linearly unstable. Therefore, if there exits j ∈ N such that Bj < 0, then
(u+, v+) is linearly unstable; while (u+, v+) is linearly stable if Bj > 0 for all j ∈ N. Hence, if
(bkv+−(1+ku+))u+

1+ku+
≤ λ1, then for each j ∈ N, we have Bj > 0 and (u+, v+) is linearly stable for any

µ > 0; while if (bkv+−(1+ku+))u+

1+ku+
> λ1, then we have

B1 =


> 0, for µ < (1−bc)u+v+

(bku+v+−(1+ku+)(λ1+u+))λ1
,

= 0, for µ = (1−bc)u+v+
(bku+v+−(1+ku+)(λ1+u+))λ1

,

< 0, for µ > (1−bc)u+v+
(bku+v+−(1+ku+)(λ1+u+))λ1

.

Moreover, if (bkv+−(1+ku+))u+

1+ku+
∈ (λj , λj+1] for some j ≥ 1, then operator D(u,v)F (µ, u+, v+) has

zero eigenvalue only when

µ = µλi > 0, µλi =
(1− bc)u+v+

(bku+v+ − (1 + ku+)(λi + u+))λi
, i = 1, 2, · · · , j, (4.6)

and

(u+, v+) is linearly

{
stable, for µ < min{µλ1 , µλ2 , · · · , µλj},
unstable, for µ > min{µλ1 , µλ2 , · · · , µλj}.

To obtain the existence of non-constant positive solutions of (1.8), we first establish several
lemmas.

Lemma 4.1. Let (u, v) be a positive solution of (1.8). Then we have

0 < u < r and 0 < v < r(1 + kr) on [0, L].

Proof. The result follows directly from the strong maximum principle and we omit the details. �

Lemma 4.2. Given all the parameters except µ, if bc < 1, then there exits some small µ∗ > 0 such
that (1.8) only admits the constant positive solution (u+, v+) for any µ ∈ (0, µ∗), where

µ∗ = 4ηu+

v+
· 1+kr
k2r2

and η = 4−2bc
2b2

.

Proof. We will show that (u+, v+) is globally asymptotically stable for (1.1) when µ < µ∗.
Let

F(t) = η

∫ L

0

(
u− u+ − u+ ln

u

u+

)
dx+

∫ L

0

(
v − v+ − v+ ln

v

v+

)
dx

and

G(t) =

∫ L

0

[
(u− u+)2 + (v − v+)2 +

u2
x

u2
+
v2
x

v2

]
dx,

where (u, v) is the unique positive solution of (1.1).
Claim 1: ∀ε > 0, there exits some Tε > 0 (depending on u0) such that u ≤ (1 + ε)r for t ≥ Tε.

Consider the ODE: {
zt = z(r − z),
z(0) = ‖u0‖L∞ .

It is trivial to show that z(t)→ r exponentially as t→∞. Moreover, by comparison principle, one
has

u(x, t) ≤ z(t) for x ∈ (0, L), t ≥ 0.
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Therefore, claim 1 holds. Given µ < µ∗, one can choose small ε such that

µ <
4ηu+

v+
· 1 + k(1 + ε)r

k2(1 + ε)2r2
.

Claim 2: there exists δ > 0, such that dF (t)
dt ≤ −δG(t) for t > Tε. Indeed, one can compute that

dF (t)

dt
=

∫ L

0

[
η(u− u+)uxx

u
+
µ(v − v+)((1 + ku)v)xx

v

]
dx

+

∫ L

0
(η(u− u+)(r − u− bv) + (v − v+)(r − v − cu))dx

= −
∫ L

0

(
ux
u

vx
v

)( ηu+ µukv+

2
µukv+

2 µ(1 + ku)v+

)(
ux
u
vx
v

)
dx

−
∫ L

0

(
u− u+ v − v+

)( η ηb+c
2

ηb+c
2 1

)(
u− u+

v − v+

)
dx

From bc < 1, η = 4−2bc
2b2

, and µ < 4ηu+

v+
· 1+k(1+ε)r
k2(1+ε)2r2

, it follows that

η > (ηb+c)2

4 and µη(1 + ku)u+v+ > (µukv+)2

4 for t > Tε.

Then, one obtains that the claim 2. Next, following the approach as that in proving [48, Lemma
3.2], one can show that (u+, v+) is globally asymptotically stable for (1.1). Therefore, (1.8) only
admits the constant positive solution (u+, v+) for any µ ∈ (0, µ∗). �

Now we are in a position to prove Theorem 1.5.

Proof of Theorem 1.5. We will prove the Theorem in two steps.
Step 1: local bifurcation. Recall that X = {(u, v)| u, v ∈ H2

N (0, L)}, Y = L2(0, L) × L2(0, L),
and F (µ, u+, v+) = 0 for any µ > 0. Let V = (0,∞)×X. By (4.6), one finds that

KerD(u,v)F (µλi , u
+, v+) = s

(
bu+,−(λi + u+)

)
cos

ixπ

L
, s ∈ R

and

dim(KerD(u,v)F (µλi , u
+, v+)) = 1.

Direct computations show that

Dµ,(u,v)F (µ, u, v)(φ, ψ) =

(
0

k(vφ)xx + ((1 + ku)ψ)xx

)
.

By (4.2), to apply Theorem 4.1, it remains to check the transversality condition

Dµ,(u,v)F (µλi , u
+, v+)(φi, ψi) 6∈ Ran(D(u,v)F (µλi , u

+, v+)),

where φi = bu+ cos ixπL and ψi = −(λi + u+) cos ixπL . If this condition fails, then there exits ζ, η
such that 

ζxx − u+ζ − bu+η = 0, in (0, L),

µλikv
+ζxx + µλi(1 + ku+)ηxx − v+η − cv+ζ = χi, in (0, L),

ζx(0) = ζx(L) = ηx(0) = ηx(L) = 0,

(4.7)

where

χi = kv+(φi)xx + (1 + ku+)(ψi)xx =
[
(λi + u+)(1 + ku+)− bku+v+

]
λi cos

ixπ

L
.

Let

ζ =
∞∑
i=0

t̂i cos
ixπ

L
, η =

∞∑
i=0

ŝi cos
ixπ

L
. (4.8)
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Substituting (4.8) into (4.7), we have{
λit̂i + u+t̂i + bu+ŝi = 0,

kt̂iλiµλiv
+ + (1 + ku+)ŝiλiµλi + v+ŝi + cv+t̂i = [bku+v+ − (λi + u+)(1 + ku+)]λi > 0.

From the definition of µλi , one obtains that this linear system has no solutions. Therefore, by
Theorem 4.1, we have that there exist an open interval I1 = (−ε, ε) and continuous functions µ :
I1 → R, σ : I1 → Z, such that µ(0) = µλi , σ(0) = 0, and, if (u(s), v(s)) = (u+, v+)+s(φi, ψi)+sσ(s)
for s ∈ I1, then F (µ(s), u(s), v(s)) = 0. Here, Z be any complement of span{(φi, ψi)} in X.
Moreover, F−1({0}) near the bifurcation point (µλi , u

+, v+) consists precisely of (u, v) = (u+, v+)
and the curves Γ = {(µ(s), u(s), v(s)) : s ∈ I1}.

Step 2: global bifurcation. By (4.2) and Theorem 4.1, we obtain that the curve Γ is contained in
C, which is a connected component of closure of S with

S = {(µ, u, v) ∈ V : F (µ, u, v) = 0, (u, v) 6= (u+, v+)},

and either C is not compact in V , or C contains a point (µ∗, u+, v+) with µ∗ 6= µλi . We now show
that the first alternative must occur by using the approach in [11, 35, 45]. Indeed, if C is bounded,
by Lemma 4.2, one obtains that it is compact, and C meets some other bifurcation points. Let
1 ≤ i∗ ≤ j be such that C meets (µλi∗ , u

+, v+), but not (µλm , u
+, v+) for any λm > λi∗ , where

m ≤ j. Consider an auxiliary problem
uxx + u(r − u− bv) = 0, in (0, Li∗ ),

µ[(1 + ku)v]xx + v(r − v − cu) = 0, in (0, Li∗ ),

ux(0) = ux( Li∗ ) = vx(0) = vx( Li∗ ) = 0.

(4.9)

We note here that if (4.9) admits a positive solution (u∗, v∗), then one can construct a solution
(u, v) to (1.8) by a reflective and periodic extension. Let xn = nL

i∗ , n = 0, 1, · · · , i∗, and define

(u, v)(x) =

{
(u∗, v∗)(x− x2n), if x2n ≤ x ≤ x2n+1,

(u∗, v∗)(x2n+2 − x), if x2n+1 ≤ x ≤ x2n+2.

It is easy to verify that (µλi∗ , u
+, v+) is also a bifurcation point of the problem (4.9). Let Λi∗

denotes the bifurcation branch of this new problem that meets (µλi∗ , u
+, v+), then using the same

argument above it is clear that it either meets infinity or meets (µλm∗ , u
+, v+) for some λm∗ > λi∗ .

If the second case occurs, then by the above extension one sees that C meets (µλm∗ , u
+, v+), which

violates the definition of µλi∗ ; hence Λi∗ meets infinity, and then by the extension again C meets
infinity too. To show that the projection of C on the µ interval must be unbounded, we first
establish some results.

Claim 1: ∀ (µ, u, v) ∈ C, we have u > 0 and v > 0 on [0, L]. From step 1, it follows that u, v > 0
on [0, L] for (µ, u, v) ∈ C and (µ, u, v) close to (µλi , u

+, v+). By Lemma 4.2, the projection of C on
the µ has positive lower bound. Assume the claim is false. That is, there exits (µi, ui, vi) ∈ C with
ui, vi > 0 on [0, L] and (µi, ui, vi)→ (µ̂, û, v̂) as i→∞, where (µ̂, û, v̂) ∈ C with

min

{
min
x∈[0,L]

û, min
x∈[0,L]

v̂

}
= 0. (4.10)

If min
x∈[0,L]

û = 0, by maximum principle, one obtains that û ≡ 0. Recall that v̂ satisfies

{
µ̂d(0)v̂xx + v̂ (r − v̂) = 0, in (0, L),

v̂x(0) = v̂x(L) = 0.

Hence, we have

v̂ ≡ 0 or v̂ ≡ r. (4.11)
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Let ûi = ui
‖ui‖L∞

. Applying the elliptic regularity (cf. [8]) and the Sobolev imbedding theorem,

without loss of generality, we assume that ûi → û∞ in C1([0, L]) as i→∞ and û∞ satisfies{
û∞xx + û∞(r − bv̂) = 0, in (0, L),

û∞x (0) = û∞x (L) = 0.

This together with (4.11), and û∞ ≥ 0 implies that û∞ ≡ 0, which contradicts ‖û∞‖L∞ = 1.
Hence, û > 0 on [0, L]. This combined with (4.10) suggests that min

x∈[0,L]
v̂ = 0. Let wi = (1 + kui)vi

and ŵ = (1 + kû)v̂. Then ŵ satisfies{
µ̂ŵxx + ŵ

1+kû

(
r − û− ŵ

1+kû

)
= 0, in (0, L),

ŵx(0) = ŵx(L) = 0.

So, we have ŵ ≡ 0. Let ŵi = wi
‖wi‖L∞

. Similarly, one attains that ŵi → ŵ∞ in C1([0, L]) as i→∞
and ŵ∞ satisfies {

µ̂ŵ∞xx + ŵ∞

1+kû (r − û) = 0, in (0, L),

ŵ∞x (0) = ŵ∞x (L) = 0.

This further yields that ŵ∞ ≡ 0 due to Lemma 4.1, which contradicts ‖ŵ∞‖L∞ = 1. Therefore,
Claim 1 holds.

Claim 2: ∀ (µ, u, v) ∈ C, one has u and v are bounded in H2(0, L). Recall Lemma 4.2 and it is
standard to show that the claim holds.

Combining Claim 1, Claim 2 and the fact that C meets infinity, one concludes that the projection
of C on the µ interval must be unbounded. This completes the proof. �

Remark 4.1. We have the following remarks.

• Let Γ+ = {(µ(s), u(s), v(s)) : s ∈ (0, ε)} and Γ− = {(µ(s), u(s), v(s)) : s ∈ (−ε, 0)}. Denote
C+ (resp. C−) be the component of C\Γ− which contains Γ+ (resp. the component of C\Γ+

which contains Γ− ). Similarly, one can show that the C+ (resp. C−) meets infinity. We
note here that we don’t exclude the possibillity that C+ and C− meet at some point.

• If (bkv+−(1+ku+))u+

1+ku+
∈ (λ1, λ2], then we have

(u+, v+) is linearly

{
stable, for µ < µλ1 ,

unstable, for µ > µλ1 .

Moreover, applying the well-known index theory [5], one can show that (1.8) admits at least
two non-constant positive solutions for µ > µλ1 because the indices of (0, 0), (r, 0), (0, r)
are all equal to 0, the index of (u+, v+) is −1, and the sum of index of all the non-negative
solutions of (1.8) is 1.

• If (bkv+−(1+ku+))u+

1+ku+
∈ (λ2, λ3], we assume µλ1 6= µλ2. Without loss of generality, we assume

that µλ1 < µλ2. For the case µ ∈ (µλ1 , µλ2), by the index theory, one can show that (1.8)
admits at least two non-constant positive solutions. For the case µ > µλ2, if the positive
solution bifurcating from µλ1 is non-degenerate, then (1.8) admits at least two non-constant
positive solutions due to the facts that the indices of (0, 0), (r, 0), (0, r) are equal to 0, the
index of (u+, v+) is 1, the index of the non-constant positive solution is 1 or −1; and the
sum of index of all the non-negative solution of (1.8) is 1.

5. Summary and discussion

In this paper, we consider the existence and nonexistence of non-constant positive solutions to
the one-dimensional stationary SKT system (1.8). Indeed the existence/nonexistence and stability
of positive solutions to system (1.8) have been widely studied in the literature, but the results are
confined to the case of strong cross-diffusion (i.e. k � 1). In this paper, we make a step forward by
considering a fixed k > 0 and µ� 1 at the first time. Our main results consist of two parts. The
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first part includes some non-existence and existence of positive solutions as µ� 1. We first establish
the non-existence of positive solutions for (1.8) with µ � 1 in the case of b < 1 < c (see Theorem
1.2). This implies that the cross-diffusion strategy of avoiding the strong competitor can not help
the weak competitor to survive. Then by studying the existence of monotonic solutions to the
shadow system of (1.8) as µ→∞ for fixed k > 0, we obtain the existence of positive non-constant
solutions of (1.8) under generic conditions (see Theorem 1.3) via the non-degeneracy condition
(1.9) (see Proposition 1.1). More explicit existence conditions are further given in Theorem 1.4.
The second part of our main results is the existence of non-constant positive solutions in the case
of weak competition 0 < b, c < 1 for any µ > 0 given in Theorem 1.5 which is proved by the global
bifurcation theory.

Various interesting open questions arise from our present study. For example, the stability (or
instability) of non-constant positive solutions is yet to be studied. The existence result given in
Theorem 1.4-(i) requires that b and c are sufficiently close to 1. Then one may ask whether system
(1.1) admits non-constant positive solutions if 0 < c < 1 < b but b or c is not close to 1. The more
interesting yet challenging question is to find threshold values of b and c so that the existence or
non-existence of non-constant positive solutions can be determined.
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